JP4141214B2 - Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same - Google Patents

Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP4141214B2
JP4141214B2 JP2002270962A JP2002270962A JP4141214B2 JP 4141214 B2 JP4141214 B2 JP 4141214B2 JP 2002270962 A JP2002270962 A JP 2002270962A JP 2002270962 A JP2002270962 A JP 2002270962A JP 4141214 B2 JP4141214 B2 JP 4141214B2
Authority
JP
Japan
Prior art keywords
group
electrolyte
secondary battery
electrolytic solution
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002270962A
Other languages
Japanese (ja)
Other versions
JP2004111169A (en
Inventor
邦久 島
大介 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002270962A priority Critical patent/JP4141214B2/en
Publication of JP2004111169A publication Critical patent/JP2004111169A/en
Application granted granted Critical
Publication of JP4141214B2 publication Critical patent/JP4141214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は非水電解液、及びこれを用いた過充電時における安全性の高い非水電解液二次電池に関するものである。
【0002】
【従来の技術】
近年、高いエネルギー密度を有する非水系リチウム二次電池が実用化されている。この電池の電解液としては種々のものが提案されているが、そのなかの好ましいものの一つは、炭酸エチレン、炭酸プロピレン等の環状炭酸エステルやγ−ブチロラクトン等の環状カルボン酸エステルなどの高誘電率溶媒と、炭酸ジエチル、炭酸ジメチル等の鎖状炭酸エステルやジメトキシエタン等のエーテルなどの低粘度溶媒とを混合したものである。この混合溶媒は、誘電率が高く、かつ酸化電位も高いので、安定性にも優れている。
【0003】
リチウム二次電池の問題点の一つは、充電時に所定の上限電圧以上になる、いわゆる過充電を起こすことがあることである。過充電が起こると、電池が発熱したり変形したりするだけではなく、甚だしい場合には発火、破裂するので、極めて危険である。
過充電を防止する方法も種々提案されている。その一つは、芳香族化合物その他の酸化により重合する化合物を電解液中に含有させておき、過充電時に電極表面で重合を起させることである。これにより電極表面が重合膜で被覆され、電流が遮断されて過充電が更に進行するのが阻止される。そして種々の化合物がその候補として提案されている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開平11−329497号公報
【0005】
【発明が解決しようとする課題】
しかしながら本発明者らの知る限りでは、従来提案されている化合物は、いずれも未だ満足すべきものではない。従って本発明は、過充電が発生した場合に、その進行を速かに阻止することのできる過充電防止剤を含有する非水電解液を提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明によれば、非水電解液二次電池において、電解液として非水溶媒に電解質を溶解してなり、かつ式(1)で表される芳香族炭酸エステルを含有するものを用いることにより、過充電に対する安全性を高めることができる。
【0007】
【化4】

Figure 0004141214
【0008】
(式中、R1〜R10は、それぞれ独立して、水素原子もしくはメチル基及びアルコキシ基以外の有機基を表すか、又は隣接する2つが互に結合して環を形成している。ただし、R1〜R5及びR6〜R10のそれぞれにおいて、その少なくとも1つは、炭素及び水素、もしくは炭素、水素及び酸素からなる分子量27〜500でアルコキシ基以外の有機基であるか、又は隣接する2つが互に結合して環を形成している。)
また、本発明は、非水溶媒に電解質を溶解してなる電解液であって、式(2)で表される芳香族炭酸エステルを含有していることを特徴とする二次電池用非水電解液に関する。
【化5】
Figure 0004141214
(式中、R 11 〜R 15 及びR 16 〜R 20 のそれぞれにおいて、その1〜3個は炭素及び水素、もしくは炭素、水素及び酸素からなる分子量27〜500で、アルコキシ基以外の有機基であるか、又は隣接する2つが互に結合して環を形成しており、残余はいずれも水素原子である)
さらに、本発明は、非水溶媒に電解質を溶解してなる電解液であって、式(3)で表される芳香族炭酸エステルを含有していることを特徴とする二次電池用非水電解液に関する。
【化6】
Figure 0004141214
(式中、R 21 〜R 25 及びR 26 〜R 30 のそれぞれにおいて、そのいずれか1つがシクロヘキシル基、フェニル基又はフェノキシ基であるか又は隣接する2つが互に結合してベンゼン環を形成しており、他は全て水素原子である)
【0009】
【発明の実施の形態】
本発明によれば、電解液中に式(1)で表される芳香族炭酸エステルを含有させることにより、電池の過充電に対する安全性を高めることができる。式(1)において、R1〜R10は水素原子もしくは有機基を表すか、又は隣接する2つが互に結合して環を形成している。但し、有機基はメチル基及びアルコキシ基以外のものである。更にR1〜R5及びR6〜R10のそれぞれにおいて、その少なくとも1つは、炭素及び水素、もしくは炭素、水素及び酸素からなる分子量27〜500で、アルコキシ基以外の有機基であるか、又は隣接する2つが互に結合して環を形成している。
【0010】
ベンゼン環に結合している有機基が炭素、水素及び酸素以外の元素を含む場合には、過充電時に式(1)で表される芳香族炭酸エステルが重合するのが阻害され、かつ生成する重合膜の緻密性が低下して、過充電電流を遮断する性能が不十分となり易い。また有機基の分子量が27以下でも過充電時の電流遮断能が不十分であり、逆に分子量が500よりも大きくなると電解液中での式(1)の芳香族炭酸エステルの溶解性が悪化する。電解液中への溶解性及び電池性能の安定性の点よりして、有機基の分子量は400以下、特に300以下が好ましい。
【0011】
通常はR1〜R5及びR6〜R10のそれぞれにおいて、その1〜3個が上述の有機基であるか、又は隣接する2つが互に結合して環を形成しており、残りはいずれも水素原子であるのが好ましい。なかでもR1〜R5及びR6〜R10のそれぞれにおいて、その1つが有機基で他は全て水素原子であるか、又は隣接する2つが互に結合して環を形成しており、残余は水素原子であるのが好ましい。なお、炭素及び水素、又は炭素、水素及び酸素からなる有機基は電子供与性であるのが好ましい。
【0012】
有機基としては、エチル基、プロピル基、イソプロピル基、ブチル基、t−ブチル基、イソブチル基などの炭素数2〜8、好ましくは炭素数2〜6の鎖状アルキル基;シクロブチル基、シクロペンチル基、メチルシクロペンチル基、シクロヘキシル基などの炭素数4〜8、好ましくは炭素数4〜6のシクロアルキル基;置換基を有していてもよいフェニル基、フェノキシ基、ナフチル基、ナフトキシ基などのアリール基やアリールオキシ基などが挙げられる。これらのアリール基やアリールオキシ基に結合する置換基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基などの炭素数1〜4の鎖状アルキル基;シクロブチル基、シクロペンチル基、シクロヘキシル基などのシクロアルキル基;フェニル基、トルイル基、キシリル基などの炭素数6〜12のアリール基などが挙げられる。
【0013】
置換基を有していてもよいアリール基及びアリールオキシ基の代表的なものを例示すると、フェニル基、1−ナフチル基、2−ナフチル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、2,5−ジメチルフェニル基、2−フェニルフェニル基、3−フェニルフェニル基、4−フェニルフェニル基、フェノキシ基、1−ナフトキシ基、2−ナフトキシ基、2−メチルフェノキシ基、4−メチルフェノキシ基、4−エチルフェノキシ基、2,5−ジメチルフェノキシ基、3−フェニルフェノキシ基、4−フェニルフェノキシ基などが挙げられる。またR1〜R5及びR6〜R10において、その隣接する2つが結合して形成する環は通常はベンゼン環であるが、ナフタレン環やテトラヒドロナフタレン環などであってもよい。またこれらの環に更にメチル基、エチル基などの炭素数1〜4の鎖状アルキル基、シクロブチル基、シクロヘキシル基などの炭素数4〜6のシクロアルキル基、フェニル基などが結合していてもよい。
【0014】
本発明で用いる好ましい芳香族炭酸エステルとしては、次のようなものが挙げられる。
ビス(2−シクロヘキシルフェニル)カーボネート、ビス(3−シクロヘキシルフェニル)カーボネート、ビス(4−シクロヘキシルフェニル)カーボネート、ビス(2−フェニルフェニル)カーボネート、ビス(3−フェニルフェニル)カーボネート、ビス(4−フェニルフェニル)カーボネート、ビス(2−フェノキシフェニル)カーボネート、ビス(3−フェノキシフェニル)カーボネート、ビス(4−フェノキシフェニル)カーボネート、ビス(1−ナフチル)カーボネート、ビス(2−ナフチル)カーボネート。
【0015】
これらの芳香族炭酸エステルは、いくつかを併用することもできる。
芳香族炭酸エステルは、電解液中に0.1〜5重量%、特に1〜4重量%となるように含有させるのが好ましい。含有量が少な過ぎると十分な過充電防止効果が得られないし、逆に含有量が多過ぎると電池特性に悪影響を及ぼすようになる。
本発明に係る電解液の主体をなす有機溶媒としては、従来から非水電解液の溶媒として用い得ることが知られているもののなかから、適宜選択して用いることができる。通常はプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等の環状炭酸エステル;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状炭酸エステル;テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル;ジメトキシエタン、ジエトキシエタン等の鎖状エーテル;γ−ブチロラクトン、γ−バレロラクトン等の環状カルボン酸エステル;酢酸メチル、プロピオン酸メチル等の鎖状カルボン酸エステルなどが用いられる。これらは単独で用いることもできるが、通常はいくつかを併用する。その好ましい1例は、環状炭酸エステルと鎖状炭酸エステルとの併用である。
【0016】
電解液に用いる電解質も、従来から非水電解液の電解質として用い得ることが知られているリチウム塩のなかから、適宜選択して用いることができる。通常は、LiClO4、LiAsF6、LiPF6、LiBF4、LiB(C654、LiCl、LiBr、LiCH3SO3、LiCF3SO3、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33等が用いられる。これらの電解質も、所望ならばいくつかを併用することもできる。好ましくはLiBF4又はLiPF6を用いる。電解質は電解液中に通常は0.5〜2.5モル/Lとなるように含有させる。一般に電解質の濃度が低過ぎても高過ぎても電導度が低下して、電池特性に悪影響を及ぼす。電解液中の電解液の好ましい濃度は0.75〜1.5モル/Lである。
【0017】
本発明に係る電解液には、更に常用の種々の添加剤を含有させることができる。このような添加剤としては、各種の界面活性剤や電池の活物質の表面に被膜を形成する化合物などが挙げられる。
本発明に係る非水電解液二次電池は、上記の電解液を用いる以外は公知のものと同じ構成とすることができる。正極活物質としては、基本組成がLiMnO2又はLiMn24で表されるリチウムマンガン複合酸化物、基本組成がLiNiO2で表されるリチウムニッケル複合酸化物、又は基本組成がLiCoO2で表されるリチウムコバルト複合酸化物から選ばれるリチウム遷移金属複合酸化物を用いるのが好ましい。これらのリチウム遷移金属複合酸化物は、その遷移金属の一部をAl、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Mg、Ga、Zrなどの金属で置換することにより、正極活物質としての性能を向上させることができる。リチウム遷移金属複合酸化物としては、主たる遷移金属がニッケル又はコバルトであるものが好ましい。
【0018】
負極活物質としては、酸化錫、酸化珪素等の金属酸化物をはじめリチウムを吸蔵及び放出し得るものとして提案されている任意のものを用いることができ、所望ならばリチウム金属やリチウム合金を用いることもできるが、黒鉛その他の炭素質物を用いるのが好ましい。なかでも好ましいのは、易黒鉛性ピッチを熱処理して得られた人造黒鉛、メソフェーズ小球体やメソフェーズピッチ系炭素繊維の黒鉛化物などである。また黒鉛にピッチなどを被覆したのち炭化して、黒鉛の表面に黒鉛化度の低い炭素質物の被覆を形成したものも好ましい。
【0019】
炭素質物として特に好ましいのは、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が0.335〜0.34nmのものである。d値が0.335〜0.337nmであれば更に好ましい。灰分は少ない方が好ましく、通常は1重量%以下のものを用いる。好ましくは灰分が0.5重量%以下、特に0.1重量%以下のものを用いる。更に学振法によるX線回折で求めた結晶子サイズ(LC)は30nm以上であるのが好ましい。結晶子サイズ(LC)が50nm以上、特に100nm以上であれば更に好ましい。負極活物質も所望ならばいくつかを併用することもできる。
【0020】
正極及び負極は、上記の活物質に、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン−ブタジエンゴム、イソプレンゴム、ブタジエンゴム等の結着剤を加えたものを溶媒に分散させてスラリーとし、集電体に塗布したのち乾燥することにより製造することができる。集電体としては、正極にはアルミニウム、チタン、タンタル等の金属やその合金を用いればよく、負極には銅、ニッケルやその合金、ステンレス鋼などを用いればよい。なお、スラリー、特に正極用のスラリー中には、導電材として黒鉛、カーボンブラック等の炭素質材料や銅、ニッケル等の金属を含有させるのが好ましい。またスラリー中には、所望によりカルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等の増粘剤を含有させることもできる。なお、集電体を用いる代りに、活物質に結着剤及び導電材などを配合したものを圧縮成形して電極とすることもできる。
【0021】
正極と負極との間に介装させるセパレーターも、常用の任意のものを用いることができるが、ポリオレフィンの多孔性シート又は不織布を用いるのが好ましい。特に好ましいのは超高分子量ポリエチレンの多孔性シートである。
【0022】
【実施例】
以下に実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。
正極の作製;コバルト酸リチウム(LiCoO2)90重量部、アセチレンブラック5重量部、及びポリフッ化ビニリデン5重量部の混合物に、N−メチルピロリドンを加えてスラリーとした。このスラリーを厚さ20μmのアルミニウム箔の片面に塗布して乾燥したのち、プレス機で圧延した。これからポンチで直径12mmの円板を打抜き正極とした。
【0023】
負極の作製;黒鉛(d=0.336nm)95重量部とポリフッ化ビニリデン5重量部の混合物を、N−メチルピロリドンでスラリーとした。これを厚さ20μmの銅箔の片面に塗布して乾燥したのち、プレス機で圧延した。これからポンチで直径12mmの円板を打抜き負極とした。
電解液の調製;エチレンカーボネートとジエチルカーボネートとを体積比で3:7で混合したものに、6−フッ化リン酸リチウム(LiPF6)を1モル/Lとなるように溶解させた。これに更に芳香族カーボネートを2重量%の濃度となるように添加して電解液とした。
【0024】
電池の作製;アルゴン雰囲気のドライボックス内で、CR2032型コインセルを用いてリチウム二次電池を作製した。正極缶の中に正極を入れ、その上に厚さ25μmの多孔性ポリエチレンフィルム(セパレーター)を載置した。これをポリプロピレン製ガスケットで押えたのち、更に負極を載置した。厚み調整用のスペーサーを載置したのち電解液を加えて内部に電解液を十分に行きわたらせた。次いで負極缶を載置したのち封口して電池とした。
【0025】
電池の容量は充電4.2V、放電3.0Vで約4.0mAhである。また、正極活物質重量(Wc)と負極活物質重量(Wa)との比率は、負極と正極との容量比Rqが1.1≦Rq≦1.2となるようにした。なお容量比Rqは下記により算出した。
【0026】
【数1】
Rq=Qa×Wa/Qc×Wc
【0027】
Qc:電池の初期充電条件に対応する条件下での正極活物質の重量当りの電気容量(mAh/g)
Qa:電池の初期放電条件に対応する条件下で、リチウム金属を析出することなしに、リチウムを最大限に吸蔵し得る負極活物質の重量当りの電気容量(mAh/g)
Qa及びQcは、正極又は負極を作用極、リチウム金属を対極とし、電解液としてエチレンカーボネートとジエチルカーボネートを体積比7:3で混合したものに六フッ化リン酸リチウムを1モル/Lとなるように溶解したものを用いて調製した試験セルを用い、初期充電条件に対応する正極の上限電位(4.2V)、又は負極の下限電位(3.0V)まで、可能な限り低い電流密度で、正極が充電できる容量(正極からのリチウムイオンの放出)、負極が放電(負極へのリチウムイオンの吸蔵)できる容量として求めた。
【0028】
電池の評価;
電池の評価としては、(1)20℃過充電試験、及び(2)60℃過充電試験の2種類を行った。
(1)と(2)の過充電試験は、環境温度が異なる以外は同一であり、▲1▼初期充放電(容量確認)、▲2▼満充電操作及び▲3▼過充電操作の順に行った。
【0029】
初期充放電はIC(4.0mAh)、4.2V上限の定電流定電圧法により充電した。終点は電流値が0.05mAhに到達した時点とした。放電は0.2Cで3.0Vまで定電流で行った(なお、ICとは1時間で満充電できる電流値を表わす。)
満充電操作は、IC、4.2V上限の定電流定電圧法で充電し、電流値が0.05mAhに到達した時点を終点とした。
過充電試験は、ICで4.99V又は充電時間3時間のいずれか早く到達した時点を終点とした。
【0030】
実施例1〜6及び比較例1、2
電解液として表1に示す芳香族炭酸エステルを含むものを用いて、電池を作成し、その特性を評価した。結果を表1に示す。
【0031】
【表1】
Figure 0004141214
【0032】
過充電率=(過充電操作における充電量/満充電操作における充電量)×100(%)
過充電率が小さいほど過充電電流を速かに遮断できるので、ジナフチルカーボネートやビス(フェノキシメチル)カーボネートは過充電防止剤として特に優れている。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte and a highly safe non-aqueous electrolyte secondary battery during overcharge using the same.
[0002]
[Prior art]
In recent years, non-aqueous lithium secondary batteries having a high energy density have been put into practical use. Various types of electrolytes have been proposed for this battery, but one of them is preferably a high dielectric constant such as a cyclic carbonate such as ethylene carbonate or propylene carbonate, or a cyclic carboxylic acid ester such as γ-butyrolactone. And a low-viscosity solvent such as a chain carbonate such as diethyl carbonate or dimethyl carbonate or an ether such as dimethoxyethane. Since this mixed solvent has a high dielectric constant and a high oxidation potential, it has excellent stability.
[0003]
One of the problems with lithium secondary batteries is that they may cause so-called overcharge, which exceeds a predetermined upper limit voltage during charging. When overcharging occurs, the battery not only generates heat and deforms, but in severe cases it ignites and explodes, which is extremely dangerous.
Various methods for preventing overcharge have also been proposed. One of them is that an aromatic compound or other compound that is polymerized by oxidation is contained in the electrolytic solution, and polymerization is caused on the electrode surface during overcharge. As a result, the surface of the electrode is covered with the polymer film, the current is interrupted, and further overcharge is prevented from proceeding. Various compounds have been proposed as candidates (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-329497
[Problems to be solved by the invention]
However, to the best of our knowledge, none of the previously proposed compounds is yet satisfactory. Accordingly, the present invention is intended to provide a non-aqueous electrolyte containing an overcharge inhibitor that can quickly prevent the progression of overcharge when it occurs.
[0006]
[Means for Solving the Problems]
According to the present invention, in a non-aqueous electrolyte secondary battery, by using an electrolyte in which an electrolyte is dissolved in a non-aqueous solvent and containing an aromatic carbonate represented by the formula (1) , Safety against overcharging can be enhanced.
[0007]
[Formula 4]
Figure 0004141214
[0008]
(Wherein R 1 to R 10 each independently represents a hydrogen atom or an organic group other than a methyl group and an alkoxy group, or two adjacent groups are bonded to each other to form a ring. , R 1 to R 5 and R 6 to R 10 , at least one of them is carbon and hydrogen, or an organic group other than an alkoxy group having a molecular weight of 27 to 500 consisting of carbon, hydrogen and oxygen, or Two adjacent groups are bonded to each other to form a ring.)
The present invention also provides an electrolytic solution obtained by dissolving an electrolyte in a nonaqueous solvent, which contains an aromatic carbonate represented by the formula (2), and is nonaqueous for a secondary battery It relates to an electrolytic solution.
[Chemical formula 5]
Figure 0004141214
(In the formula, in each of R 11 to R 15 and R 16 to R 20 , 1 to 3 are carbon and hydrogen, or a molecular weight of 27 to 500 consisting of carbon, hydrogen and oxygen, and an organic group other than an alkoxy group. Or two adjacent groups are bonded to each other to form a ring, and the rest are all hydrogen atoms)
Furthermore, the present invention provides an electrolyte solution obtained by dissolving an electrolyte in a nonaqueous solvent, which contains an aromatic carbonate represented by the formula (3), and is nonaqueous for a secondary battery It relates to an electrolytic solution.
[Chemical 6]
Figure 0004141214
(In the formula, in each of R 21 to R 25 and R 26 to R 30 , any one of them is a cyclohexyl group, a phenyl group or a phenoxy group, or two adjacent ones are bonded to each other to form a benzene ring. All others are hydrogen atoms)
[0009]
DETAILED DESCRIPTION OF THE INVENTION
According to this invention, the safety | security with respect to the overcharge of a battery can be improved by containing the aromatic carbonate represented by Formula (1) in electrolyte solution. In formula (1), R 1 to R 10 represent a hydrogen atom or an organic group, or two adjacent groups are bonded to each other to form a ring. However, the organic group is other than a methyl group and an alkoxy group. Further, in each of R 1 to R 5 and R 6 to R 10 , at least one of them is carbon and hydrogen, or an organic group other than an alkoxy group having a molecular weight of 27 to 500 consisting of carbon, hydrogen and oxygen, Or two adjacent ones are bonded to each other to form a ring.
[0010]
When the organic group bonded to the benzene ring contains an element other than carbon, hydrogen, and oxygen, polymerization of the aromatic carbonate represented by the formula (1) is inhibited and generated during overcharge. The denseness of the polymerized film is lowered, and the performance for interrupting the overcharge current tends to be insufficient. Moreover, even when the molecular weight of the organic group is 27 or less, the current blocking ability at the time of overcharge is insufficient, and conversely, when the molecular weight is larger than 500, the solubility of the aromatic carbonate of formula (1) in the electrolytic solution deteriorates. To do. From the viewpoint of solubility in the electrolytic solution and stability of battery performance, the molecular weight of the organic group is preferably 400 or less, particularly preferably 300 or less.
[0011]
Usually, in each of R 1 to R 5 and R 6 to R 10 , 1 to 3 thereof are the above-mentioned organic groups, or two adjacent groups are bonded to each other to form a ring, and the rest are Any of them is preferably a hydrogen atom. In particular, in each of R 1 to R 5 and R 6 to R 10 , one of them is an organic group and the others are all hydrogen atoms, or two adjacent groups are bonded to each other to form a ring, and the rest Is preferably a hydrogen atom. Note that an organic group composed of carbon and hydrogen, or carbon, hydrogen and oxygen is preferably electron-donating.
[0012]
Examples of the organic group include a chain alkyl group having 2 to 8 carbon atoms, preferably 2 to 6 carbon atoms such as an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, and an isobutyl group; a cyclobutyl group and a cyclopentyl group. A cycloalkyl group having 4 to 8 carbon atoms, preferably 4 to 6 carbon atoms such as a methylcyclopentyl group and a cyclohexyl group; an aryl such as a phenyl group, a phenoxy group, a naphthyl group and a naphthoxy group which may have a substituent. Group and aryloxy group. Examples of the substituent bonded to the aryl group or aryloxy group include a chain alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a t-butyl group. A cycloalkyl group such as a cyclobutyl group, a cyclopentyl group or a cyclohexyl group; an aryl group having 6 to 12 carbon atoms such as a phenyl group, a toluyl group or a xylyl group;
[0013]
Typical examples of the aryl group and aryloxy group which may have a substituent are phenyl group, 1-naphthyl group, 2-naphthyl group, 2-methylphenyl group, 3-methylphenyl group, 4 -Methylphenyl group, 2,5-dimethylphenyl group, 2-phenylphenyl group, 3-phenylphenyl group, 4-phenylphenyl group, phenoxy group, 1-naphthoxy group, 2-naphthoxy group, 2-methylphenoxy group, 4-methylphenoxy group, 4-ethylphenoxy group, 2,5-dimethylphenoxy group, 3-phenylphenoxy group, 4-phenylphenoxy group and the like can be mentioned. In R 1 to R 5 and R 6 to R 10 , the ring formed by combining two adjacent ones is usually a benzene ring, but may be a naphthalene ring or a tetrahydronaphthalene ring. In addition, a chain alkyl group having 1 to 4 carbon atoms such as a methyl group or an ethyl group, a cycloalkyl group having 4 to 6 carbon atoms such as a cyclobutyl group or a cyclohexyl group, or a phenyl group may be bonded to these rings. Good.
[0014]
Preferred aromatic carbonates used in the present invention include the following.
Bis (2-cyclohexylphenyl) carbonate, bis (3-cyclohexylphenyl) carbonate, bis (4-cyclohexylphenyl) carbonate, bis (2-phenylphenyl) carbonate, bis (3-phenylphenyl) carbonate, bis (4-phenyl) Phenyl) carbonate, bis (2-phenoxyphenyl) carbonate, bis (3-phenoxyphenyl) carbonate, bis (4-phenoxyphenyl) carbonate, bis (1-naphthyl) carbonate, bis (2-naphthyl) carbonate.
[0015]
Some of these aromatic carbonates can be used in combination.
The aromatic carbonate is preferably contained in the electrolyte so as to be 0.1 to 5% by weight, particularly 1 to 4% by weight. If the content is too small, a sufficient overcharge preventing effect cannot be obtained. Conversely, if the content is too large, the battery characteristics are adversely affected.
As the organic solvent which is the main component of the electrolytic solution according to the present invention, it can be appropriately selected and used from those conventionally known as solvents for non-aqueous electrolytic solutions. Usually, cyclic carbonates such as propylene carbonate, ethylene carbonate, and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate; cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, and tetrahydropyran; Chain ethers such as ethoxyethane; cyclic carboxylic acid esters such as γ-butyrolactone and γ-valerolactone; chain carboxylic acid esters such as methyl acetate and methyl propionate are used. These can be used alone, but several are usually used together. A preferred example is the combined use of a cyclic carbonate and a chain carbonate.
[0016]
The electrolyte used for the electrolytic solution can also be appropriately selected from lithium salts that are conventionally known to be usable as an electrolyte for nonaqueous electrolytic solutions. Usually, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 2 C 2 F 5) 2, LiC (SO 2 CF 3) 3 or the like is used. Some of these electrolytes can be used in combination if desired. Preferably, LiBF 4 or LiPF 6 is used. The electrolyte is usually contained in the electrolyte so as to be 0.5 to 2.5 mol / L. In general, if the concentration of the electrolyte is too low or too high, the conductivity is lowered, which adversely affects the battery characteristics. The preferable density | concentration of the electrolyte solution in electrolyte solution is 0.75-1.5 mol / L.
[0017]
The electrolyte solution according to the present invention can further contain various commonly used additives. Examples of such additives include various surfactants and compounds that form a film on the surface of the active material of the battery.
The non-aqueous electrolyte secondary battery according to the present invention can have the same configuration as a known one except that the above electrolyte is used. As the positive electrode active material, a lithium manganese composite oxide whose basic composition is represented by LiMnO 2 or LiMn 2 O 4 , a lithium nickel composite oxide whose basic composition is represented by LiNiO 2 , or a basic composition represented by LiCoO 2 It is preferable to use a lithium transition metal composite oxide selected from lithium cobalt composite oxides. These lithium transition metal composite oxides are obtained by substituting a part of the transition metal with a metal such as Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mg, Ga, and Zr. The performance as a positive electrode active material can be improved. The lithium transition metal composite oxide is preferably one in which the main transition metal is nickel or cobalt.
[0018]
As the negative electrode active material, any metal oxide such as tin oxide, silicon oxide and the like proposed to be capable of occluding and releasing lithium can be used. If desired, lithium metal or lithium alloy is used. However, it is preferable to use graphite or other carbonaceous materials. Among these, artificial graphite obtained by heat-treating graphitizable pitch, mesophase spherules, graphitized mesophase pitch carbon fibers, and the like are preferable. In addition, it is also preferable that graphite is coated with pitch and then carbonized to form a coating of a carbonaceous material having a low degree of graphitization on the surface of graphite.
[0019]
Particularly preferable carbonaceous materials are those having a d-value (interlayer distance) of the lattice plane (002 plane) determined by X-ray diffraction by the Gakushin method of 0.335 to 0.34 nm. More preferably, the d value is 0.335 to 0.337 nm. It is preferable that the ash content is low, and usually 1% by weight or less is used. Preferably, an ash content of 0.5% by weight or less, particularly 0.1% by weight or less is used. Further, the crystallite size (LC) determined by X-ray diffraction by the Gakushin method is preferably 30 nm or more. More preferably, the crystallite size (LC) is 50 nm or more, particularly 100 nm or more. Some negative electrode active materials can be used in combination if desired.
[0020]
The positive electrode and the negative electrode are prepared by dispersing a mixture of the above active material and a binder such as polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene rubber, isoprene rubber, butadiene rubber, and the like into a slurry. It can be manufactured by applying to the body and then drying. As the current collector, a metal such as aluminum, titanium, or tantalum or an alloy thereof may be used for the positive electrode, and copper, nickel, an alloy thereof, stainless steel, or the like may be used for the negative electrode. In addition, it is preferable to contain carbonaceous materials, such as graphite and carbon black, and metals, such as copper and nickel, in a slurry, especially the slurry for positive electrodes. Further, the slurry may contain a thickener such as carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein as desired. Instead of using the current collector, an electrode obtained by compression-molding an active material containing a binder and a conductive material can be used.
[0021]
As the separator interposed between the positive electrode and the negative electrode, any conventional one can be used, but it is preferable to use a porous sheet or non-woven fabric of polyolefin. Particularly preferred is a porous sheet of ultra high molecular weight polyethylene.
[0022]
【Example】
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples.
Preparation of positive electrode: N-methylpyrrolidone was added to a mixture of 90 parts by weight of lithium cobaltate (LiCoO 2 ), 5 parts by weight of acetylene black, and 5 parts by weight of polyvinylidene fluoride to prepare a slurry. This slurry was applied to one side of an aluminum foil having a thickness of 20 μm, dried, and then rolled with a press. From this, a disk with a diameter of 12 mm was punched out with a punch and used as a positive electrode.
[0023]
Production of negative electrode: A mixture of 95 parts by weight of graphite (d = 0.336 nm) and 5 parts by weight of polyvinylidene fluoride was slurried with N-methylpyrrolidone. This was coated on one side of a 20 μm thick copper foil, dried, and then rolled with a press. From this, a circular plate having a diameter of 12 mm was punched out with a punch and used as a negative electrode.
Preparation of electrolyte solution; Lithium 6- fluorophosphate (LiPF 6 ) was dissolved in a mixture of ethylene carbonate and diethyl carbonate at a volume ratio of 3: 7 so as to be 1 mol / L. To this was further added aromatic carbonate to a concentration of 2% by weight to obtain an electrolytic solution.
[0024]
Production of battery: A lithium secondary battery was produced using a CR2032-type coin cell in a dry box in an argon atmosphere. A positive electrode was placed in a positive electrode can, and a 25 μm thick porous polyethylene film (separator) was placed thereon. After pressing this with a polypropylene gasket, a negative electrode was further placed. After placing a spacer for adjusting the thickness, an electrolytic solution was added to sufficiently distribute the electrolytic solution inside. Then, after placing the negative electrode can, it was sealed to obtain a battery.
[0025]
The capacity of the battery is about 4.0 mAh at a charge of 4.2V and a discharge of 3.0V. The ratio of the positive electrode active material weight (Wc) to the negative electrode active material weight (Wa) was such that the capacity ratio Rq between the negative electrode and the positive electrode was 1.1 ≦ Rq ≦ 1.2. The capacity ratio Rq was calculated as follows.
[0026]
[Expression 1]
Rq = Qa × Wa / Qc × Wc
[0027]
Qc: Electric capacity per unit weight (mAh / g) of the positive electrode active material under conditions corresponding to the initial charging conditions of the battery
Qa: Electric capacity per unit weight (mAh / g) of the negative electrode active material capable of occluding lithium to the maximum without depositing lithium metal under conditions corresponding to the initial discharge conditions of the battery
Qa and Qc have a positive electrode or a negative electrode as a working electrode, a lithium metal as a counter electrode, and a mixture of ethylene carbonate and diethyl carbonate as an electrolytic solution in a volume ratio of 7: 3 to 1 mol / L of lithium hexafluorophosphate. Using a test cell prepared using a so-dissolved sample, the current density is as low as possible up to the upper limit potential of the positive electrode (4.2 V) or the lower limit potential of the negative electrode (3.0 V) corresponding to the initial charging conditions. The capacity that the positive electrode can be charged (release of lithium ions from the positive electrode) and the capacity that the negative electrode can discharge (occlude lithium ions into the negative electrode) were obtained.
[0028]
Battery evaluation;
As the evaluation of the battery, two types of (1) 20 ° C. overcharge test and (2) 60 ° C. overcharge test were performed.
The overcharge tests in (1) and (2) are the same except for the environmental temperature, and are performed in the order of (1) initial charge / discharge (capacity check), (2) full charge operation, and (3) overcharge operation. It was.
[0029]
Initial charging / discharging was performed by a constant current / constant voltage method with an IC (4.0 mAh) and 4.2 V upper limit. The end point was the time when the current value reached 0.05 mAh. Discharging was performed at a constant current up to 3.0 V at 0.2 C (Note that IC represents a current value that can be fully charged in one hour).
The full charge operation was performed by charging with an IC, a constant current / constant voltage method with an upper limit of 4.2 V, and the end point was when the current value reached 0.05 mAh.
In the overcharge test, the end point was reached when the IC reached 4.99 V or the charge time of 3 hours, whichever comes first.
[0030]
Examples 1 to 6 and Comparative Examples 1 and 2
A battery was prepared by using an electrolyte containing an aromatic carbonate shown in Table 1 and its characteristics were evaluated. The results are shown in Table 1.
[0031]
[Table 1]
Figure 0004141214
[0032]
Overcharge rate = (charge amount in overcharge operation / charge amount in full charge operation) × 100 (%)
The smaller the overcharge rate, the faster the overcharge current can be cut off, so dinaphthyl carbonate and bis (phenoxymethyl) carbonate are particularly excellent as overcharge inhibitors.

Claims (6)

非水溶媒に電解質を溶解してなる電解液であって、式(1)で表される芳香族炭酸エステルを含有していることを特徴とする二次電池用非水電解液。
Figure 0004141214
(式中、R1〜R10は、それぞれ独立して、水素原子もしくはメチル基及びアルコキシ基以外の有機基を表すか、又は隣接する2つが互に結合して環を形成している。ただしR1〜R5及びR6〜R10のそれぞれにおいて、その少なくとも1つは、炭素及び水素もしくは炭素、水素及び酸素からなる分子量27〜500でアルコキシ基以外の有機基であるか、又は隣接する2つが互に結合して環を形成している。)
A nonaqueous electrolytic solution for a secondary battery, which is an electrolytic solution obtained by dissolving an electrolyte in a nonaqueous solvent and containing an aromatic carbonate represented by the formula (1).
Figure 0004141214
(Wherein R 1 to R 10 each independently represents a hydrogen atom or an organic group other than a methyl group and an alkoxy group, or two adjacent groups are bonded to each other to form a ring. In each of R 1 to R 5 and R 6 to R 10 , at least one of them is an organic group other than an alkoxy group having a molecular weight of 27 to 500 consisting of carbon and hydrogen or carbon, hydrogen and oxygen, or adjacent thereto. Two are bonded to each other to form a ring.)
非水溶媒に電解質を溶解してなる電解液であって、式(2)で表される芳香族炭酸エステルを含有していることを特徴とする二次電池用非水電解液。
Figure 0004141214
(式中、R11〜R15及びR16〜R20のそれぞれにおいて、その1〜3個は炭素及び水素、もしくは炭素、水素及び酸素からなる分子量27〜500で、アルコキシ基以外の有機基であるか、又は隣接する2つが互に結合して環を形成しており、残余はいずれも水素原子である)
A nonaqueous electrolytic solution for a secondary battery, which is an electrolytic solution obtained by dissolving an electrolyte in a nonaqueous solvent and containing an aromatic carbonate represented by the formula (2).
Figure 0004141214
(In the formula, in each of R 11 to R 15 and R 16 to R 20 , 1 to 3 are carbon and hydrogen, or a molecular weight of 27 to 500 consisting of carbon, hydrogen and oxygen, and an organic group other than an alkoxy group. Or two adjacent groups are bonded to each other to form a ring, and the rest are all hydrogen atoms)
非水溶媒に電解質を溶解してなる電解液であって、式(3)で表される芳香族炭酸エステルを含有していることを特徴とする二次電池用非水電解液。
Figure 0004141214
(式中、R21〜R25及びR26〜R30のそれぞれにおいて、そのいずれか1つがシクロヘキシル基、フェニル基又はフェノキシ基であるか又は隣接する2つが互に結合してベンゼン環を形成しており、他は全て水素原子である)
A non-aqueous electrolyte for a secondary battery, which is an electrolyte obtained by dissolving an electrolyte in a non-aqueous solvent and containing an aromatic carbonate represented by the formula (3).
Figure 0004141214
(In the formula, in each of R 21 to R 25 and R 26 to R 30 , any one of them is a cyclohexyl group, a phenyl group or a phenoxy group, or two adjacent ones are bonded to each other to form a benzene ring. All others are hydrogen atoms)
芳香族炭酸エステルの含有量が0.1〜5重量%であることを特徴とする請求項1ないし3のいずれかに記載の二次電池用非水電解液。  The nonaqueous electrolytic solution for a secondary battery according to any one of claims 1 to 3, wherein the content of the aromatic carbonate is 0.1 to 5% by weight. リチウムを吸蔵・放出可能な正極及び負極と、請求項1ないし4のいずれかに記載の電解液とを備えていることを特徴とする非水電解液二次電池。  A non-aqueous electrolyte secondary battery comprising: a positive electrode and a negative electrode capable of inserting and extracting lithium; and the electrolytic solution according to claim 1. 正極がリチウム遷移金属複合酸化物を含有しており、負極がX線回折における(002面)のd値が0.335〜0.340nmの炭素材料を含有していることを特徴とする請求項5記載の非水電解液二次電池。  The positive electrode contains a lithium transition metal composite oxide, and the negative electrode contains a carbon material having a (002 plane) d value of 0.335 to 0.340 nm in X-ray diffraction. 5. The nonaqueous electrolyte secondary battery according to 5.
JP2002270962A 2002-09-18 2002-09-18 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same Expired - Fee Related JP4141214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270962A JP4141214B2 (en) 2002-09-18 2002-09-18 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270962A JP4141214B2 (en) 2002-09-18 2002-09-18 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2004111169A JP2004111169A (en) 2004-04-08
JP4141214B2 true JP4141214B2 (en) 2008-08-27

Family

ID=32268413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270962A Expired - Fee Related JP4141214B2 (en) 2002-09-18 2002-09-18 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4141214B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960662A (en) 2008-02-29 2011-01-26 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte battery
JP5589287B2 (en) * 2008-02-29 2014-09-17 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery
US20160126593A1 (en) * 2013-06-21 2016-05-05 Ube Industries, Ltd. Nonaqueous electrolyte solution, electricity storage device using same, and biphenyl group-containing carbonate compound used in same
CN103618108B (en) * 2013-11-25 2017-09-29 东莞新能源科技有限公司 Lithium ion battery and its electrolyte
WO2016076327A1 (en) * 2014-11-11 2016-05-19 宇部興産株式会社 Non-aqueous electrolyte solution, and power storage device in which non-aqueous electrolyte solution is used

Also Published As

Publication number Publication date
JP2004111169A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
CN113644317B (en) Lithium ion battery
JP4680637B2 (en) Lithium secondary battery
JP4407205B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using the same
US9252429B2 (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
JP4843832B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP4604505B2 (en) Method for producing lithium difluorophosphate, non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP5085940B2 (en) Nonaqueous electrolyte for secondary battery and secondary battery including the same
JP2005251456A (en) Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery using the same
JP2008300180A (en) Nonaqueous electrolyte secondary battery
WO2006082719A1 (en) Positive electrode and nonaqueous electrolyte secondary battery
WO2014147983A1 (en) Non-aqueous electrolyte secondary battery
JP4934912B2 (en) Electrolyte and secondary battery
WO2011065538A1 (en) Non-aqueous electrolyte rechargeable battery
JP2011138680A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20040081043A (en) Lithium Battery
JP4795019B2 (en) Nonaqueous electrolyte secondary battery
JP2012079470A (en) Nonaqueous electrolyte secondary battery
JP4141214B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP2001126761A (en) Nonaqueous electrolyte secondary battery
JP4775621B2 (en) Nonaqueous electrolyte secondary battery
JP5089097B2 (en) Non-aqueous electrolyte secondary battery and charging / discharging method thereof
JP4259789B2 (en) Nonaqueous secondary battery electrolyte and nonaqueous electrolyte secondary battery using the same
US11670762B2 (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
JP4501331B2 (en) Secondary battery and overcharge prevention method
JP4706088B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4141214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees