JP2002222663A - Electrolyte solution and secondary cell - Google Patents
Electrolyte solution and secondary cellInfo
- Publication number
- JP2002222663A JP2002222663A JP2001017814A JP2001017814A JP2002222663A JP 2002222663 A JP2002222663 A JP 2002222663A JP 2001017814 A JP2001017814 A JP 2001017814A JP 2001017814 A JP2001017814 A JP 2001017814A JP 2002222663 A JP2002222663 A JP 2002222663A
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic solution
- battery
- positive electrode
- lithium
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電解液及びそれを
用いた二次電池に関する。詳しくは、過充電状況下での
安全性が向上した二次電池及びそれに用いられる電解液
に関する。TECHNICAL FIELD The present invention relates to an electrolytic solution and a secondary battery using the same. More specifically, the present invention relates to a secondary battery with improved safety under overcharged conditions and an electrolytic solution used for the secondary battery.
【0002】[0002]
【従来の技術】例えばリチウム二次電池用の電解液とし
て、炭酸エステル、エーテル及びラクトンからなる群か
ら選ばれる少なくとも1種の非水系溶媒を主体とする溶
媒にリチウム塩を溶解してなる電解液が知られている。
これらの非水系溶媒は、誘電率が高く、また酸化電位が
高いために電池使用時の安定性にも優れる等の電池特性
上優れた溶媒である。2. Description of the Related Art For example, as an electrolyte for a lithium secondary battery, an electrolyte obtained by dissolving a lithium salt in a solvent mainly composed of at least one non-aqueous solvent selected from the group consisting of carbonate, ether and lactone. It has been known.
These non-aqueous solvents are excellent in battery characteristics such as high in dielectric constant and high in oxidation potential, so that they have excellent stability during use of the battery.
【0003】一方、上記非水系溶媒を用いた電解液は、
該非水系溶媒の高安定性のため高い電位での使用が可能
であるが故に、逆に充電時等に所定の上限電圧以上の電
圧になる、いわゆる過充電現象が問題となりやすい。過
充電になると、電池の変形や発熱だけでなく、甚だしい
場合には発火、破裂等の現象をも招き得るため、過充電
時の二次電池の安全性を向上させることは重要である。On the other hand, an electrolytic solution using the above non-aqueous solvent is
Since the non-aqueous solvent can be used at a high potential due to its high stability, a so-called overcharge phenomenon, which tends to be a voltage higher than a predetermined upper limit voltage during charging or the like, is liable to be a problem. Overcharging can cause not only deformation and heat generation of the battery, but also phenomena such as ignition and rupture in severe cases. Therefore, it is important to improve the safety of the secondary battery during overcharging.
【0004】特に、リチウム二次電池の正極活物質とし
て、重量当たりの容量が大きいことから、層状構造を有
するリチウムコバルト酸化物(LiCoO2)やリチウ
ムニッケル酸化物(LiNiO2)等のリチウム遷移金
属複合酸化物が有力な材料として挙げられるが、これら
の化合物は過充電状態においてリチウムイオンがほどん
ど脱離した状態となって不安定になり、電解液と急激な
発熱反応を起こしたり、負極上にリチウム金属を析出さ
せたりすることがあるので、特に過充電時の安全性は重
要である。In particular, as a positive electrode active material of a lithium secondary battery, a lithium transition metal such as lithium cobalt oxide (LiCoO 2 ) or lithium nickel oxide (LiNiO 2 ) having a layered structure has a large capacity per weight. Composite oxides are one of the most promising materials.However, these compounds become unstable when lithium ions are almost eliminated in an overcharged state, causing a rapid exothermic reaction with the electrolyte, In some cases, lithium metal is deposited on the battery, so safety during overcharge is particularly important.
【0005】従来、このような過充電時の安全性を向上
させる試みとして、過充電防止剤を電解液中に添加し
て、電流を遮断する方法が知られている。即ち、過充電
防止剤として、電池の上限電圧値以上の酸化電位を有す
るビフェニル等の芳香族化合物を電解液中に添加し、過
充電状態となった際には、上記芳香族化合物が酸化重合
して活物質表面に高抵抗の被膜を形成することによって
過充電電流を抑えて過充電の進行を止める方法である
(例えば、特開平9−106835号公報、特許第29
39469号公報、特許第2983205号公報等)Conventionally, as an attempt to improve the safety at the time of such overcharging, there has been known a method of adding an overcharge preventing agent to an electrolytic solution to cut off the current. That is, an aromatic compound such as biphenyl having an oxidation potential equal to or higher than the upper limit voltage value of the battery is added to the electrolytic solution as an overcharge preventing agent, and when the overcharged state is reached, the aromatic compound undergoes oxidative polymerization. And forming a high-resistance film on the surface of the active material to suppress overcharging current and stop the progress of overcharging (for example, Japanese Patent Application Laid-Open No. 9-106835, and Patent No. 29).
No. 39469, Japanese Patent No. 2983205)
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記の
過充電防止方法でも充分とは言えないのが現状であっ
た。例えば、特開平9−106835号公報に記載され
た過充電防止剤であるビフェニルや3−クロロチオフェ
ン、フラン等は電池特性に悪影響を及ぼすことがあり、
特許第2939469号公報に記載された過充電防止剤
であるテルフェニル誘導体は電解液への溶解性が低いた
めに電池性能の低下をもたらすことがあり、さらに、特
許第2983205号公報に記載された過充電防止剤で
あるジフェニルエーテルは刺激臭が強く扱いづらいとい
う問題を有していた。However, at present, the above overcharge prevention method is not sufficient. For example, biphenyl, 3-chlorothiophene, furan, etc., which are overcharge inhibitors described in JP-A-9-106835, may adversely affect battery characteristics,
The terphenyl derivative which is an overcharge inhibitor described in Japanese Patent No. 2939469 may cause a decrease in battery performance due to low solubility in an electrolytic solution, and further described in Japanese Patent No. 2983205. Diphenyl ether, which is an overcharge inhibitor, has a problem that it has a strong pungent odor and is difficult to handle.
【0007】そこで、過充電防止効果を有する全く新し
い過充電防止剤が求められていた。Therefore, a completely new overcharge preventing agent having an overcharge preventing effect has been demanded.
【0008】[0008]
【課題を解決しようとする課題】本発明は上記問題点に
鑑みなされたもので、その目的は、従来の過充電防止剤
とは全く異なる新規の過充電防止剤を用いて、過充電時
の安全性を高めることにある。本発明者らは、上記目的
を達成すべく鋭意検討した結果、過充電防止剤として、
従来の芳香族化合物ではない、特定の多環脂環式炭化水
素が過充電防止剤として使用できること、そして、炭酸
エステル、エーテル及びラクトンからなる群から選ばれ
る少なくとも1種の非水系溶媒を主体とする溶媒に対し
て比較的少量の前記多環脂環式炭化水素を用いることに
よって十分な過充電時の安全性が確保できること、を見
出し本発明を完成した。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to use a novel overcharge preventing agent which is completely different from a conventional overcharging preventing agent, and The goal is to increase safety. The present inventors have conducted intensive studies to achieve the above object, and as an overcharge prevention agent,
It is not a conventional aromatic compound, that a specific polycyclic alicyclic hydrocarbon can be used as an overcharge inhibitor, and mainly contains at least one non-aqueous solvent selected from the group consisting of carbonate, ether and lactone. The present inventors have found that the use of a relatively small amount of the polycyclic alicyclic hydrocarbon with respect to the solvent to be used can ensure sufficient safety during overcharge, and completed the present invention.
【0009】即ち、本発明の要旨は、炭酸エステル、エ
ーテル及びラクトンからなる群から選ばれる少なくとも
1種の非水系溶媒を主体とする溶媒にリチウム塩を溶解
してなる電解液において、酸化電位4.3〜4.9V
の、多環形脂環式炭化水素又はその誘導体を、上記非水
系溶媒に対して5重量%以下含有することを特徴とする
電解液、及びそれを用いた電池、に存する。That is, the gist of the present invention is to provide an electrolyte comprising a lithium salt dissolved in a solvent mainly composed of at least one non-aqueous solvent selected from the group consisting of carbonate, ether and lactone. 0.3-4.9V
Wherein the polycyclic alicyclic hydrocarbon or a derivative thereof is contained in an amount of 5% by weight or less with respect to the non-aqueous solvent, and a battery using the same.
【0010】なお、特開平11−260404号公報に
は、電解液、高分子ゲル電解質又は高分子固体電解質中
に多環形脂環式炭化水素又はその誘導体を含有させるこ
とが記載されているが、当該多環形脂環式炭化水素は、
炭酸エステル、エーテル及びラクトン等の溶剤が高温下
で抗酸化力が低いという問題点を克服するために使用さ
れており、これらの溶剤を主体とする溶媒を用いること
についても、それに対して5重量%以下の多環脂環式炭
化水素を含有することについても一切の記載はなく、ま
た、その結果過充電時の安全性が向上する旨の記載もな
い。Japanese Patent Application Laid-Open No. 11-260404 describes that a polycyclic alicyclic hydrocarbon or a derivative thereof is contained in an electrolytic solution, a polymer gel electrolyte or a polymer solid electrolyte. The polycyclic alicyclic hydrocarbon,
Solvents such as carbonates, ethers and lactones have been used to overcome the problem of low antioxidant power at high temperatures, and the use of solvents based on these solvents also requires 5% by weight. % Or less of a polycyclic alicyclic hydrocarbon, and there is no description that safety as a result of overcharging is improved as a result.
【0011】[0011]
【発明の実施の形態】以下本発明を詳細に説明する。本
発明の電解液に使用する溶媒は、炭酸エステル、エーテ
ル及びラクトンからなる群から選ばれる少なくとも1種
の非水系溶媒を主体とするものである。これら非水系溶
媒は、溶媒全体に対して、通常50重量%以上、好まし
くは80%重量以上、さらに好ましくは100重量%と
する。上記非水系溶媒の占める割合が少なすぎると電解
液の電気伝導度等の低下や、電解液の酸化還元反応に伴
う劣化が大きくなる傾向がある。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The solvent used in the electrolytic solution of the present invention is mainly composed of at least one non-aqueous solvent selected from the group consisting of carbonate, ether and lactone. These non-aqueous solvents are usually 50% by weight or more, preferably 80% by weight or more, more preferably 100% by weight, based on the whole solvent. If the proportion occupied by the non-aqueous solvent is too small, the electric conductivity of the electrolytic solution tends to decrease, and the deterioration accompanying the oxidation-reduction reaction of the electrolytic solution tends to increase.
【0012】上記非水系溶媒として使用できる炭酸エス
テルとしては、プロピレンカーボネート(PC)、エチ
レンカーボネート(EC)等の環状炭酸エステルや、ジ
メチルカーボネート(DMC)、ジエチルカーボネート
(DEC)、エチルメチルカーボネート(EMC)等の
鎖状炭酸エステルを例示することができる。また、上記
非水系溶媒として使用できるエーテルとしては、ジメト
キシエタン(DME)、ジエトキシエタン(DEE)等
の、アルキル基間を酸素原子で結合した各種のアルキル
エーテルを例示することができる。Examples of the carbonate usable as the non-aqueous solvent include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). ) And the like. Examples of the ether that can be used as the non-aqueous solvent include various alkyl ethers such as dimethoxyethane (DME) and diethoxyethane (DEE) in which the alkyl groups are bonded with an oxygen atom.
【0013】また、上記非水系溶媒として使用できるラ
クトンとしては、γ-ブチロラクトン(GBL)を例示
することができる。なお、上記炭酸エステル、エーテ
ル、ラクトンの炭素数は通常3〜20、好ましくは3〜
15、さらに好ましくは3〜10である。上記非水系溶
媒は、炭酸エステル、エーテル及びラクトンの少なくと
も1種を用いればよいが、好ましくは、少なくとも炭酸
エステルを含有する。無論、これらの中から複数種を併
用することもできる。特に好ましいのは、高誘電率溶媒
であるPC、EC等の環状炭酸エステル又はGBL等の
ラクトン類と、低粘度溶媒であるDMC、DEC、EM
C等の鎖状炭酸エステルとの併用である。As the lactone usable as the non-aqueous solvent, γ-butyrolactone (GBL) can be exemplified. The carbonic acid ester, ether and lactone usually have 3 to 20 carbon atoms, preferably 3 to 20 carbon atoms.
15, more preferably 3 to 10. The non-aqueous solvent may use at least one of a carbonate ester, an ether and a lactone, and preferably contains at least a carbonate ester. Of course, a plurality of these can be used in combination. Particularly preferred are cyclic carbonates such as PC and EC which are high dielectric constant solvents or lactones such as GBL and DMC, DEC and EM which are low viscosity solvents.
It is used in combination with a chain carbonate such as C.
【0014】本発明においては、電解液中に、酸化電位
4.3〜4.9Vの多環形脂環式炭化水素を含有する。
ここで、酸化電位は、下記のサイクリックボルタンメト
リー法によって測定することができる。 酸化電位の測定方法 底面部分のみ露出した1.6mmφの白金を作用極、リ
チウム金属を対極および参照極とした、ガラスフィルタ
ーで作用極側と対極側が区切られたH型セルを用いて、
ECとDECとの体積比率7:3の混合溶媒にLiPF
6を1mol/Lの濃度で溶解した電解液に試料となる
多環形脂環式炭化水素を0.15mmol/g添加した
ものをこのセルに入れる。次いで、作用極の電位を酸化
側(貴側に)に20mV/秒の走引速度で走引する。こ
のとき0.5mA/cm2の電流密度が流れ出す電位を
酸化開始電位と規定する。測定は便宜上室温(25℃付
近)で行う。In the present invention, the electrolyte contains a polycyclic alicyclic hydrocarbon having an oxidation potential of 4.3 to 4.9 V.
Here, the oxidation potential can be measured by the following cyclic voltammetry method. Oxidation potential measurement method Using an H-type cell in which the working electrode side and the counter electrode side are separated by a glass filter using 1.6 mmφ platinum exposed only on the bottom portion as a working electrode, lithium metal as a counter electrode and a reference electrode,
LiPF in a mixed solvent of EC and DEC in a volume ratio of 7: 3
A solution obtained by adding 0.15 mmol / g of a polycyclic alicyclic hydrocarbon as a sample to an electrolytic solution obtained by dissolving 6 at a concentration of 1 mol / L is put into this cell. Next, the potential of the working electrode is swept toward the oxidation side (to the noble side) at a sweep speed of 20 mV / sec. At this time, a potential at which a current density of 0.5 mA / cm 2 flows is defined as an oxidation start potential. The measurement is performed at room temperature (around 25 ° C.) for convenience.
【0015】以上の方法によって測定される、多環形脂
環式炭化水素の酸化電位は、4.9V以下、好ましくは
4.7V以下である。酸化電位が高すぎると過充電防止
効果が小さくなる傾向にある。ただし、あまりに酸化電
位が低いと通常条件の電池使用時に反応し電池特性を劣
化させることがあるので、4.3V以上、好ましくは
4.4V以上、さらに好ましくは4.5V以上とする。The oxidation potential of the polycyclic alicyclic hydrocarbon measured by the above method is 4.9 V or less, preferably 4.7 V or less. If the oxidation potential is too high, the effect of preventing overcharge tends to decrease. However, if the oxidation potential is too low, it reacts when the battery is used under normal conditions and may deteriorate the battery characteristics. Therefore, the oxidation potential is set to 4.3 V or more, preferably 4.4 V or more, and more preferably 4.5 V or more.
【0016】本発明においては、電解液が多環形脂環式
炭化水素又はその誘導体を含有する。使用する多環形脂
環式炭化水素又はその誘導体の分子量は、通常500以
下、好ましくは400以下、さらに好ましくは300以
下である。分子量が大きいと、前記溶媒に対する溶解性
が低下する傾向にあるため、過充電防止効果が低下する
ことがある。ただし、あまりに分子量が小さいと、電池
内部で揮発し、電池使用時に膨れが生じるとか、有効に
作用しないという問題点が生じることがあるので、通常
40以上、好ましくは80以上とする。In the present invention, the electrolyte contains a polycyclic alicyclic hydrocarbon or a derivative thereof. The molecular weight of the polycyclic alicyclic hydrocarbon or a derivative thereof used is usually 500 or less, preferably 400 or less, and more preferably 300 or less. If the molecular weight is large, the solubility in the solvent tends to decrease, so that the overcharge prevention effect may decrease. However, if the molecular weight is too small, it may be volatilized inside the battery, causing swelling when the battery is used or a problem that it does not work effectively. Therefore, the molecular weight is usually 40 or more, preferably 80 or more.
【0017】使用する多環形脂環式炭化水素としては、
芳香環に属さない環式炭化水素骨格を複数有するもので
あれば特に限定されないが、例えば、ツヤン、カラン、
カンファン(ボルナン)、ピナン、カンフェン等の二環
式テルペンや、セドレン、コパエン等の三環式テルペン
等、各種の環状テルペンを挙げることができる。また、
これらの誘導体を用いることもできる。誘導体として
は、上記多環形脂環式炭化水素の水素原子の一部を置換
基にて置換したもの等、上記多環形脂環式炭化水素骨格
を有する各種の化合物を挙げることができる。上記の置
換基としては、例えば、アルキルオキシ基、水酸基、ハ
ロゲン原子、アミノ基、ニトロ基、シアノ基、アクリル
基等を挙げることができる。なお、上記置換基の炭素数
は通常10以下、好ましくは5以下である。The polycyclic alicyclic hydrocarbon used includes:
It is not particularly limited as long as it has a plurality of cyclic hydrocarbon skeletons that do not belong to an aromatic ring.
Various cyclic terpenes such as bicyclic terpenes such as camphane (bornan), pinane and camphene, and tricyclic terpenes such as cedrene and copaene can be mentioned. Also,
These derivatives can also be used. Examples of the derivative include various compounds having the above polycyclic alicyclic hydrocarbon skeleton, such as those in which a part of hydrogen atoms of the above polycyclic alicyclic hydrocarbon is substituted with a substituent. Examples of the substituent include an alkyloxy group, a hydroxyl group, a halogen atom, an amino group, a nitro group, a cyano group, and an acryl group. The number of carbon atoms of the substituent is usually 10 or less, preferably 5 or less.
【0018】使用する多環形脂環式炭化水素及びその誘
導体の具体例としては、カンフェン、ピネン、カンファ
ー、ボルナン、フェンチャン、ビシクロオクタン、トリ
ミクレン等を挙げることができる。中でも、カンフェ
ン、ピネン、カンファー、ボルナン、フェンチャンが好
ましく、さらに好ましくはカンフェン、カンファー、ボ
ルナン、フェンチャンであり、最も好ましくはカンフェ
ン、カンファーである。無論、これらの具体的化合物の
誘導体も同様に好ましく使用することができる。Specific examples of the polycyclic alicyclic hydrocarbons and derivatives thereof used include camphene, pinene, camphor, bornane, fenchang, bicyclooctane, and trimicrene. Among them, camphene, pinene, camphor, bornan, and fenchang are preferable, and camphene, camphor, bornnan, and fenchang are more preferable, and camphene and camphor are most preferable. Of course, derivatives of these specific compounds can also be preferably used.
【0019】使用する多環形脂環式炭化水素は上記非水
系溶媒に溶解するものが好ましい。溶解度が低すぎると
過充電防止作用を十分に発揮させるための必要量が増加
する傾向にある。また、その沸点は、通常100℃以
上、好ましくは120℃以上である、低すぎると電池内
部で揮発し、電池使用時に膨れが生じるとか、有効に作
用しないという問題点が生じることがある。The polycyclic alicyclic hydrocarbon used is preferably one which dissolves in the above non-aqueous solvent. If the solubility is too low, the amount required for sufficiently exhibiting the overcharge preventing action tends to increase. In addition, the boiling point is usually 100 ° C. or higher, preferably 120 ° C. or higher. If the boiling point is too low, it may volatilize inside the battery, causing swelling at the time of using the battery or not working effectively.
【0020】使用する多環形脂環式炭化水素は、無論複
数種を併用することができる。多環形脂環式炭化水素又
はその誘導体の含有量は、前記非水系溶媒に対して5重
量%以下とするが、好ましくは3重量%以下、さらに好
ましくは2重量%以下とする。含有量が多すぎると電池
特性に悪影響を及ぼすと言う問題点が生じることがあ
る。一方、下限については、過充電防止に有効に作用す
る量であればよいが、通常0.01重量%以上、好まし
くは0.1重量%以上、さらに好ましくは0.5重量%
以上、最も好ましくは1%重量以上とする。The polycyclic alicyclic hydrocarbon used can, of course, be used in combination of two or more. The content of the polycyclic alicyclic hydrocarbon or a derivative thereof is 5% by weight or less, preferably 3% by weight or less, more preferably 2% by weight or less based on the non-aqueous solvent. If the content is too large, there may be a problem that the battery characteristics are adversely affected. On the other hand, the lower limit may be any amount that effectively prevents overcharge, but is usually 0.01% by weight or more, preferably 0.1% by weight or more, and more preferably 0.5% by weight.
Above, most preferably 1% by weight or more.
【0021】これら化合物が、少量の含有量で過充電防
止効果を有する理由については明らかではないが、おそ
らくこれらの化合物が電池の過充電時に正極上で反応
し、ガス発生や、正極活物質の被毒反応を起こしている
ためと考えられる。被毒反応とは例えば、正極の本来の
充電反応である、正極からリチウムイオンが抜け出す反
応や、過充電時の酸素発生などを抑制する反応であり、
正極が過充電時に不安定になるのを防ぐものである。It is not clear why these compounds have an effect of preventing overcharge with a small content, but it is presumed that these compounds react on the positive electrode during overcharge of the battery, and generate gas or produce a positive electrode active material. This is probably due to a poisoning reaction. The poisoning reaction is, for example, an original charging reaction of the positive electrode, a reaction in which lithium ions escape from the positive electrode, and a reaction for suppressing oxygen generation during overcharge, and the like.
This prevents the positive electrode from becoming unstable during overcharge.
【0022】電解液は、リチウム塩を含有する。リチウ
ム塩としてはLiClO4、LiAsF6、LiPF6、
LiBF4、LiB(C6H5)4、LiCl、LiBr、
LiCH3SO3、LiCF3SO3、LiN(SO2C
F3)2、LiN(SO2C2F5) 2、LiC(SO2C
F3)3、LiN(SO3CF3)2等を挙げることができ
る。無論、これらを2種以上を混合して用いてもかまわ
ない。上記の中でも、LiBF4、LiPF6を使用する
のが好ましい。リチウム塩の濃度は、電解液全体に対し
て、通常0.5〜1.5M、好ましくは0.75〜1.
25Mである。リチウム塩濃度が高すぎても低すぎても
電導度の低下が起き、電池特性に悪影響があることがあ
る。The electrolyte contains a lithium salt. Lichiu
LiClOFour, LiAsF6, LiPF6,
LiBFFour, LiB (C6HFive)Four, LiCl, LiBr,
LiCHThreeSOThree, LiCFThreeSOThree, LiN (SOTwoC
FThree)Two, LiN (SOTwoCTwoFFive) Two, LiC (SOTwoC
FThree)Three, LiN (SOThreeCFThree)TwoEtc.
You. Of course, these may be used in combination of two or more.
Absent. Among the above, LiBFFour, LiPF6Use
Is preferred. The concentration of lithium salt is
And usually 0.5 to 1.5M, preferably 0.75 to 1.M.
25M. Whether the lithium salt concentration is too high or too low
The conductivity may drop, which may adversely affect battery characteristics.
You.
【0023】電解液は、必要に応じてさらに他の成分を
含有することができる。他の成分としては、例えば、電
池の活物質表面に被膜(SEI)を形成するための各種
の添加剤や界面活性剤を挙げることができる。本発明の
電解液は、リチウム二次電池等の二次電池に用いること
ができる。本発明の電池は、正極、負極及び前記電解液
を含有する。前記電解液は、通常、正極と負極との間の
電解質層の成分として用いられるが、過充電時の安全性
を向上させることができれば、電池のどこに用いられて
いてもよい。The electrolyte may further contain other components as necessary. Examples of other components include various additives and surfactants for forming a film (SEI) on the surface of the active material of the battery. The electrolytic solution of the present invention can be used for a secondary battery such as a lithium secondary battery. The battery of the present invention contains a positive electrode, a negative electrode, and the electrolytic solution. The electrolytic solution is generally used as a component of an electrolyte layer between the positive electrode and the negative electrode, but may be used anywhere in a battery as long as safety during overcharge can be improved.
【0024】本発明の電池を構成する正極は、活物質を
含む。正極活物質としては、リチウムを吸蔵、放出し得
る物質であればよいが、好ましくはリチウム金属複合酸
化物を使用する。リチウム遷移金属複合酸化物として
は、LiCoO2等やリチウムコバルト複合酸化物、L
iNiO2等のリチウムニッケル酸化物、LiMn2O4
等のリチウムマンガン酸化物等を挙げることができる。
特に、リチウムとコバルト及び/又はニッケルとを必須
とする金属複合酸化物が好ましい。これらリチウム遷移
金属金属複合酸化物は、主体となる遷移金属元素の一部
をAl、Ti、V、Cr、Mn、Fe、Co、Li、N
i、Cu、Zn、Mg、Ga、Zr等の他の金属種で置
き換えることにより安定化させることができ、また好ま
しい。無論、正極の活物質を複数種併用することもでき
る。The positive electrode constituting the battery of the present invention contains an active material. As the positive electrode active material, any material can be used as long as it can occlude and release lithium, but a lithium metal composite oxide is preferably used. Examples of the lithium transition metal composite oxide include LiCoO 2 and the like, lithium cobalt composite oxide, L
lithium nickel oxide such as iNiO 2 , LiMn 2 O 4
And the like.
In particular, a metal composite oxide essentially containing lithium and cobalt and / or nickel is preferable. In these lithium transition metal / metal composite oxides, some of the main transition metal elements are Al, Ti, V, Cr, Mn, Fe, Co, Li, N
It can be stabilized by replacing it with another metal species such as i, Cu, Zn, Mg, Ga, Zr, etc., and is also preferable. Of course, a plurality of active materials for the positive electrode can be used in combination.
【0025】本発明の電池を構成する負極は活物質を含
む。負極活物質としては、リチウムを吸蔵及び放出し得
る物質であればよいが、炭素質物が好ましい。該炭素質
物の具体例としては、例えば様々な熱分解条件での有機
物の熱分解物や、人造黒鉛、天然黒鉛等が挙げられる。
好適には種々の原料から得た易黒鉛性ピッチの高温熱処
理によって製造された人造黒鉛並びに黒鉛化メソフェー
ズ小球体、黒鉛化メソフェーズピッチ系炭素繊維等の他
の人造黒鉛及び精製天然黒鉛、或いはこれらの黒鉛にピ
ッチを含む種々の表面処理を施した材料が使用される。
これらの炭素質物は、学振法によるX線回折で求めた格
子面(002面)のd値(層間距離)は0.335〜
0.34nmであるものが好ましく、0.335〜0.
337nmであるものがより好ましい。灰分は1重量%
以下であるのが好ましく、0.5重量%以下であるのが
より好ましく、0.1重量%以下であるのが特に好まし
い。また、学振法によるX線回折で求めた結晶子サイズ
(Lc)は30nm以上であるのが好ましく、50nm
以上であるのがより好ましく、100nm以上であるの
が特に好ましい。これらの炭素質物にリチウムを吸蔵・
放出可能な他の活物質を更に混合して用いることもでき
る。炭素質物以外のリチウムを吸蔵・放出可能な活物質
としては、酸化錫、酸化珪素等の金属酸化物材料、更に
はリチウム金属並びに種々のリチウム合金を例示するこ
とができる。これらの負極材料は二種類以上混合して用
いてもよい。The negative electrode constituting the battery of the present invention contains an active material. The negative electrode active material may be any material that can occlude and release lithium, but is preferably a carbonaceous material. Specific examples of the carbonaceous material include, for example, thermal decomposition products of organic substances under various thermal decomposition conditions, artificial graphite, natural graphite, and the like.
Preferably artificial graphite and graphitized mesophase spherules, graphitized mesophase pitch-based carbon fiber, other artificial graphite and purified natural graphite, or the like, produced by high-temperature heat treatment of graphitic pitch obtained from various raw materials. A material obtained by performing various surface treatments including pitch on graphite is used.
These carbonaceous materials have a d value (interlayer distance) of the lattice plane (002 plane) obtained by X-ray diffraction according to the Gakushin method of 0.335 to 0.335.
It is preferably 0.34 nm, and 0.335-0.
Those having 337 nm are more preferable. Ash content is 1% by weight
It is preferably at most 0.5% by weight, more preferably at most 0.5% by weight, particularly preferably at most 0.1% by weight. The crystallite size (Lc) determined by X-ray diffraction by the Gakushin method is preferably 30 nm or more, and 50 nm or more.
More preferably, it is more preferably 100 nm or more. Occupy lithium in these carbonaceous materials
Other releasable active materials can be further mixed and used. Examples of the active material capable of occluding and releasing lithium other than carbonaceous materials include metal oxide materials such as tin oxide and silicon oxide, as well as lithium metal and various lithium alloys. These negative electrode materials may be used as a mixture of two or more.
【0026】正極及び負極は、それぞれ、通常、上記活
物質と結着剤とを含有する。結着剤としては、ポリフッ
化ビニリデン、ポリテトラフルオロエチレン、スチレン
・ブタジエンゴム、イソプレンゴム、ブダジエンゴム等
を挙げることができる。さらに必要に応じて、電極中に
は、銅やニッケル等の金属材料、グラファイト、カーボ
ンブラック等のような炭素材料等の導電材を含有させる
こともできる。特に正極については、導電材を含有させ
るのが好ましい。Each of the positive electrode and the negative electrode usually contains the above active material and a binder. Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, styrene / butadiene rubber, isoprene rubber, and butadiene rubber. Furthermore, if necessary, the electrode may contain a conductive material such as a metal material such as copper or nickel, or a carbon material such as graphite or carbon black. In particular, the positive electrode preferably contains a conductive material.
【0027】電極を製造する方法については、特に限定
されない。例えば、活物質に、必要に応じて結着剤、増
粘剤、導電材、溶媒等を加えてスラリー状とし、集電体
の基板に塗布し、乾燥することにより製造することがで
きるし、また、該活物質をそのままロール成形してシー
ト電極としたり、圧縮成形によりペレット電極とするこ
ともできる。増粘剤としては、カルボキシメチルセルロ
ース、メチルセルロース、ヒドロキシメチルセルロー
ス、エチルセルロース、ポリビニルアルコール、酸化ス
ターチ、リン酸化スターチ、カゼイン等が挙げられる。The method for manufacturing the electrode is not particularly limited. For example, the active material can be manufactured by adding a binder, a thickener, a conductive material, a solvent, and the like, if necessary, forming a slurry, applying the slurry to a current collector substrate, and drying the slurry. The active material can be roll-formed as it is to form a sheet electrode, or can be formed into a pellet electrode by compression molding. Examples of the thickener include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein.
【0028】電極に使用できる集電体としては、負極集
電体として、銅、ニッケル、ステンレス等の金属又は合
金、好ましくは銅を挙げることができ、正極集電体とし
て、アルミニウム、チタン、タンタル等の金属又は合
金、好ましくはアルミニウム及びその合金を挙げること
ができる。電池は、通常正極と負極の間にセパレーター
が介装される。使用するセパレーターの材質や形状につ
いては、特に限定されないが、電解液に対して安定で、
保液性の優れた材料の中として、ポリエチレン、ポリプ
ロピレン等のポリオレフィンを原料とする多孔性シート
又は不織布等を用いるのが好ましい。As the current collector that can be used for the electrode, a metal or alloy such as copper, nickel, and stainless steel, preferably copper can be used as the negative electrode current collector, and aluminum, titanium, and tantalum can be used as the positive electrode current collector. And the like, preferably aluminum and its alloys. A battery usually has a separator interposed between a positive electrode and a negative electrode. The material and shape of the separator used are not particularly limited, but are stable with respect to the electrolytic solution,
As a material having excellent liquid retaining properties, it is preferable to use a porous sheet or a nonwoven fabric made of a polyolefin such as polyethylene or polypropylene as a raw material.
【0029】負極、正極及び非水系電解液を少なくとも
有する本発明に係る非水系二次電池を製造する方法につ
いては、特に限定されず、通常採用されている方法の中
から適宜選択することができる。また、電池の形状につ
いては特に限定されず、シート電極及びセパレータをス
パイラル状にしたシリンダータイプ、ペレット電極及び
セパレータを組み合わせたインサイドアウト構造のシリ
ンダータイプ、ペレット電極及びセパレータを積層した
コインタイプ等が使用可能である。The method for producing the non-aqueous secondary battery according to the present invention having at least the negative electrode, the positive electrode and the non-aqueous electrolyte is not particularly limited, and can be appropriately selected from commonly employed methods. . The shape of the battery is not particularly limited, and a cylinder type in which a sheet electrode and a separator are formed into a spiral shape, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, and a coin type in which a pellet electrode and a separator are stacked are used. It is possible.
【0030】[0030]
【実施例】以下、本発明を実施例に基づきさらに詳細に
説明するが、本発明はその要旨を越えない限り以下の実
施例に限定されるものではない。 (正極の作成)正極は、正極活物質としてのコバルト酸
リチウム(LiCoO2)90重量%と、導電剤として
のアセチレンブラック5重量%と、結着剤としてのポリ
フッ化ビニリデン(PVdF)5重量%とを、N−メチ
ルピロリドン溶媒中で混合して、スラリー化した後、2
0μmのアルミ箔の片面に塗布し乾燥し、さらにプレス
機で圧延したものを直径12mmの打ち抜きポンチで打
ち抜いて作成した。 (負極の作成)負極は、負極活物質としての黒鉛(面間
隔0.336nm)95重量%と結着剤のポリフッ化ビ
ニリデン(PVdF)5重量%を、N−メチルピロリド
ン溶媒中で混合して、スラリー化した後、20μm厚さ
の銅箔の片面に塗布し乾燥し、さらにプレス機で圧延し
たものを直径12mmで打ち抜いて作成した。 (電池の組立)アルゴン雰囲気のドライボックス内で、
CR2032型コインセルを使用して、リチウム二次電
池を作成した。即ち、正極缶の上に正極を置き、その上
にセパレータとして25μmの多孔性ポリエチレンフィ
ルムを置き、ポリプロピレン製ガスケットで押さえた
後、負極を置き、厚み調整用のスペーサーを置いた後、
電解液を加え電池内に十分しみこませた後負極缶を載せ
て電池を封口した。なお、実施例および比較例で電池の
容量は、充電上限4.2V、放電下限3.0Vで約4.
0mAhになる設計とした。EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited to the following Examples without departing from the scope of the invention. (Preparation of Positive Electrode) The positive electrode was composed of 90% by weight of lithium cobalt oxide (LiCoO 2 ) as a positive electrode active material, 5% by weight of acetylene black as a conductive agent, and 5% by weight of polyvinylidene fluoride (PVdF) as a binder. Are mixed in an N-methylpyrrolidone solvent to form a slurry,
One side of an aluminum foil of 0 μm was coated, dried, and rolled by a press machine, and punched out by a punch having a diameter of 12 mm. (Preparation of Negative Electrode) A negative electrode was prepared by mixing 95% by weight of graphite (plane spacing 0.336 nm) as a negative electrode active material and 5% by weight of polyvinylidene fluoride (PVdF) as a binder in an N-methylpyrrolidone solvent. After the slurry was formed, it was applied to one side of a copper foil having a thickness of 20 μm, dried, and then rolled by a press machine to be punched out with a diameter of 12 mm. (Battery assembly) In a dry box in an argon atmosphere,
A lithium secondary battery was prepared using a CR2032 type coin cell. That is, the positive electrode was placed on the positive electrode can, a 25 μm porous polyethylene film was placed thereon as a separator, pressed with a polypropylene gasket, the negative electrode was placed, and a spacer for thickness adjustment was placed.
After adding an electrolytic solution and sufficiently impregnating the inside of the battery, the negative electrode can was placed thereon and the battery was sealed. In Examples and Comparative Examples, the capacity of the battery was about 4.2 V at a charging upper limit of 4.2 V and a discharging lower limit of 3.0 V.
It was designed to be 0 mAh.
【0031】この際、正極活物質重量W(c)と負極の
活物質重量W(a)の比率は、電池の通常使用上限電圧
において、正極から放出されるリチウムイオンが、対向
する負極上でリチウム金属の析出を起こさない範囲が好
ましいので、負極と正極との容量比Rqが1.1≦Rq
≦1.2となるように、その重量を決定した。なお、容
量比Rqは、Q(a)×W(a)/{Q(c)×W
(c)}で求めた。ここで、電池の初期充電条件に対応
する条件下での、正極活物質の重量当たりの電気容量を
Q(c)mAh/g、リチウム金属が析出することなし
にリチウムを最大限に吸蔵しうる負極活物質の重量当た
りの電気容量をQ(a)mAh/gとした。Q(c)及
びQ(a)は、正極あるいは負極を作用極に、対極にリ
チウム金属を用い、上記電池を組み立てる際と同じ電解
液中でセパレータを介して試験セルを組んで測定した。
すなわち目的とする電池系の初期充電条件に対応する正
極の上限電位あるいは負極の下限電位まで、可能な限り
低い電流密度で、正極が充電(正極からのリチウムイオ
ンの放出)できる容量、負極が放電(負極へのリチウム
イオンの吸蔵)できる容量として求めた。 (電池の評価)電池評価は(1)初期充放電(容量確
認)、次いで(2)満充電操作、さらに(3)過充電試
験の順に行った。At this time, the ratio between the weight W (c) of the positive electrode active material and the weight W (a) of the active material of the negative electrode is such that lithium ions released from the positive electrode on the opposite negative electrode at the normal upper limit voltage of use of the battery. Since the range in which lithium metal is not precipitated is preferable, the capacity ratio Rq between the negative electrode and the positive electrode is 1.1 ≦ Rq
The weight was determined so that ≦ 1.2. Note that the capacity ratio Rq is Q (a) × W (a) / {Q (c) × W
(C) It was determined by}. Here, the electric capacity per weight of the positive electrode active material under conditions corresponding to the initial charging conditions of the battery is Q (c) mAh / g, and lithium can be maximally occluded without depositing lithium metal. The electric capacity per weight of the negative electrode active material was defined as Q (a) mAh / g. Q (c) and Q (a) were measured using a positive electrode or a negative electrode as a working electrode, lithium metal as a counter electrode, and a test cell assembled with a separator in the same electrolytic solution as used when assembling the battery.
That is, the capacity at which the positive electrode can be charged (release of lithium ions from the positive electrode) at the lowest possible current density up to the upper limit potential of the positive electrode or the lower limit potential of the negative electrode corresponding to the initial charging conditions of the target battery system, and the negative electrode (Occlusion of lithium ions in the negative electrode) The capacity was determined. (Evaluation of Battery) Battery evaluation was performed in the order of (1) initial charge / discharge (capacity check), (2) full charge operation, and (3) overcharge test.
【0032】初期充放電(容量確認)においては、1C
(4.0mA)、4.2V上限の定電流定電圧法により
充電した。充電のカットは、電流値が0.05mAに到
達した時点とした。放電は0.2Cで3.0Vまで定電
流で行った。満充電操作は、4.2V上限の定電流定電
圧法(0.05mAカット)により充電した。In the initial charge / discharge (capacity check), 1 C
(4.0 mA) The battery was charged by a constant current and constant voltage method with an upper limit of 4.2 V. The charge was cut when the current value reached 0.05 mA. Discharging was performed at a constant current up to 3.0 V at 0.2 C. In the full charge operation, the battery was charged by a constant current / constant voltage method with an upper limit of 4.2 V (0.05 mA cut).
【0033】過充電試験は、1Cで4.99Vカット又
は3hrカット(どちらか先に到達した方でカット)と
した。過充電防止効果の優劣を見る指標としては、過充
電後のコインセルを解体し、正極中に残存しているLi
を元素分析で定量した値を、過充電深度として用いた。
過充電試験後の正極組成をLixCoO2と表す時、x
(正極Li残存量)が大きいほど過充電が進んでおら
ず、過充電防止効果が高いことになる。The overcharge test was performed at 1C with a cut of 4.99 V or a cut of 3 hr (whichever was reached first). As an index for determining the degree of overcharge prevention effect, the coin cell after overcharge is dismantled and Li remaining in the positive electrode is removed.
Was used as the overcharge depth.
When the positive electrode composition after the overcharge test is expressed as Li x CoO 2 , x
As the (positive electrode Li remaining amount) is larger, overcharging is not progressing, and the overcharge preventing effect is higher.
【0034】ここで、x(正極Li残存量)は元素分析
(ICP発光分析)により求めた正極中のCoと正味の
Liのモル数比より求めた。なお、正味のLiのモル数
は同様の分析で正極中のリン(P)の定量も行い、これ
をLiPF6によるものとし、正極中の全Liモル数か
らLiPF6に相当するLiモル数を差し引いて求め
た。 (酸化電位の測定)添加剤の酸化電位の測定は以下のよ
うに行った。Here, x (positive amount of Li remaining in the positive electrode) was determined from the molar ratio of Co and net Li in the positive electrode determined by elemental analysis (ICP emission analysis). The net number of Li was also determined by the same analysis for the determination of phosphorus (P) in the positive electrode, and this was determined by LiPF 6. From the total number of Li in the positive electrode, the Li mole number corresponding to LiPF 6 was determined. Deducted and determined. (Measurement of oxidation potential) The oxidation potential of the additive was measured as follows.
【0035】中心がガラスフィルターで仕切られたH型
セルに、測定される電解液を入れ、片側に作用極として
白金電極と参照極としてのリチウム金属ワイヤーを入
れ、反対側に対極としてのリチウム金属箔を用い測定し
た。なお、作用極の白金電極は円柱状で周りを樹脂で被
覆し、露出した底面(直径1.6mmの円)のみが電解
液と接しているものである。An electrolyte to be measured is placed in an H-shaped cell whose center is partitioned by a glass filter, a platinum electrode as a working electrode and a lithium metal wire as a reference electrode are placed on one side, and lithium metal as a counter electrode is placed on the other side. The measurement was performed using a foil. In addition, the platinum electrode of the working electrode is cylindrical and is covered with a resin, and only the exposed bottom surface (circle having a diameter of 1.6 mm) is in contact with the electrolytic solution.
【0036】測定は作用極の電位を自然電位から酸化側
に走引し、Li/Li+基準で5Vまで走引した。走引
速度は20mV/秒の一定速度とした。酸化開始電位は
0.5mA/cm2の電流が流れ出す電位と規定した。
測定は便宜上室温(25℃付近)で行なった。 (実施例1)電解液として、エチレンカーボネート(E
C)とジエチルカーボネート(DEC)の体積比3:7
の混合溶媒に、1モル/リットルの濃度で六フッ化リン
酸リチウム(LiPF6)を溶解させた電解液に0.1
5mmol/gの濃度(ECとDECとの総量に対して
2.3重量%)でカンフェン(東京化成社製)を添加し
たものを用いた。In the measurement, the potential of the working electrode was swept from the natural potential to the oxidation side, and was swept to 5 V on the basis of Li / Li +. The running speed was a constant speed of 20 mV / sec. The oxidation onset potential was defined as a potential at which a current of 0.5 mA / cm 2 began to flow.
The measurement was performed at room temperature (around 25 ° C.) for convenience. (Example 1) Ethylene carbonate (E
C): diethyl carbonate (DEC) volume ratio of 3: 7
In a mixed solvent of lithium hexafluorophosphate (LiPF 6 ) at a concentration of 1 mol / liter
A solution obtained by adding camphene (manufactured by Tokyo Chemical Industry Co., Ltd.) at a concentration of 5 mmol / g (2.3% by weight based on the total amount of EC and DEC) was used.
【0037】前記方法により製造したリチウム二次電池
の評価、および、前記酸化電位測定を行った。結果を表
−1に示す。 比較例1 実施例1においてカンフェンを加えていないこと以外同
様にして、リチウム二次電池の評価、および、前記酸化
電位測定を行った。結果を表−1に示す。The lithium secondary battery produced by the above method was evaluated, and the oxidation potential was measured. The results are shown in Table 1. Comparative Example 1 In the same manner as in Example 1 except that camphene was not added, the evaluation of the lithium secondary battery and the measurement of the oxidation potential were performed. The results are shown in Table 1.
【0038】[0038]
【表1】 [Table 1]
【0039】表−1より、多環形脂環式炭化水素を添加
することによって、過充電時の正極からのLiの抜けが押
さえられ、過充電時の安全性が向上することが分かる。
なお、実施例で作成したリチウム二次電池と比較例1で
作成したリチウム二次電池とでは、初期放電容量、5サ
イクル後の容量維持率等の電池特性は大きな差は見られ
なかった。From Table 1, it can be seen that the addition of the polycyclic alicyclic hydrocarbon suppresses the escape of Li from the positive electrode during overcharge and improves the safety during overcharge.
It should be noted that there was no significant difference in the battery characteristics such as the initial discharge capacity and the capacity retention after 5 cycles between the lithium secondary battery prepared in the example and the lithium secondary battery prepared in Comparative Example 1.
【0040】[0040]
【発明の効果】本発明によれば、サイクル特性、レート
特性、容量等各種の電池特性を向上させることが可能な
電解液を提供することができる。特に、従来使用されて
きた過充電防止剤とは全く異なる材料にて過充電時の安
全性を向上させることができる電解液を提供できる。According to the present invention, it is possible to provide an electrolyte capable of improving various battery characteristics such as cycle characteristics, rate characteristics, and capacity. In particular, it is possible to provide an electrolytic solution that can improve safety during overcharge with a material completely different from the overcharge inhibitor used conventionally.
【0041】また、本発明によれば、サイクル特性、レ
ート特性、容量等各種の電池特性を向上した電池を提供
することができる。特に、従来使用されてきた過充電防
止剤とは全く異なる材料にて過充電時の安全性を向上さ
せた電池を提供できる。Further, according to the present invention, a battery having improved various battery characteristics such as cycle characteristics, rate characteristics, and capacity can be provided. In particular, it is possible to provide a battery that is made of a material completely different from a conventionally used overcharge preventing agent and has improved safety during overcharge.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 鳥海 明子 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 Fターム(参考) 5H029 AJ02 AJ03 AJ05 AJ12 AK03 AL06 AL07 AM02 AM03 AM04 AM05 AM07 HJ01 HJ18 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Akiko Toriumi 3-1-1, Chuo, Ami-cho, Inashiki-gun, Ibaraki Pref. Mitsubishi Chemical Corporation Tsukuba Research Laboratory F-term (reference) AM05 AM07 HJ01 HJ18
Claims (8)
らなる群から選ばれる少なくとも1種の非水系溶媒を主
体とする溶媒にリチウム塩を溶解してなる電解液におい
て、酸化電位4.3〜4.9Vの、多環形脂環式炭化水
素又はその誘導体を、上記非水系溶媒に対して5重量%
以下含有することを特徴とする電解液。1. An electrolytic solution comprising a lithium salt dissolved in a solvent mainly composed of at least one non-aqueous solvent selected from the group consisting of carbonate, ether and lactone, having an oxidation potential of 4.3 to 4.9 V. Of a polycyclic alicyclic hydrocarbon or a derivative thereof in an amount of 5% by weight with respect to the non-aqueous solvent.
An electrolytic solution comprising:
が、環式テルペン類又はその誘導体である請求項1に記
載の電解液。2. The electrolytic solution according to claim 1, wherein the polycyclic alicyclic hydrocarbon or a derivative thereof is a cyclic terpene or a derivative thereof.
ェン、カンファー、又はそれらの誘導体である請求項2
に記載の電解液。3. The cyclic terpene or a derivative thereof is camphene, camphor or a derivative thereof.
The electrolyte according to any one of the above.
環式炭化水素又はその誘導体を、上記非水系溶媒に対し
て0.01重量%以上含有する請求項1乃至3のいずれ
か1つに記載の電解液。4. The non-aqueous solvent contains a polycyclic alicyclic hydrocarbon having an oxidation potential of 4.3 to 4.9 V or a derivative thereof in an amount of 0.01% by weight or more. The electrolytic solution according to any one of the above.
1乃至4のいずれか1つに記載の電解液。5. The electrolytic solution according to claim 1, wherein the non-aqueous solvent contains a carbonate.
電解液と、正極と負極とを有する二次電池。6. A secondary battery comprising the electrolytic solution according to claim 1 and a positive electrode and a negative electrode.
含む請求項6に記載の二次電池。7. The secondary battery according to claim 6, wherein the positive electrode contains a lithium transition metal composite oxide.
に記載の二次電池。8. The negative electrode contains a carbonaceous material.
2. The secondary battery according to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001017814A JP2002222663A (en) | 2001-01-26 | 2001-01-26 | Electrolyte solution and secondary cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001017814A JP2002222663A (en) | 2001-01-26 | 2001-01-26 | Electrolyte solution and secondary cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002222663A true JP2002222663A (en) | 2002-08-09 |
Family
ID=18883933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001017814A Pending JP2002222663A (en) | 2001-01-26 | 2001-01-26 | Electrolyte solution and secondary cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002222663A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003030292A1 (en) * | 2001-09-27 | 2003-04-10 | Nisshinbo Industries, Inc., | Nonaqueous electrolyte secondary cell, power supply comprising the secondary cell, portable device, transportable or movable machine, electric apparatus for home use, and method for charging nonaqueous electrolyte secondary cell |
EP1372210A1 (en) * | 2001-03-21 | 2003-12-17 | Ube Industries, Ltd. | Nonaqueous electrolytic solution and lithium secondary battery |
JP2009218191A (en) * | 2008-02-14 | 2009-09-24 | Sony Corp | Secondary battery, manufacturing method of the same, nonaqueous electrolyte, and negative electrode and manufacturing method the same |
US8389164B2 (en) | 2009-05-28 | 2013-03-05 | Sony Corporation | Nonaqueous electrolytic solution, positive electrode and nonaqueous electrolyte secondary battery |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11260404A (en) * | 1998-03-12 | 1999-09-24 | Yuasa Corp | Nonaqueous electrolyte battery |
JP2001015158A (en) * | 1999-06-30 | 2001-01-19 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery, charge control system for nonaqueous electrolyte secondary battery, and apparatus using the charge control system |
-
2001
- 2001-01-26 JP JP2001017814A patent/JP2002222663A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11260404A (en) * | 1998-03-12 | 1999-09-24 | Yuasa Corp | Nonaqueous electrolyte battery |
JP2001015158A (en) * | 1999-06-30 | 2001-01-19 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery, charge control system for nonaqueous electrolyte secondary battery, and apparatus using the charge control system |
JP2002050398A (en) * | 1999-06-30 | 2002-02-15 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery system containing non-aqueous electrolyte secondary battery and charge control system and apparatus mounting this |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1372210A1 (en) * | 2001-03-21 | 2003-12-17 | Ube Industries, Ltd. | Nonaqueous electrolytic solution and lithium secondary battery |
EP1372210A4 (en) * | 2001-03-21 | 2007-02-28 | Ube Industries | Nonaqueous electrolytic solution and lithium secondary battery |
US7550233B2 (en) | 2001-03-21 | 2009-06-23 | Ube Industries, Ltd. | Nonaqueous electrolytic solution containing ketone compound and lithium secondary battery |
WO2003030292A1 (en) * | 2001-09-27 | 2003-04-10 | Nisshinbo Industries, Inc., | Nonaqueous electrolyte secondary cell, power supply comprising the secondary cell, portable device, transportable or movable machine, electric apparatus for home use, and method for charging nonaqueous electrolyte secondary cell |
JP2009218191A (en) * | 2008-02-14 | 2009-09-24 | Sony Corp | Secondary battery, manufacturing method of the same, nonaqueous electrolyte, and negative electrode and manufacturing method the same |
US8389164B2 (en) | 2009-05-28 | 2013-03-05 | Sony Corporation | Nonaqueous electrolytic solution, positive electrode and nonaqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11646447B2 (en) | Electrolyte and electrochemical device | |
EP2461415B1 (en) | Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries | |
JP4407205B2 (en) | Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using the same | |
US7169511B2 (en) | Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery employing the same | |
JP4680637B2 (en) | Lithium secondary battery | |
JP4843832B2 (en) | Non-aqueous electrolyte and secondary battery using the same | |
JP2005251456A (en) | Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery using the same | |
KR102563223B1 (en) | Electrolytes and electrochemical devices | |
JP2008300180A (en) | Nonaqueous electrolyte secondary battery | |
JP4461664B2 (en) | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor | |
JP3658517B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2002367674A (en) | Electrolyte and secondary battery | |
JP2002367673A (en) | Electrolyte and secondary battery | |
JP4945879B2 (en) | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte | |
JP4934917B2 (en) | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor | |
JP2004014134A (en) | Nonaqueous electrolyte secondary battery and electrolyte used for it | |
JP2004111359A (en) | Nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution | |
EP1096592A1 (en) | Secondary battery having nonaqueous electrolyte solution | |
JP3978960B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2001126761A (en) | Nonaqueous electrolyte secondary battery | |
JP4363063B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4259789B2 (en) | Nonaqueous secondary battery electrolyte and nonaqueous electrolyte secondary battery using the same | |
JP2002222663A (en) | Electrolyte solution and secondary cell | |
JP4706088B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4141214B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080118 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101005 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110215 |