JPH05234750A - Superconducting device - Google Patents

Superconducting device

Info

Publication number
JPH05234750A
JPH05234750A JP3941892A JP3941892A JPH05234750A JP H05234750 A JPH05234750 A JP H05234750A JP 3941892 A JP3941892 A JP 3941892A JP 3941892 A JP3941892 A JP 3941892A JP H05234750 A JPH05234750 A JP H05234750A
Authority
JP
Japan
Prior art keywords
coil
superconducting
temperature
superconducting coil
quenched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3941892A
Other languages
Japanese (ja)
Inventor
Shoichi Yokoyama
彰一 横山
Kenji Shimohata
賢司 下畑
Hideto Yoshimura
秀人 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3941892A priority Critical patent/JPH05234750A/en
Publication of JPH05234750A publication Critical patent/JPH05234750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PURPOSE:To acquire a superconducting device wherein a superconducting coil is hard to be quenched and coil protection can be performed without increasing capacity and weight of the device even if quenched. CONSTITUTION:A plurality of high temperature superconducting coils 20 provided inside a vacuum container 10 are cooled at a temperature of a liquid helium temperature or higher and half a critical temperature of the high temperature superconducting coil 20 or lower and a conducting cooler 40 provided to a periphery of the high temperature superconducting coil 20 works also as a coil protecting heater when the coil is quenched.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、超電導装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting device.

【0002】[0002]

【従来の技術】図3は例えば国際会議MT11論文集
(Vol.2,1366〜1370(1989))に示された従来の冷凍機を
用いた超電導装置である。図において、11は真空容
器、12はこの真空容器11の内部に取り付けられ、1
2Kで冷却されているニオブ・スズ線の超電導コイル、
13はこの超電導コイル12を冷却するための冷凍機、
14はこの冷凍機13が発生した寒冷を超電導コイル1
2に伝達するための、銅ブロックを用いた伝導冷却器で
ある。
2. Description of the Related Art FIG. 3 shows a superconducting device using a conventional refrigerator, which is shown in, for example, the International Conference MT11 Papers (Vol.2, 1366 to 1370 (1989)). In the figure, 11 is a vacuum container, 12 is attached inside the vacuum container 11, and
Niobium tin wire superconducting coil cooled at 2K,
13 is a refrigerator for cooling the superconducting coil 12,
Reference numeral 14 denotes the superconducting coil 1 for refrigerating the cold generated by the refrigerator 13.
2 is a conduction cooler using a copper block for transmission to the No. 2.

【0003】[0003]

【発明が解決しようとする課題】従来の超電導装置は、
上記のように構成され、超電導コイルにニオブ・スズ線
を用いて12Kで冷却しているので、臨界温度(18
K)に近いため運転中に少しの温度上昇があると臨界電
流密度が大きく低下するのでクエンチしやすい。また、
超電導コイルがクエンチした場合にコイル温度が上昇し
焼損することを防ぐために大きな熱吸収用のブロックや
安定化材の多い超電導線が必要であり、超電導装置の容
積や重量が大きくなる。さらにコイルの断面中心のよう
な熱はけの悪い部分からクエンチした場合、冷却温度が
12Kであるため超電導線のクエンチ伝播速度が遅くな
り、超電導コイルのエネルギ−がクエンチした超電導線
の局部に加わり局部的な焼損をおこしやすいという問題
があった。
The conventional superconducting device is
Since the superconducting coil is constructed as described above and is cooled at 12K by using niobium tin wire, the critical temperature (18
Since the temperature is close to K), if there is a slight temperature rise during operation, the critical current density will drop significantly and quenching is likely to occur. Also,
When the superconducting coil is quenched, a large heat-absorbing block and a superconducting wire having a large amount of a stabilizing material are necessary to prevent the coil temperature from rising and burning, which increases the volume and weight of the superconducting device. Furthermore, when quenching from a portion with poor heat dissipation such as the center of the coil cross section, the quenching speed of the superconducting wire slows down because the cooling temperature is 12K, and the energy of the superconducting coil is added to the local part of the quenched superconducting wire. There is a problem that local burning is likely to occur.

【0004】この発明は、上記のような問題点を解決す
るためになされたもので、超電導コイルがクエンチしに
くく、さらにたとえクエンチしてもコイル保護を装置の
容積や重量を増やすことなく行える超電導装置を得るこ
とを目的とする。
The present invention has been made in order to solve the above problems, and it is difficult for the superconducting coil to be quenched, and even if the superconducting coil is quenched, the coil can be protected without increasing the volume or weight of the device. The purpose is to obtain the device.

【0005】[0005]

【課題を解決するための手段】この発明に係る超電導装
置は、真空容器内に設置された複数個の高温超電導コイ
ルを、液体ヘリウム温度以上、高温超電導コイルの臨界
温度の2分の1以下で冷却するとともに、高温超電導コ
イルの周囲に設けられた伝導冷却器がクエンチ時のコイ
ル保護用ヒ−タ−を兼用するものである。
In the superconducting device according to the present invention, a plurality of high-temperature superconducting coils installed in a vacuum container are kept at a temperature of liquid helium or higher and half or less of the critical temperature of the high-temperature superconducting coil. In addition to cooling, the conduction cooler provided around the high temperature superconducting coil also serves as a coil protecting heater at the time of quenching.

【0006】また、上記伝導冷却器をインジウムの金属
板もしくは金属テ−プで構成するとよい。
Further, the conduction cooler may be composed of a metal plate or metal tape of indium.

【0007】[0007]

【作用】この発明の超電導装置は、超電導コイルに高温
超電導体を用い、これを液体ヘリウム温度(4.2K)以上、
臨界温度の2分の1以下で冷却しているので超電導の過
渡安定性が良く、超電導コイルは少しの温度上昇におい
てもクエンチしにくい。即ち、例えばBi系高温超電導
体は臨界温度が115Kと高いので、例えば冷却温度が
20Kであれば5Kの温度上昇があったとしても臨界電
流が急激に低下することはなくコイルはクエンチしにく
い。また、伝導冷却器を兼ねたクエンチ時のコイル保護
用加熱ヒ−タ−を備えているので、超電導コイルがたと
えクエンチしても加熱ヒ−タ−に通電することにより超
電導コイル全体がクエンチし、超電導コイル内のエネル
ギ−はコイル全体で吸収され、局部的な焼損は生じなく
なり、熱吸収用のブロックが不要になり安定化材も少な
くてよいので装置の容積や重量が小さい超電導装置を得
ることができる。
The superconducting device of the present invention uses a high-temperature superconductor for the superconducting coil, which has a liquid helium temperature (4.2K) or higher,
Since the superconducting coil is cooled at ½ or less of the critical temperature, the transient stability of superconductivity is good, and the superconducting coil is hard to be quenched even with a slight temperature rise. That is, for example, a Bi-based high-temperature superconductor has a high critical temperature of 115 K, so if the cooling temperature is 20 K, for example, even if the temperature rises by 5 K, the critical current does not sharply decrease and the coil is hard to quench. Further, since it has a heating heater for coil protection at the time of quenching, which also serves as a conduction cooler, even if the superconducting coil is quenched, the entire superconducting coil is quenched by energizing the heating heater, Energy in the superconducting coil is absorbed by the entire coil, local burning does not occur, blocks for heat absorption are not required, and less stabilizing material is required, so a superconducting device with a small volume and weight can be obtained. You can

【0008】また、上記伝導冷却器をインジウムの金属
板もしくは金属テ−プで構成すると、超電導コイルとの
密着性がよく、冷却及び加熱時の熱伝達効率がよい。ま
た、インジウムは熱伝導率が銅並によく、電気抵抗率が
高いので低温用のヒ−タ−として有効である。
Further, when the conduction cooler is composed of a metal plate or metal tape of indium, the adhesion with the superconducting coil is good, and the heat transfer efficiency during cooling and heating is good. In addition, indium has a thermal conductivity as good as that of copper, and has a high electric resistivity, so that it is effective as a low temperature heater.

【0009】[0009]

【実施例】実施例1.以下、この発明を図に基づいて説
明する。図1は、この発明の一実施例を示す構成図であ
る。図において、10は真空容器、20はこの真空容器
10の内部に取り付けられ、20Kで冷却されている高
温超電導コイルであり、例えば銀被覆のBi系超電導テ
−プ線(臨界温度115K)を巻線したコイルであり、30
はこの高温超電導コイル20を冷却するための冷凍機、
40はこの冷凍機30が発生した寒冷を高温超電導コイ
ル20に伝達するためのアルミテ−プを高温超電導コイ
ル20の表面に巻いたもので、超電導コイル20のクエ
ンチ時のコイル保護用の加熱ヒ−タ−を兼用した伝導冷
却器である。
EXAMPLES Example 1. The present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 10 is a vacuum vessel, 20 is a high temperature superconducting coil which is mounted inside the vacuum vessel 10 and is cooled at 20K, for example, a silver-coated Bi-based superconducting tape wire (critical temperature 115K) is wound. Wired coil, 30
Is a refrigerator for cooling the high temperature superconducting coil 20,
Reference numeral 40 denotes an aluminum tape wound around the surface of the high-temperature superconducting coil 20 for transmitting the cold generated by the refrigerator 30 to the high-temperature superconducting coil 20, and a heating heater for protecting the coil when the superconducting coil 20 is quenched. It is a conduction cooler that also doubles as a heater.

【0010】上記超電導装置においては、例えばBi系
銀シ−ステ−プ線を巻線した高温超電導コイル20を液
体ヘリウム温度以上、臨界温度(115K)の2分の1以下の
20Kで冷却しているので、超電導コイルの温度が25
Kに上昇しても5%程度しか臨界電流密度は低下しない
ので臨界電流の94%で運転してもクエンチしにくい。
In the above superconducting device, for example, a high temperature superconducting coil 20 wound with a Bi-based silver sheath tape is cooled at a temperature of not less than liquid helium and not more than half the critical temperature (115K) at 20K. Temperature of the superconducting coil is 25
Even if the temperature rises to K, the critical current density decreases by only about 5%, so it is difficult to quench even when operating at 94% of the critical current.

【0011】また、例えば磁気浮上列車用の超電導装置
において、20K冷却の高温超電導コイルを応用した場
合を考える。20Kで冷却されている超電導コイルにお
いて、もし一部がクエンチした場合の超電導コイルにお
ける温度上昇及び電流減衰をシミレ−ションした結果を
図2(a)(b)(c)に示す。図2において、Aは通
常のクエンチの場合であり、Bはコイルの一部がクエン
チしたと同時にコイル表面の4ヶ所をヒ−タ−で加熱し
て強制的にクエンチした場合であり、C及びDはコイル
の一部がクエンチしたと同時にそれぞれコイル全表面及
びコイル全体を強制クエンチした場合である。図2
(a)よりわかるように、A及びBは最高温度が100
0Kを越え焼損してしまう。これに対し、Cでは200
K程度、Dでは50K程度であり焼損しないことがわか
る。すなわち、20Kで冷却している超電導コイルにお
いてクエンチが発生した場合はコイル保護が必要であ
り、その時の強制クエンチはコイル全表面において行わ
なければならない。本実施例ではこの強制クエンチ用の
加熱ヒ−タ−を備えているので、超電導コイルがもしク
エンチしてもコイルの焼損を防ぐことができる。また、
伝導冷却器がこの加熱ヒ−タ−を兼用しているため構造
が簡単になり、クエンチ時に加える熱がコイルに伝わり
やすくなる。
Further, let us consider a case where a high-temperature superconducting coil cooled at 20K is applied to, for example, a superconducting device for a magnetic levitation train. In the superconducting coil cooled at 20K, the results of simulating the temperature rise and the current decay in the superconducting coil when a part is quenched are shown in FIGS. 2 (a) (b) (c). In FIG. 2, A is a case of normal quenching, B is a case of quenching a part of the coil and at the same time forcibly quenching by heating four points on the coil surface with a heater, and C and D is the case where a part of the coil is quenched and at the same time the entire surface of the coil and the entire coil are forcibly quenched. Figure 2
As can be seen from (a), the maximum temperature of A and B is 100.
It burns over 0K. On the other hand, C is 200
It can be seen that about K and about 50K for D, there is no burning. That is, when quenching occurs in the superconducting coil cooled at 20K, coil protection is necessary, and forced quenching at that time must be performed on the entire surface of the coil. Since the heating heater for forced quenching is provided in this embodiment, even if the superconducting coil is quenched, it is possible to prevent the coil from burning. Also,
Since the conduction cooler also serves as this heating heater, the structure is simple and the heat applied during the quench is easily transferred to the coil.

【0012】実施例2.なお、上記実施例では伝導冷却
器はアルミテ−プで構成されていたが、クエンチ時のコ
イル保護用ヒ−タ−を兼用した伝導冷却器にインジウム
を用いれば、超電導コイルとの密着性がよいので、冷却
及び加熱時の熱伝達効率がよく、また、インジウムは熱
伝導率が銅並によく、電気抵抗率が高いので低温用のヒ
−タ−としても有効である。
Example 2. In the above embodiment, the conduction cooler was made of aluminum tape, but if indium is used for the conduction cooler that also serves as the coil protection heater during quenching, the adhesion with the superconducting coil is good. Therefore, the heat transfer efficiency during cooling and heating is good, and the thermal conductivity of indium is as good as that of copper and the electrical resistivity is high, so that it is also effective as a heater for low temperatures.

【0013】また、上記実施例では伝導冷却器はテープ
状で超電導コイルの表面に巻かれていたが、このような
構成に限るものではない。
In the above embodiment, the conduction cooler is tape-shaped and wound around the surface of the superconducting coil, but the structure is not limited to this.

【0014】また、この発明に係わる高温超電導コイル
20はBi系銀シ−ステ−プ線でできたコイルに限ら
ず、例えばTl系やY系の金属被覆超電導線であっても
よく、上記実施例と同様の効果を奏する。
Further, the high temperature superconducting coil 20 according to the present invention is not limited to the coil made of Bi type silver sheathed wire, but may be, for example, Tl type or Y type metal coated superconducting wire. It has the same effect as the example.

【0015】[0015]

【発明の効果】以上のように、この発明の超電導装置に
よれば、高温超電導コイルを用い、これを液体ヘリウム
温度以上、臨界温度の2分の1以下で冷却し、さらに伝
導冷却器がコイル保護用の加熱ヒ−タ−を兼用している
ので、温度変動に対する超電導コイルの安定性が向上
し、クエンチしにくくなる。また、クエンチに対し、超
電導装置の容積や重量を増やすことなくコイル保護を行
うことができる。
As described above, according to the superconducting device of the present invention, a high temperature superconducting coil is used, which is cooled to a temperature higher than the liquid helium temperature and lower than a half of the critical temperature, and the conduction cooler further comprises a coil. Since it also serves as a heating heater for protection, the stability of the superconducting coil with respect to temperature fluctuation is improved and quenching becomes difficult. In addition, the coil can be protected against quenching without increasing the volume or weight of the superconducting device.

【0016】また、伝導冷却器にインジウムを用いるこ
とにより超電導コイルの冷却、加熱の効率がさらに良く
なるという効果がある。
The use of indium for the conduction cooler has the effect of further improving the cooling and heating efficiency of the superconducting coil.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による超電導装置を示す構
成図である。
FIG. 1 is a configuration diagram showing a superconducting device according to a first embodiment of the present invention.

【図2】この発明の実施例1に係わる超電導コイル、お
よび従来の超電導コイルがクエンチした場合のコイル最
高温度およびコイル電流のシミレ−ション結果を示す説
明図である。
FIG. 2 is an explanatory diagram showing simulation results of coil maximum temperature and coil current when the superconducting coil according to the first embodiment of the present invention and the conventional superconducting coil are quenched.

【図3】従来の超電導装置を示す構成図である。FIG. 3 is a configuration diagram showing a conventional superconducting device.

【符号の説明】[Explanation of symbols]

10 真空容器 20 高温超電導コイル 30 冷凍機 40 伝導冷却器 10 vacuum container 20 high temperature superconducting coil 30 refrigerator 40 conduction cooler

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内に取り付けられた複数個の高
温超電導コイル、この高温超電導コイルを、液体ヘリウ
ム温度以上、上記高温超電導コイルの臨界温度の2分の
1以下で冷却する冷凍機、及び上記高温超電導コイルの
周囲に設置され、かつクエンチ時の超電導コイル保護用
の加熱ヒ−タ−を兼用した伝導冷却器を備えた超電導装
置。
1. A plurality of high-temperature superconducting coils mounted in a vacuum container, a refrigerator for cooling the high-temperature superconducting coils at a temperature of liquid helium or higher and half or less of a critical temperature of the high-temperature superconducting coils, and A superconducting device provided with a conduction cooler, which is installed around the high-temperature superconducting coil and also serves as a heating heater for protecting the superconducting coil during a quench.
【請求項2】 伝導冷却器はインジウムの金属板もしく
は金属テ−プよりなる請求項1記載の超電導装置。
2. The superconducting device according to claim 1, wherein the conduction cooler is made of an indium metal plate or metal tape.
JP3941892A 1992-02-26 1992-02-26 Superconducting device Pending JPH05234750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3941892A JPH05234750A (en) 1992-02-26 1992-02-26 Superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3941892A JPH05234750A (en) 1992-02-26 1992-02-26 Superconducting device

Publications (1)

Publication Number Publication Date
JPH05234750A true JPH05234750A (en) 1993-09-10

Family

ID=12552440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3941892A Pending JPH05234750A (en) 1992-02-26 1992-02-26 Superconducting device

Country Status (1)

Country Link
JP (1) JPH05234750A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231522A (en) * 2001-02-02 2002-08-16 Sumitomo Electric Ind Ltd Cooling device for high-temperature superconductive coil
JP2007221931A (en) * 2006-02-17 2007-08-30 Toshiba Corp Superconducting current limiter
JP2011035216A (en) * 2009-08-04 2011-02-17 Railway Technical Res Inst Re-based superconducting coil conduction cooling method and device therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231522A (en) * 2001-02-02 2002-08-16 Sumitomo Electric Ind Ltd Cooling device for high-temperature superconductive coil
JP2007221931A (en) * 2006-02-17 2007-08-30 Toshiba Corp Superconducting current limiter
JP2011035216A (en) * 2009-08-04 2011-02-17 Railway Technical Res Inst Re-based superconducting coil conduction cooling method and device therefor

Similar Documents

Publication Publication Date Title
JP4295189B2 (en) Superconducting resistance type current limiter
Maddock et al. Protection and stabilisation of large superconducting coils
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
Smith Protection of superconducting coils
GB983528A (en) Superconductor apparatus
Mcfee Applications of superconductivity to the generation and distribution of electric power
JP3151159B2 (en) Superconducting current lead
US4486800A (en) Thermal method for making a fast transition of a superconducting winding from the superconducting into the normal-conducting state, and apparatus for carrying out the method
Green Quench protection solutions for magnets fabricated with insulated HTS tape conductors
JP2011091422A (en) Operation control method for superconducting coil
JPH05234750A (en) Superconducting device
JP3082397B2 (en) Superconducting device
Ries Sability in superconducting multistrand cables
Pi et al. Numerical study of current distribution and stability of LTS/HTS hybrid superconductor
Tien et al. Mechanisms of local thermal stability in high temperature superconductors
Kumakura et al. Performance tests of Bi-2223 pancake magnet
US3613006A (en) Stable superconducting magnet
Chen et al. Numerical study of normal‐zone evolution and stability of composite superconductors
Iwasa et al. Normal zone propagation in adiabatic superconducting magnets over the temperature range 4.2–80 K
JP2929622B2 (en) How to use oxide superconductor
Baynham et al. Transient stability of high current density superconducting wires
Wilson Some basic problems of superconducting magnet design
Baynham et al. Transient stability of LHC strands
JP2000150224A (en) Excitation control method of superconducting coil
JPH0864041A (en) Superconducting cable