JP2002219341A - Supporting base for hydrogen-permselective membrane and hydrogen-permselective member - Google Patents

Supporting base for hydrogen-permselective membrane and hydrogen-permselective member

Info

Publication number
JP2002219341A
JP2002219341A JP2001021413A JP2001021413A JP2002219341A JP 2002219341 A JP2002219341 A JP 2002219341A JP 2001021413 A JP2001021413 A JP 2001021413A JP 2001021413 A JP2001021413 A JP 2001021413A JP 2002219341 A JP2002219341 A JP 2002219341A
Authority
JP
Japan
Prior art keywords
hydrogen
selective permeable
hydrogen selective
sintered body
permeable membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001021413A
Other languages
Japanese (ja)
Inventor
Masaya Tokuhira
雅也 得平
Yoshio Henmi
義男 逸見
Toshiki Sato
俊樹 佐藤
Tatsuya Yasunaga
龍哉 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001021413A priority Critical patent/JP2002219341A/en
Publication of JP2002219341A publication Critical patent/JP2002219341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous supporting base excellent in layability and durability as a hydrogen-permselective facility and to provide a high-separation- performance hydrogen-permselective member using the base. SOLUTION: There are disclosed a supporting base for a hydrogen- permselective membrane which is a base for supporting a hydrogen-permselective membrane and comprises a multilayer-structure metallic porous sintered body, wherein the relative density of the sintered body on the side of the hydrogen- permselective surface is at least 60% and has a mean particle diameter of at least 10 μm, whereas the sintered body on the side of the crude gas contact surface has a mean particle diameter of at most 8 μm, a maximum particle diameter of at most 45 μm, and an areal opening coverage of at least 30%, and a hydrogen-permselective member composed of the base and a hydrogen- permselective membrane formed thereon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素を含む粗製ガ
スから水素を選択的に分離して高純度の水素ガスを得る
ための水素選択透過部材を製造する際に使用される、水
素選択透過膜支持用の基材と、該基材を用いた水素選択
透過部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen selective permeation material used for producing a hydrogen selective permeation member for selectively separating hydrogen from a crude gas containing hydrogen to obtain high-purity hydrogen gas. The present invention relates to a substrate for supporting a membrane and a hydrogen selective permeable member using the substrate.

【0002】[0002]

【従来の技術】省エネルギー型の気体分離技術として、
近年、膜による気体の選択分離法が注目されている。特
に最近、燃料電池の実用化研究が進んでくるにつれて、
燃料となる水素ガスを如何に高純度で効率よく製造する
かが重要な課題となっており、その代表的な方法とし
て、都市ガスや天然ガスの如き炭化水素ガスの熱分解に
よって水素を製造し、該生成ガス(粗製ガス)から高純
度の水素を得る方法がある。この場合、熱分解によって
得られる粗製ガスには、水素の他、一酸化炭素や炭酸ガ
スなどが多量含まれているので、それらを含む粗製ガス
の中から水素を分離する必要があり、そのための分離法
として、多孔質体の表面にPdなどの水素透過膜を形成
した水素透過部材を使用する方法が知られている。
2. Description of the Related Art As an energy-saving gas separation technology,
In recent years, attention has been paid to a gas selective separation method using a membrane. In particular, as research on the practical application of fuel cells has recently progressed,
An important issue is how to efficiently produce high-purity hydrogen gas as a fuel.A typical method is to produce hydrogen by pyrolysis of hydrocarbon gas such as city gas or natural gas. And a method of obtaining high-purity hydrogen from the produced gas (crude gas). In this case, the crude gas obtained by pyrolysis contains a large amount of carbon monoxide, carbon dioxide gas, etc. in addition to hydrogen, so it is necessary to separate hydrogen from the crude gas containing them. As a separation method, a method using a hydrogen-permeable member having a hydrogen-permeable film such as Pd formed on the surface of a porous body is known.

【0003】該水素透過部材を製造する際に、水素選択
透過膜の支持用に用いられる多孔質体としては、粉末を
焼結した多孔質の金属やセラミックス、金属不織布の焼
結体、あるいは発泡メタル、更にはバルク材に微細な穴
を無数に明けたものなどが用いられている。
[0003] In producing the hydrogen permeable member, the porous material used for supporting the hydrogen selective permeable membrane may be a porous metal or ceramic obtained by sintering a powder, a sintered product of a metal nonwoven fabric, or a foamed product. Metals and bulk materials in which fine holes are formed countlessly are used.

【0004】そしてこれら多孔質体の表面に、例えばス
パッタリング法、アークイオンプレーティング(以下、
AIPという)法、めっき法、溶射法、もしくは圧延箔
の積層法などによって水素選択透過性の膜を形成し、水
素選択透過部材を得ている。
On the surface of these porous bodies, for example, sputtering, arc ion plating (hereinafter, referred to as
An AIP) method, a plating method, a thermal spraying method, a rolled foil laminating method, or the like is used to form a hydrogen-selective permeable film to obtain a hydrogen-selective permeable member.

【0005】ところで、水素選択透過部材に求められる
性能としては、水素のみを効率よく選択透過し得ること
はもとより、工業的実用化を可能にするには、単位面積
当たりの水素透過量を増大して生産性を高めることが重
要となる。
By the way, the performance required of the hydrogen selective permeation member is not only that it can selectively permeate hydrogen efficiently, but also that the hydrogen permeation amount per unit area must be increased to enable industrial practical use. It is important to increase productivity.

【0006】現在水素選択透過膜として最も汎用されて
いるのは、耐酸化性や水素解離性に優れたPd系の金属
膜や合金膜であるが、それら水素選択透過膜を用いた水
素透過部材の性能(膜透過能、即ち生産性)は、せいぜい
20cm3/min・cm2であり、工業的規模での実用
化を進めていくには、水素ガス透過量で40cm3/m
in・cm2以上を確保し得ると共に、99.99%レ
ベル以上の高純度の水素を効率よく選択分離し得る様な
技術が求められており、こうした要望を叶えるには、緻
密且つ薄肉で高い水素透過量を確保することのできる水
素選択透過膜が必要となる。そして、この様な薄肉の水
素選択透過膜を実用化するには、膜を支える支持用基材
が必要となるが、水素選択透過部材としての性能は該支
持用基材によっても著しく変わってくる。また該支持用
基材の構成は、水素選択透過部材として実際の装置に組
み込む際の施工性(溶接接合性など)や、連続使用時の
耐久性にも大きな影響を及ぼす。そのため、水素選択透
過膜の支持用基材についても幾つかの改良研究がなされ
ている。
Currently, the most widely used hydrogen selective permeable membranes are Pd-based metal films and alloy films having excellent oxidation resistance and hydrogen dissociation properties. Has a performance (membrane permeability, ie, productivity) of at most 20 cm 3 / min · cm 2. In order to promote practical use on an industrial scale, the hydrogen gas permeation amount is 40 cm 3 / m.
There is a need for a technique that can secure in.cm 2 or more and efficiently separate and separate high-purity hydrogen of 99.99% or more level efficiently. A hydrogen selective permeable membrane that can secure a hydrogen permeation amount is required. In order to put such a thin hydrogen selective permeable membrane into practical use, a supporting base material for supporting the membrane is required, but the performance as a hydrogen selective permeable member is significantly changed by the supporting base material. . In addition, the configuration of the supporting base material has a great effect on workability (such as weldability) when incorporated into an actual device as a hydrogen selective permeable member, and durability during continuous use. For this reason, some improvements have been made on the base material for supporting the hydrogen selective permeable membrane.

【0007】例えば特開昭62−121616号公報に
は、支持用基材として2層構造のセラミックス多孔質体
を用い、表面層(粗製ガス接触面側)のみを微粒焼結体
層とすることによって、その表面に形成される水素選択
透過膜の緻密性を高める技術が提案されている。ところ
が支持用基材としてセラミックスを用いた場合には、次
の様な問題が生じてくる。
For example, Japanese Patent Application Laid-Open No. Sho 62-121616 discloses that a ceramic porous body having a two-layer structure is used as a supporting substrate, and only a surface layer (a rough gas contact surface side) is a fine-grained sintered body layer. Thus, a technique for increasing the density of a hydrogen selective permeable membrane formed on the surface has been proposed. However, when ceramics are used as the supporting base material, the following problems occur.

【0008】ジョイント部材との接合性が非常に悪い
ため、水素選択透過装置に組み込む際の接合や気密保持
が難しい、 セラミックス多孔質体の粒径をサブミクロンレベルに
することは容易であるが、選択分離操作時の圧損が高く
なり、満足のいく生産性が得られ難い。一方、圧損低減
を狙って多孔質体の粒径を数μm以上にすると、支持用
基材としての強度や靱性が極端に低下し、割れや欠け等
を起こし易くなる。
[0008] Since the bondability with the joint member is very poor, it is difficult to bond and maintain airtightness when incorporating into the hydrogen selective permeation apparatus. The pressure loss during the selective separation operation becomes high, and it is difficult to obtain satisfactory productivity. On the other hand, when the particle size of the porous body is set to several μm or more for the purpose of reducing the pressure loss, the strength and toughness of the supporting substrate are extremely reduced, and cracks and chips are easily caused.

【0009】[0009]

【発明が解決しようとする課題】本発明は上記のような
事情に着目してなされたものであって、その目的は、現
在主として用いられているPd系などの金属もしくは合
金製の水素透過膜を使用し、水素純度で99.99%以
上を確保しつつ、水素選択透過量で40cm3/min
・cm2以上を得ることができ、しかも水素選択透過設
備としての施工性や耐久性をも満足し得る様な多孔質支
持用基材を提供すると共に、該基材を用いた高分離性能
の水素選択透過部材を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a hydrogen permeable membrane made of a metal or alloy such as a Pd-based metal which is mainly used at present. And a hydrogen selective permeation amount of 40 cm 3 / min while ensuring hydrogen purity of 99.99% or more.
・ Provide a porous support base material that can obtain cm 2 or more, and can also satisfy workability and durability as a hydrogen selective permeation facility, and provide high separation performance using the base material. An object of the present invention is to provide a hydrogen selective permeable member.

【0010】[0010]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る水素選択透過膜支持用基材とは、
水素選択透過膜を支持するための基材であって、多層構
造の金属製多孔質焼結体からなり、水素選択透過面側
は、焼結体の相対密度が少なくとも60%で且つ焼結体
粒子の平均粒径が10μm以上であり、粗製ガス接触面
側は、焼結体粒子の平均粒径が8μm以下、最大粒径4
5μm以下で且つ開口面積率が30%以上であるところ
に要旨を有している。
Means for Solving the Problems The hydrogen selective permeable membrane supporting substrate according to the present invention, which can solve the above problems, comprises:
A base material for supporting the hydrogen selective permeable membrane, which is made of a metal porous sintered body having a multilayer structure, and the hydrogen selective permeable surface has a sintered body having a relative density of at least 60% and a sintered body. The average particle diameter of the particles is 10 μm or more, and the average particle diameter of the sintered body particles is 8 μm or less,
The point is that the opening area ratio is 5% or less and the opening area ratio is 30% or more.

【0011】本発明に係る上記支持用基材の素材として
は、種々の金属や合金を使用できるが、熱安定性や耐酸
化性、水素解離性、コストなどを総合的に考慮してステ
ンレス鋼が最も一般的である。また本発明の上記支持用
基材においては、前記粗製ガス接触面側の焼結体表面
に、酸化皮膜やセラミックス層などの拡散防止層を形成
しておけば、水素選択透過処理時に、水素選択透過膜を
構成するPdやその合金等の膜内に支持用基材を構成す
る金属成分(Feなど)が拡散混入して水素選択透過能
を劣化させるという問題を未然に回避できるので好まし
い。
Although various metals and alloys can be used as the material of the supporting substrate according to the present invention, stainless steel is generally considered in consideration of thermal stability, oxidation resistance, hydrogen dissociation, cost and the like. Is the most common. Further, in the support substrate of the present invention, if a diffusion prevention layer such as an oxide film or a ceramic layer is formed on the surface of the sintered body on the side of the crude gas contact surface, during the hydrogen selective permeation treatment, hydrogen selective This is preferable because it is possible to avoid the problem that the metal component (Fe or the like) constituting the supporting base material is diffused and mixed into the membrane such as Pd or an alloy thereof constituting the permeable membrane to deteriorate the hydrogen selective permeability.

【0012】また本発明に係る水素選択透過部材とは、
前述した構成の水素選択透過膜支持用基材における粗製
ガス接触面側に水素選択透過膜を形成してなるところに
要旨を有している。ここで用いられる水素選択透過膜と
しては、水素選択透過性の金属膜または合金膜、中で
も、Pdまたはその合金よりなる厚さ10μm程度以下
の薄膜が好ましく、またそれら金属または合金膜の形成
法としては、成膜性や膜性能などを総合的に考慮して、
気相成膜法、中でもアークイオンプレーティング法が最
適である。
[0012] The hydrogen selective permeable member according to the present invention includes:
The gist lies in that the hydrogen selective permeable membrane is formed on the crude gas contact surface side of the hydrogen selective permeable membrane supporting substrate having the above-described configuration. As the hydrogen selective permeable membrane used here, a hydrogen selective permeable metal film or alloy film, among which a thin film of Pd or an alloy thereof having a thickness of about 10 μm or less is preferable, and a method for forming such a metal or alloy film is preferable. Is to consider the film forming property and film performance comprehensively,
The vapor phase film forming method, in particular, the arc ion plating method is most suitable.

【0013】[0013]

【発明の実施の形態】上記の様な要件を満たす多孔質の
金属製多孔質焼結体であれば、緻密でしかも開口面積率
の高い粗製ガス接触面側に、例えばPd系の金属もしく
は合金などからなる水素選択透過膜を形成することによ
り、卓越した水素選択透過能を有し、99.99%レベ
ル以上の高純度の水素ガスを、例えば40cm3/mi
n・cm2以上といった高生産性の下で分離回収するこ
とのできる水素選択分離装置を得ることができる。しか
も、上記支持用基材は金属焼結体を素材とするものであ
るから、例えばレーザー溶接や電子ビーム溶接あるいは
摩擦溶接等によってジョイント部材等との接合も簡単且
つ強固に行なうことができ、水素選択分離設備としての
施工性が高められると共に、設備の耐久性も高めること
ができる。
BEST MODE FOR CARRYING OUT THE INVENTION A porous metal porous sintered body which satisfies the above requirements, for example, a Pd-based metal or alloy is provided on the crude gas contact surface which is dense and has a high opening area ratio. By forming a hydrogen selective permeable membrane made of, for example, hydrogen gas having excellent hydrogen selective permeability and high purity of 99.99% level or more, for example, 40 cm 3 / mi,
It is possible to obtain a hydrogen selective separation device capable of separating and recovering under high productivity such as n · cm 2 or more. In addition, since the support base is made of a sintered metal material, it can be easily and firmly joined to a joint member or the like by, for example, laser welding, electron beam welding, or friction welding. The workability as a selective separation facility can be enhanced, and the durability of the facility can be enhanced.

【0014】以下、上記要件を定めた理由を詳細に説明
していく。
Hereinafter, the reasons for determining the above requirements will be described in detail.

【0015】先ず多孔質体焼結体の素材としては、耐酸
化性などの耐環境性や設備施工時の接合性、設備稼働時
の耐久性などを考慮して金属材が使用される。金属の種
類は特に制限されず、チタンやニッケル、アルミニウム
の如き非鉄金属やそれらの合金を使用することも可能で
あるが、耐熱性や耐酸化性、構造強度、コストなどを総
合的に考慮して最も好ましいのは鉄基金属であり、中で
もステンレス鋼が最適である。
First, as the material of the porous sintered body, a metal material is used in consideration of environmental resistance such as oxidation resistance, bondability at the time of equipment construction, durability at the time of equipment operation, and the like. The type of metal is not particularly limited, and non-ferrous metals such as titanium, nickel, and aluminum and alloys thereof can be used. However, heat resistance, oxidation resistance, structural strength, cost, etc. are comprehensively considered. Most preferred is an iron-based metal, with stainless steel being most preferred.

【0016】ちなみに従来では、前述した如くPd系水
素選択透過膜と多孔質体との反応抑制に主眼を置き、支
持用基材としてアルミナなどの多孔質セラミックスが使
用されているが、セラミックスは溶接接合などが非常に
困難であるため装置を組立てる際の施工性が極端に悪
く、しかも接合強度不足によって満足のいく耐久性も得
られ難くなることが指摘される。ところが本発明では、
支持用基材として金属焼結体を用いているので、溶接接
合性が良好で装置組立て時の施工性が良好であるばかり
でなく設備の耐久性も向上し、連続使用時の設備全体の
信頼性を高めることができる。
Conventionally, as described above, the main focus has been on suppressing the reaction between the Pd-based hydrogen selectively permeable membrane and the porous body, and porous ceramics such as alumina have been used as a support base material. It is pointed out that workability in assembling the apparatus is extremely poor due to extremely difficult joining and the like, and satisfactory durability is hardly obtained due to insufficient joining strength. However, in the present invention,
Since a metal sintered body is used as the support base material, not only weldability is good and workability when assembling the equipment is good, but also the durability of the equipment is improved, and the reliability of the whole equipment during continuous use is improved. Can be enhanced.

【0017】但しこの支持用基材は、金属製とはいえ多
孔質焼結体であるので、接合に例えばTIG溶接やMI
G溶接の如き通常の溶接法を採用すると、溶接部やその
周辺にクラックなどが生じ易くなる傾向が見られるの
で、接合法としてはレーザー溶接や電子ビーム溶接、あ
るいは摩擦接合を採用することが望ましい。また、この
様な溶接接合法を採用した場合でも、金属製多孔質焼結
体の相対密度が低いと、溶接時の体積収縮によって接合
部やその周辺にクラックが生じ易くなるので、こうした
障害を防止して安全且つ確実な接合を保証するには、金
属製多孔質焼結体の相対密度で60%以上を確保するこ
とが必須となる。
However, since this supporting base material is made of a porous sintered body even though it is made of metal, it can be joined by, for example, TIG welding or MI.
When a normal welding method such as G welding is used, cracks and the like tend to be easily generated in a welded portion and its surroundings. Therefore, it is preferable to use laser welding, electron beam welding, or friction welding as a joining method. . Even when such a welding joining method is employed, if the relative density of the porous metal sintered body is low, cracks are likely to occur at the joint and its surroundings due to volume shrinkage during welding. In order to prevent this and to assure safe and reliable joining, it is essential to ensure that the relative density of the metal porous sintered body is 60% or more.

【0018】尚本発明に係る支持用基材は、前述の如く
多層構造、代表的には2層構造を有する多孔質焼結体で
あり、表面に水素透過膜が形成される粗製ガス接触面側
は必ずしも相対密度を60%以上にする必要はなく、相
対的に厚肉で溶接接合の主体となる水素選択透過面側の
相対密度を60%以上とすることで、優れた接合性を確
保することができる。但し、相対密度が高くなり過ぎる
と圧損が増大し水素透過量が低下してくるので、好まし
くは90%以下、より好ましくは85%以下に抑えるの
がよい。
The supporting substrate according to the present invention is a porous sintered body having a multilayer structure, typically a two-layer structure, as described above, and a crude gas contact surface on which a hydrogen permeable film is formed. It is not always necessary to make the relative density 60% or more on the side, and the relative density on the side of the hydrogen selective permeable surface, which is relatively thick and is the main part of the welding joint, is made 60% or more, thereby ensuring excellent jointability. can do. However, if the relative density is too high, the pressure loss increases and the amount of hydrogen permeation decreases, so it is preferable to suppress the pressure loss to preferably 90% or less, more preferably 85% or less.

【0019】一方、支持用基材としての多孔質焼結体の
穴径は、水素選択透過処理時における圧損を低減する上
では可能な限り大きくすることが好ましいが、反面、基
材表面に緻密で薄肉の水素透過膜をより確実に形成する
には、穴のサイズは可能な限り小さくすることが望まし
い。そこで本発明者らは、膜厚が10μm程度以下の水
素選択透過能に優れた緻密な膜の形成を実現するための
要件について更に研究を重ねた結果、水素選択透過膜の
形成面側、即ち粗製ガス接触側における金属焼結体粒子
の平均粒径を8μm以下とし、且つ最大粒径を45μm
以下にすればよいことを突き止めた。
On the other hand, the hole diameter of the porous sintered body as the supporting base material is preferably as large as possible in order to reduce the pressure loss during the hydrogen selective permeation treatment. In order to more reliably form a thin and hydrogen-permeable membrane, the size of the hole is desirably as small as possible. Therefore, the present inventors have further studied on the requirements for realizing the formation of a dense film excellent in hydrogen selective permeability with a film thickness of about 10 μm or less, and as a result, the formation surface side of the hydrogen selective permeable film, that is, The average particle size of the sintered metal particles on the crude gas contact side is 8 μm or less, and the maximum particle size is 45 μm.
I figured out what to do next.

【0020】ちなみに、水素選択透過膜形成面側の焼結
体粒子の平均粒径が8μmを超えると、当該焼結体の表
面に形成される粗大な穴が多くなり、その表面に形成さ
れる水素選択透過膜が緻密なものになり難くなり、ま
た、当該焼結体粒子として最大粒径が45μmを超える
粗大物が存在するとその周辺に大きな穴が形成され、や
はり緻密な水素選択透過膜の形成が困難になる。よっ
て、支持用基材の水素選択透過膜形成面側、すなわち粗
製ガス接触面側は、緻密な水素選択透過膜の形成を可能
にするため、当該面における焼結体粒子の平均粒径を8
μm以下、より好ましくは6μm以下とし、且つ最大粒
径を45μm以下、より好ましくは30μm以下に抑え
ることが必要となる。但し、焼結体粒子の平均粒子径が
小さすぎると水素透過量が減少する傾向が生じてくるの
で、好ましくは3μm以上、より好ましくは4μm以上
とするのがよい。
If the average particle diameter of the sintered particles on the hydrogen selective permeable membrane forming surface side exceeds 8 μm, the number of coarse holes formed on the surface of the sintered body increases, and the surface is formed on the surface. It becomes difficult for the hydrogen permselective membrane to be dense, and when there is a coarse particle having a maximum particle size of more than 45 μm as the sintered particles, a large hole is formed in the periphery thereof, and the dense hydrogen permselective membrane is also formed. It becomes difficult to form. Therefore, on the side of the supporting base material on which the hydrogen selective permeable membrane is formed, that is, on the side of the crude gas contact surface, the average particle size of the sintered body particles on the surface is set at 8 to enable the formation of a dense hydrogen selective permeable membrane.
μm or less, more preferably 6 μm or less, and the maximum particle size must be suppressed to 45 μm or less, more preferably 30 μm or less. However, if the average particle size of the sintered particles is too small, the hydrogen permeation amount tends to decrease. Therefore, the average particle size is preferably 3 μm or more, more preferably 4 μm or more.

【0021】なお水素選択透過膜の形成法としては、ス
パッタリング法、アークイオンプレーティング法、蒸着
法、めっき法、溶射法などを採用できるが、緻密で水素
選択透過性に優れた薄肉の膜を容易且つ確実に形成する
上で最も好ましい成膜法はアークイオンプレーティング
法である。
As a method for forming the hydrogen selective permeable film, a sputtering method, an arc ion plating method, a vapor deposition method, a plating method, a thermal spraying method and the like can be adopted. The most preferred film forming method for easy and reliable formation is the arc ion plating method.

【0022】上述の如く本発明の支持用基材において
は、水素選択透過膜形成面側の焼結体粒子の平均粒径を
8μm以下、より好ましくは6μm以下とし、且つ最大
粒径を45μm以下に抑えることによって、緻密で欠陥
のない薄肉の水素選択透過膜を容易に形成できるが、支
持用基材である多孔質焼結体全体の平均粒径を8μm以
下にすると、支持層としての圧損が非常に大きくなり、
水素透過量が激減して生産性向上の目的が果たせなくな
る。
As described above, in the support substrate of the present invention, the average particle size of the sintered particles on the hydrogen selective permeable membrane forming surface side is 8 μm or less, more preferably 6 μm or less, and the maximum particle size is 45 μm or less. However, if the average particle size of the entire porous sintered body as a supporting base material is set to 8 μm or less, the pressure loss as a supporting layer can be easily reduced. Becomes very large,
The amount of hydrogen permeation is drastically reduced, and the purpose of improving productivity cannot be fulfilled.

【0023】支持用基材を薄くすれば圧損を低下させる
ことはできるが、そうすると薄膜支持用構造体として強
度不足になる他、溶接接合性にも悪影響が生じてくるの
で、支持用基材としての厚さは少なくとも1mm程度以
上は確保することが望ましい。そこで本発明では、薄膜
支持用構造体としての強化効果や溶接性を確保しつつ圧
損を最小限に抑えて十分な(40cm3/min・cm2
度以上)水素透過量を確保するための要件として、金属
製多孔質焼結体の水素選択透過膜が形成される粗製ガス
接触側の面は、焼結体粒子の平均粒径が8μm以下で且
つ最大粒径が45μm以下とし、支持層の主体となる水
素選択透過面側の焼結体粒子は平均粒径が10μm以上
(好ましくは15μm以上で、支持層としての構造強度
を確保する上で好ましい上限は30μm程度以下)で、
且つ接合性を考慮して相対密度を60%以上に規定して
いる。
If the supporting base material is made thinner, the pressure loss can be reduced. However, in such a case, the strength of the thin film supporting structure becomes insufficient and the weldability is adversely affected. Is desirably at least about 1 mm or more. Therefore, in the present invention, a requirement for securing a sufficient hydrogen permeation amount (about 40 cm 3 / min · cm 2 or more) by minimizing pressure loss while securing the reinforcing effect and weldability as a thin film supporting structure. As for the surface of the metal porous sintered body on the crude gas contact side where the hydrogen selective permeable membrane is formed, the average particle diameter of the sintered body particles is 8 μm or less and the maximum particle diameter is 45 μm or less. The sintered body particles on the hydrogen selective permeable surface side as the main body have an average particle diameter of 10 μm or more (preferably 15 μm or more, and a preferable upper limit for securing the structural strength as a support layer is about 30 μm or less),
In addition, the relative density is specified to be 60% or more in consideration of the joining property.

【0024】また、如何に支持用基材の圧損を低下させ
且つ水素選択透過膜を薄くしても、支持用基材を構成す
る上記焼結体の水素選択透過膜が形成される表面の開口
面積率が小さいと、水素選択透過膜の有効な水素選択透
過面が支持用基材表面の非開口面によって塞がれること
になり、十分な水素透過量が得られなくなる。従って、
こうした障害を抑えて十分な水素透過量を確保するに
は、支持用基材の水素選択透過膜形成面、即ち粗製ガス
接触側表面の開口面積率で30%以上、好ましくは35
%以上を確保すべきである。
Also, no matter how the pressure drop of the supporting substrate is reduced and the thickness of the hydrogen selective permeable membrane is reduced, the opening of the surface of the sintered body constituting the supporting substrate where the hydrogen selective permeable membrane is formed is formed. If the area ratio is small, the effective hydrogen selective permeable surface of the hydrogen selective permeable membrane is closed by the non-opening surface of the supporting base material surface, and a sufficient amount of hydrogen cannot be obtained. Therefore,
In order to suppress such an obstacle and secure a sufficient amount of hydrogen permeation, the opening area ratio of the hydrogen selective permeable membrane forming surface of the supporting base material, that is, the surface of the crude gas contact side is 30% or more, preferably 35% or more.
% Should be secured.

【0025】図1は、本発明に係る支持用基材およびそ
の表面に水素選択透過膜を形成した水素選択透過部材を
例示する断面拡大説明図であり、最も代表的な2層構造
のものを示している。
FIG. 1 is a cross-sectional enlarged explanatory view illustrating a supporting base material according to the present invention and a hydrogen selective permeable member having a hydrogen selective permeable film formed on the surface thereof. Is shown.

【0026】すなわち図示する支持用基材は、粗製ガス
接触面側を構成する焼結体層(B層)と、水素選択透過
面側を構成する焼結体層(A層)とによって構成され
る。
That is, the supporting base material shown in the figure is composed of a sintered body layer (layer B) constituting the crude gas contact surface side and a sintered body layer (layer A) constituting the hydrogen selective permeable surface side. You.

【0027】A層は、前述の如く焼結体粒子の粒径が1
0μm以上の焼結体によって構成されており、粒子間空
隙も比較的大きいので通気抵抗は小さく、圧損の少ない
支持主体の層となる。また該A層は、溶接接合を容易且
つ確実に行ない得るよう相対密度を60%以上の高めに
設定されている。より好ましい相対密度は65%以上で
あるが、相対密度が高すぎると圧損が増大して水素透過
量が低下してくるので90%以下、より好ましくは85
%以下に抑えるのがよい。
The layer A has a sintered particle diameter of 1 as described above.
Since it is made of a sintered body of 0 μm or more and has relatively large voids between particles, it has a small airflow resistance and becomes a layer mainly composed of a support having a small pressure loss. Further, the relative density of the layer A is set to be higher than 60% so that the welding can be easily and reliably performed. The relative density is more preferably 65% or more, but if the relative density is too high, the pressure loss increases and the amount of hydrogen permeation decreases, so 90% or less, more preferably 85% or less.
% Or less.

【0028】一方B層は、前述の如く水素選択透過膜形
成側を構成するもので、緻密で欠陥のない水素選択透過
膜をより確実且つ容易に行なえる様、焼結体粒子平均粒
径が8μm以下で、最大粒径が45μm以下に抑えられ
ると共に、十分な水素透過量を確保するため、開口面積
率が30%以上、より好ましくは35%以上となるよう
に設定される。
On the other hand, the layer B constitutes the hydrogen selective permeable film forming side as described above, and has an average particle diameter of the sintered body particles so that a dense and defect-free hydrogen selective permeable film can be formed more reliably and easily. When it is 8 μm or less, the maximum particle size is suppressed to 45 μm or less, and in order to secure a sufficient hydrogen permeation amount, the opening area ratio is set to 30% or more, more preferably 35% or more.

【0029】これら2層構造の焼結体からなる支持用基
材において、前記A層は、支持用基材の構造強度を確保
すると共に溶接接合性を高めるための主たる層となるも
のであり、好ましくは厚さを0.5mm程度以上、より
好ましくは0.7mm程度以上とすることが望ましい。
該A層の厚さの上限は特に制限されないが、1mm程度
の厚さで構造強度や溶接性は十分確保することができ、
それ以上に厚肉にすることは重量を高めるだけであり、
経済的にも不利であるので、1.5mm程度以下、より
好ましくは1.2mm程度以下に抑えることが望まし
い。一方B層は、緻密で欠陥のない水素選択透過膜の形
成を可能にするための層であって、構造強度や溶接性に
対する改善効果はそれほど要求されないので、例えば5
0μm程度以下の比較的薄肉でも十分に目的を果たすこ
とができる。しかし厚くし過ぎると、通気抵抗の増大に
よって水素透過量を下げる原因になるので、好ましくは
200μm程度以下、より好ましくは100μm以下に
抑えることが望ましい。
In the supporting substrate made of the sintered body having the two-layer structure, the layer A serves as a main layer for securing the structural strength of the supporting substrate and improving the weldability. Preferably, the thickness is about 0.5 mm or more, more preferably about 0.7 mm or more.
The upper limit of the thickness of the A layer is not particularly limited, but the structural strength and weldability can be sufficiently secured at a thickness of about 1 mm,
Thicker than that just adds weight,
Since it is economically disadvantageous, it is desirable to suppress the thickness to about 1.5 mm or less, more preferably to about 1.2 mm or less. On the other hand, the layer B is a layer for enabling the formation of a dense and defect-free hydrogen selective permeable membrane. Since the effect of improving structural strength and weldability is not so required, the layer B is, for example, 5%.
Even a relatively thin wall having a thickness of about 0 μm or less can sufficiently fulfill the purpose. However, if the thickness is too large, it causes a decrease in the amount of hydrogen permeation due to an increase in airflow resistance. Therefore, the thickness is preferably suppressed to about 200 μm or less, more preferably 100 μm or less.

【0030】なお図示例では、A層とB層からなる2層
構造のものを示したが、本発明ではA層側が通気抵抗の
少ない支持と溶接性主体の層で構成され、B層側が開口
面積率の大きい緻密な層で構成されておればよいので、
こうした要件を満たす限りA層とB層の間に、通気抵抗
や相対密度が両層の中間的な値を有する他の層を1もし
くは2以上形成して多層構造とすることも勿論可能であ
り、その場合、通気抵抗や相対密度がA層側からB層側
にかけて連続的に変化するような傾斜構造とすることも
可能である。
In the illustrated example, a two-layer structure composed of an A layer and a B layer is shown. However, in the present invention, the A layer side is composed of a layer mainly composed of a support having low airflow resistance and weldability, and the B layer side has an opening. Since it only needs to be composed of a dense layer with a large area ratio,
As long as these requirements are satisfied, it is of course possible to form one or two or more layers having an intermediate value between the A layer and the B layer having a ventilation resistance or a relative density between the two layers to form a multilayer structure. In this case, it is also possible to adopt an inclined structure in which the ventilation resistance and the relative density change continuously from the layer A side to the layer B side.

【0031】そして本発明の水素選択透過部材は、上記
多層構造の焼結体からなる支持用基材におけるB層側に
水素選択透過膜Cを形成することによって製造される。
該水素選択透過膜Cの構成材としては、前述の如くPd
もしくはその合金が最も一般的であるが、この他Ti,
Zr,V,Nb,Taやそれらを含む合金も使用でき
る。
The hydrogen selective permeable member of the present invention is manufactured by forming a hydrogen selective permeable membrane C on the layer B side of the supporting substrate made of the sintered body having the multilayer structure.
As a constituent material of the hydrogen selective permeable membrane C, as described above, Pd
Or its alloys are the most common, but in addition to Ti,
Zr, V, Nb, Ta and alloys containing them can also be used.

【0032】また該水素選択透過膜を多層構造とし、各
層の形成後に表面を研磨処理してから次の層を形成する
手順を繰り返せば、研磨処理によりピンホールが埋めら
れると共にマクロパーティクルが除去され、水素選択透
過膜全体としての緻密度を一段と高めることができ、よ
り薄肉で水素選択透過能に優れた膜を形成することがで
きるので好ましい。
If the hydrogen selective permeable membrane has a multi-layer structure and the procedure of polishing the surface after forming each layer and then forming the next layer is repeated, the polishing process fills the pinholes and removes macro particles. This is preferable because the density of the hydrogen selective permeable membrane as a whole can be further increased, and a thinner membrane having excellent hydrogen selective permeable ability can be formed.

【0033】該水素選択透過膜Cの厚さも特に制限され
ないが、水素透過膜としての強度を確保しつつ十分な水
素透過量を確保する上で好ましいのは1μm以上、12
μm以下、より好ましくは5μm以上、8μm以下であ
る。該水素選択透過膜の形成法としては、前述した様に
スパッタリング法やアークイオンプレーティング法など
が好ましい方法として例示される。
Although the thickness of the hydrogen selective permeable membrane C is not particularly limited, it is preferably 1 μm or more to secure a sufficient amount of hydrogen permeation while securing the strength as the hydrogen permeable membrane.
μm or less, more preferably 5 μm or more and 8 μm or less. As a method for forming the hydrogen selective permeable membrane, a sputtering method, an arc ion plating method and the like are exemplified as preferable methods as described above.

【0034】また、支持用基材における上記B層の表面
に水素選択透過膜Cを形成するに当たっては、該基材を
構成する金属成分が透過膜C方向に拡散移行してその水
素選択透過性能を劣化させる恐れがあるので、好ましく
はB層の表面に拡散防止層Dを形成してから水素選択透
過膜Cを形成することが望ましく、該拡散防止層Dの作
用や具体的な構成については後で詳述する。
In forming the hydrogen selective permeable membrane C on the surface of the layer B in the supporting base material, the metal component constituting the base material diffuses and moves in the direction of the permeable membrane C so that the hydrogen selective permeable performance is improved. Therefore, it is preferable to form the diffusion prevention layer D on the surface of the layer B and then form the hydrogen selective permeable film C. The function and specific configuration of the diffusion prevention layer D are described below. Details will be described later.

【0035】また、本発明に係る水素選択透過膜支持用
基材および水素選択透過部材の形状、構造にも格別の制
限はなく、水素選択透過設備の形状、構造などに応じて
円筒状、平板状など任意の形状に設計することができる
が、現在実用化されている水素選択透過装置に適用する
上で最も一般的なのは円筒状のものである。また円筒構
造のものである場合、水素ガスを筒状物の内側から外側
に選択透過させるか、外側から内側に選択透過させるか
によって、前記A、B層の形成側を設定すべきことは当
然である。
The shape and structure of the hydrogen selective permeable membrane supporting substrate and the hydrogen selective permeable member according to the present invention are not particularly limited, and may be cylindrical or flat depending on the shape and structure of the hydrogen selective permeable equipment. Although it can be designed in any shape such as a shape, a cylindrical shape is most common when applied to a hydrogen selective permeation device currently in practical use. In the case of a cylindrical structure, the formation side of the A and B layers should be set depending on whether the hydrogen gas is selectively permeated from the inside to the outside of the cylinder or from the outside to the inside. It is.

【0036】次に、上記の様な要件を備えた多層構造の
金属焼結体を製造する方法は特に制限されないが、一般
的な方法として例示すれば下記の通りである。
Next, a method of manufacturing a metal sintered body having a multilayer structure having the above-mentioned requirements is not particularly limited, but a general method is as follows.

【0037】まず焼結体粒子の径は、焼結原料として用
いられる金属粒子の粒子径によってほぼ決まり、また焼
結体の相対密度や開口面積率は、金属粒子を圧粉成形す
る際の圧力や焼結条件(特に焼結温度)によって変わっ
てくる。ちなみに、金属粒子を圧粉成形してから焼結す
る際には、隣接する金属粒子同士が表面の一部で拡散接
合するだけであり、金属粒子そのもののサイズは殆ど変
わらない。一方、圧粉成形時の成形圧力を高めるにつれ
て、金属粒子は密に詰まって焼結体の相対密度は上昇
し、それに伴って粒子間空隙は少なくなるので開口面積
率は小さくなる。他方、金属粒子の粒子径が小さくなる
ほど焼結のための接触点は増えるので、金属粒子の粒子
径が小さいほど密度は相対的に高くなる傾向がある。ま
た、粒子間空隙のサイズは粒子径が小さくなるほど小さ
くなって焼結体が緻密になる反面、通気抵抗は高くなる
傾向がある。
First, the diameter of the sintered particles is substantially determined by the particle diameter of the metal particles used as a sintering raw material, and the relative density and opening area ratio of the sintered body are determined by the pressure at the time of compacting the metal particles. And sintering conditions (especially sintering temperature). Incidentally, when the metal particles are compacted and then sintered, the adjacent metal particles are only diffusion bonded at a part of the surface, and the size of the metal particles themselves hardly changes. On the other hand, as the molding pressure at the time of compacting is increased, the metal particles are densely packed, the relative density of the sintered body is increased, and the voids between the particles are reduced accordingly, so that the opening area ratio is reduced. On the other hand, as the particle diameter of the metal particles decreases, the number of contact points for sintering increases, so that the smaller the particle diameter of the metal particles, the higher the density tends to be. Further, the size of the interparticle voids becomes smaller as the particle diameter becomes smaller and the sintered body becomes denser, but the airflow resistance tends to become higher.

【0038】従って、前述した要求特性を備えた焼結体
を得るための好ましい方法としては、焼結体の水素選択
透過面側については、焼結原料として平均粒径が10μ
m以上、より好ましくは15μm程度以上で、好ましく
は30μm程度以下の金属粉末を使用し、これを相対密
度でほぼ60%以上を確保することのできる密度に圧粉
成形してから焼結すれば良い。なお、圧粉成形時に所望
量のバインダーを配合して相対密度を調整することも可
能である。
Therefore, as a preferred method for obtaining a sintered body having the above-mentioned required characteristics, the average particle diameter of the sintered material on the hydrogen selective permeable surface side is 10 μm.
m or more, more preferably about 15 μm or more, and preferably about 30 μm or less. If the powder is compacted to a density that can secure a relative density of about 60% or more, and then sintered, good. In addition, it is also possible to adjust a relative density by mixing a desired amount of a binder at the time of compacting.

【0039】好ましい成形圧力や焼結温度は金属の種類
等によっても変わってくるが、最も一般的なステンレス
鋼粉末を使用する際の好ましい圧粉成形圧力は50MP
a以上、300MPa以下、より一般的には100MP
a以上、200MPa以下、焼結温度は750℃以上、
1000℃以下、より一般的には800℃以上、950
℃以下である。なお圧粉成形や焼結時の雰囲気は、金属
粉末が酸化されて焼結不良となるのを防止するため、非
酸化性雰囲気下で行なうことが望ましい。
The preferred compacting pressure and sintering temperature vary depending on the type of metal and the like, but the preferred compacting pressure when using the most common stainless steel powder is 50 MPa.
a to 300 MPa, more generally 100 MPa
a, 200 MPa or less, sintering temperature is 750 ° C. or more,
1000 ° C. or less, more generally 800 ° C. or more, 950
It is below ° C. The atmosphere during the compacting and sintering is preferably performed in a non-oxidizing atmosphere in order to prevent the metal powder from being oxidized and causing sintering failure.

【0040】また水素選択透過膜が形成される粗製ガス
接触面側については、前述の如く適度の開口面積率を有
する緻密な表面を確保することの必要上、原料として平
均粒径が8μm以下、より好ましくは6μm以下で、最
大粒径が45μm以下、より好ましくは30μm以下の
金属粉末を使用し、圧粉成形時の圧力としては、適度の
空隙率(延いては表面開口面積率)を確保するため50
MPa以上、200MPa以下、より好ましくは75M
Pa以上、100MPa以下を採用し、750℃以上、
900℃以下、より好ましくは800℃以上、850℃
以下で焼結することが望ましい。この場合も、圧粉成形
および焼結は非酸化性雰囲気で行なうことが望まれる。
On the crude gas contact surface side on which the hydrogen selective permeable membrane is formed, it is necessary to secure a dense surface having an appropriate opening area ratio as described above. More preferably, a metal powder having a size of 6 μm or less and a maximum particle size of 45 μm or less, more preferably 30 μm or less is used. As a pressure at the time of compacting, an appropriate porosity (and a surface opening area ratio) is secured. 50 to do
MPa or more, 200 MPa or less, more preferably 75M
Adopt Pa or more, 100 MPa or less, 750 ° C. or more,
900 ° C or lower, more preferably 800 ° C or higher, 850 ° C
It is desirable to sinter below. Also in this case, it is desired that the compacting and sintering be performed in a non-oxidizing atmosphere.

【0041】なお焼結体を2層構造とするための手段と
しては、片側の層を圧粉成形し焼結した後、他方側の層
を圧粉成形し焼結する方法を採用することもできるが、
好ましいのは、まず片側の層を圧粉成形した後他方側の
層を圧粉成形し、次いでそれらを同時に焼結する方法で
ある。また3層以上の構造とするための手段も本質的に
異なるものではなく、第1層、第2層、第3層、……を
順次圧粉成形した後、それらを同時に加熱焼結する方法
が好ましく採用される。
As a means for forming the sintered body into a two-layer structure, a method of compacting and sintering one layer and then compacting and sintering the other layer may be adopted. You can,
A preferred method is to first compact one layer, then compact the other layer, and then sinter them simultaneously. The means for forming a structure having three or more layers is not essentially different, and a method of sequentially compacting the first layer, the second layer, the third layer,... And simultaneously heating and sintering them. Is preferably employed.

【0042】かくして得られる本発明の支持用基材に
は、その緻密な焼結体面側に水素選択透過膜を形成する
ことによって水素選択透過部材とされるが、例えば金属
としてステンレス鋼等の鉄基合金を用いた焼結体の場合
は、該焼結体の表面に直接Pd系などの水素選択透過膜
を形成すると、使用時に焼結体を構成する例えばFeが
水素選択透過膜方向に拡散移行して合金化反応を起こ
し、該選択透過膜の水素選択透過性を劣化させ、設備と
しての耐久性が損なわれる恐れがある。
The supporting substrate of the present invention thus obtained is formed as a hydrogen selective permeable member by forming a hydrogen selective permeable membrane on the dense sintered body surface side. In the case of a sintered body using a base alloy, if a hydrogen selective permeable membrane such as Pd is formed directly on the surface of the sintered body, for example, Fe constituting the sintered body during use diffuses in the direction of the hydrogen selective permeable membrane. There is a possibility that the alloying reaction occurs to cause an alloying reaction to deteriorate the hydrogen selective permeability of the permselective membrane, thereby impairing the durability as equipment.

【0043】従ってこうした焼結金属の選択透過膜方向
への拡散移行を防止するには、水素選択透過膜の形成に
先立って、支持用基材を構成する焼結体の表面に予め拡
散防止層を形成し、焼結体と水素選択透過膜との直接接
触を防止することが望ましい。かかる拡散防止層として
は、当該焼結金属自体の酸化物層あるいはその他のセラ
ミックス層が例示される。前者の酸化物層は、焼結体表
面を酸化処理することによって形成することができ、後
者のセラミックス層は、セラミックス材をスパッタリン
グ法、イオンプレーティング法など任意の方法でコーテ
ィングすることによって形成すればよい。尚焼結体とし
てステンレス鋼を使用した時に形成される前記酸化物層
は、Cr,Fe,Mnを主体とする酸化物であるが、該
酸化物層中のMn含有量が40質量%を超えると、Mn
酸化物が使用時に徐々に減少し拡散防止作用が経時的に
低下し易いので、酸化物層中のMn含有量は40質量%
以下に抑えることが望ましい。
Accordingly, in order to prevent such a diffusion of the sintered metal in the direction of the permselective membrane, prior to the formation of the hydrogen permselective membrane, a diffusion preventing layer is formed on the surface of the sintered body constituting the supporting base material. And it is desirable to prevent direct contact between the sintered body and the hydrogen selective permeable membrane. Examples of such a diffusion prevention layer include an oxide layer of the sintered metal itself or another ceramic layer. The former oxide layer can be formed by oxidizing the surface of the sintered body, and the latter ceramic layer can be formed by coating a ceramic material by any method such as a sputtering method or an ion plating method. I just need. The oxide layer formed when stainless steel is used as the sintered body is an oxide mainly composed of Cr, Fe, and Mn, and the Mn content in the oxide layer exceeds 40% by mass. And Mn
Since the oxide gradually decreases during use and the diffusion preventing action tends to decrease with time, the Mn content in the oxide layer is 40% by mass.
It is desirable to keep it below.

【0044】また他の拡散防止層を構成するセラミック
スとしては、酸化物、窒化物、炭化物、硼化物などの何
れであっても構わないが、形成が容易で且つ優れたバリ
ア性を与える上で特に好ましいのは、酸化クロム、酸化
アルミ、窒化クロムなどである。この際、焼結体表面を
酸化処理して酸化物皮膜を形成し、更にその上にセラミ
ックス層を形成すれば、拡散防止効果を一層高めること
ができるので好ましい。
The ceramics constituting the other diffusion preventing layer may be any of oxides, nitrides, carbides, borides and the like, but they are easy to form and provide excellent barrier properties. Particularly preferred are chromium oxide, aluminum oxide, chromium nitride and the like. At this time, it is preferable to form an oxide film by oxidizing the surface of the sintered body and further form a ceramic layer thereon, since the diffusion preventing effect can be further enhanced.

【0045】これら拡散防止層による拡散防止効果を有
効に発揮させる上で好ましい厚さは0.1μm程度以
上、より好ましくは0.3μm程度以上であるが、該拡
散防止層が厚くなり過ぎると、水素の透過が阻害されて
水素透過量を少なくする原因になるので、好ましくは2
μm程度以下、より好ましくは1μm程度以下に抑える
ことが望ましい。また該拡散防止層は、あくまでも焼結
体中の金属成分が水素選択透過膜方向へ拡散移行するの
を阻止するためのものであるから、ミクロ的には、前記
図1にも示した様に、焼結体表面の開口部を塞ぐことな
く焼結体粒子の表層側のみに形成することが望ましい。
A preferable thickness for effectively exhibiting the diffusion preventing effect of these diffusion preventing layers is about 0.1 μm or more, more preferably about 0.3 μm or more. However, if the diffusion preventing layer becomes too thick, Hydrogen permeation is impaired and causes a reduction in the amount of hydrogen permeation.
It is desirable to suppress the thickness to about μm or less, more preferably to about 1 μm or less. Further, the diffusion preventing layer is only for preventing the metal component in the sintered body from being diffused and transferred in the direction of the hydrogen selective permeable membrane. Therefore, microscopically, as shown in FIG. It is desirable that the particles are formed only on the surface layer side of the sintered body particles without closing the opening on the surface of the sintered body.

【0046】上記の如く本発明によれば、優れた耐酸化
性や水素解離性を備えた例えばPd系等の水素選択透過
膜を有効に活用して水素選択透過設備を製造する際に、
その支持用基材として密度や粒径、開口面積率などの特
定された多層構造の金属製多孔質焼結体を使用すること
により、優れた構造強度や溶接接合性、耐久性などを維
持しつつ、例えば99.99%レベル以上の高純度の水
素を40cm3/min・cm2程度以上の透過量で生産
性よく得ることのできる水素選択透過部材を提供し得る
ことになった。
As described above, according to the present invention, when a hydrogen selective permeation facility is manufactured by effectively utilizing a hydrogen selective permeation membrane such as a Pd-based membrane having excellent oxidation resistance and hydrogen dissociation properties,
By using a multi-layer metal porous sintered body with specified density, particle size, open area ratio, etc. as its supporting substrate, it maintains excellent structural strength, weldability, durability, etc. On the other hand, it has become possible to provide a hydrogen selective permeable member that can obtain high-purity hydrogen of, for example, 99.99% level or more with a permeation amount of about 40 cm 3 / min · cm 2 or more with high productivity.

【0047】なお上記説明では、支持用基材となる多孔
質焼結体を構成する金属材として、最も代表的な粉末を
用いた例を主体にして説明してきたが、本発明では金属
粉末の他、金属繊維の不織布やチョップドストランドな
どを使用することも可能であり、この場合は、当該繊維
の直径を前記粒径に対応するものとして、焼結体の平均
粒径や最大粒径などを制御すればよい。また必要によっ
ては、金属粉末と金属繊維不織布やチョップドストラン
ドなどを適宜併用することにより、焼結体の相対密度や
通気抵抗、表面開口率などを調整することも可能であ
る。
In the above description, an example was described in which the most typical powder was used as the metal material constituting the porous sintered body as the supporting base material. In addition, it is also possible to use a nonwoven fabric of metal fibers or chopped strands. What is necessary is to control. If necessary, the relative density, airflow resistance, surface aperture ratio, and the like of the sintered body can be adjusted by appropriately using a metal powder and a metal fiber nonwoven fabric or chopped strand.

【0048】なお本発明において、焼結体粒子の平均粒
径や最大粒径、開口面積率は、焼結体表面を光学顕微鏡
により1000倍の倍率で写真撮影し、その画像から7
5mm×95mmのサイズで10視野を観察して求め
た。各写真においては、焼結体粒子1個1個に縁取りし
た。各粒子は粒成長を殆ど起こしておらず、原料として
用いた粒子の形状・粒径をほぼ保っており、また多孔質
体であるため、1個1個の粒子を十分に区別できる。得
られた各写真を基にし、下記の方法で平均粒径(フルマ
ン法)、最大粒径、開口面積率を求めた。 平均粒径(D)=(4/π)×(NL/NS) NL:写真面上の任意の直線によってヒットされる単位
長さ当たりの粒子数 NS:任意の単位面積内に含まれる粒子数 開口面積率は=[(写真の総面積−粒子の占める面積)
/(写真の総面積)]×100 相対密度は、焼結体の寸法(体積)と重量から真密度を
7.8g/cm3として求めた。
In the present invention, the average particle diameter, the maximum particle diameter, and the opening area ratio of the sintered body particles were determined by photographing the surface of the sintered body with an optical microscope at a magnification of 1000 times,
It was determined by observing 10 visual fields with a size of 5 mm x 95 mm. In each photograph, each sintered body particle was bordered. Each particle hardly undergoes grain growth, substantially maintains the shape and particle size of the particles used as the raw material, and is a porous body, so that each particle can be sufficiently distinguished. Based on the obtained photographs, the average particle size (Fulman method), the maximum particle size, and the opening area ratio were determined by the following methods. Average particle size (D) = (4 / π) × (NL / NS) NL: Number of particles hit by an arbitrary straight line on the photographic surface per unit length NS: Number of particles included in an arbitrary unit area The opening area ratio is = [(total area of photograph-area occupied by particles)
/ (Total area of the photograph)] × 100 The relative density was determined from the dimensions (volume) and weight of the sintered body assuming that the true density was 7.8 g / cm 3 .

【0049】[0049]

【実施例】以下、実施例を挙げて本発明をより具体的に
説明するが、本発明はもとより下記実施例に制限される
ものではなく、前・後記の趣旨に適合し得る範囲で適当
に変更して実施することも可能であり、それらはいずれ
も本発明の技術的範囲に含まれる。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and the present invention is not limited thereto. The present invention can be modified and implemented, and all of them are included in the technical scope of the present invention.

【0050】実施例 以下に示す2層構造の金属多孔質焼結体からなるパイプ
状の支持用基材を作製し、該支持用基材の両端にSUS
410製のキャップをレーザー溶接した後(図2参照:
1は水素選択透過管、2は接続用キャップを示す)、外
面側に拡散防止層を形成してから、AIP法によってP
d系の水素選択透過膜を形成し(図3参照:3は支持用
基材、4は水素選択透過膜を示す)、水素選択透過実験
を行った。供試材の成形条件や構成と試験結果を表1,
2に示す。但し耐久性は、水素透過実験の最初の1時間
の水素透過量に対する、24時間経過後の1時間の水素
透過量の減少量によって評価し、該減少量が1%未満で
あった場合を○、1%以上であった場合を×とした。 支持用基材:外層外径;直径20.2mm、外層内径;
直径20mm、内層内径;18mm、長さ80mm、 ジョイント加工:支持用基材の両端に、SUS410製
のキャップをレーザー溶接、 拡散防止層の形成:支持用基材表面を大気中650℃で
30分間酸化処理、または外層側にセラミックス材をス
パッタリング法によってコーティング、 水素選択透過膜の形成:キャップを接合し、外面側に拡
散防止層を形成した各支持用基材の表面に、Pd−Ag
膜をAIP法によって成膜、 水素選択透過試験:600℃で24時間。
EXAMPLE A pipe-shaped support substrate made of a porous metal sintered body having the following two-layer structure was prepared, and SUS was attached to both ends of the support substrate.
After laser welding the 410 cap (see Figure 2:
1 denotes a hydrogen selective permeation tube, 2 denotes a connection cap), a diffusion prevention layer is formed on the outer surface side, and P is formed by AIP method.
A d-based hydrogen selectively permeable membrane was formed (see FIG. 3: 3 is a supporting substrate, and 4 is a hydrogen selectively permeable membrane), and a hydrogen selective permeation experiment was performed. Table 1 shows the molding conditions and composition of the test materials and the test results.
It is shown in FIG. However, the durability was evaluated by the amount of decrease in the amount of hydrogen permeation for one hour after the elapse of 24 hours with respect to the amount of hydrogen permeation for the first hour in the hydrogen permeation experiment. , And 1% or more was evaluated as x. Supporting substrate: outer layer outer diameter; diameter 20.2 mm, outer layer inner diameter;
Diameter 20 mm, inner layer inner diameter: 18 mm, length 80 mm, joint processing: Laser welding of SUS410 caps to both ends of the support base material, formation of a diffusion prevention layer: support base material surface in air at 650 ° C. for 30 minutes Oxidation treatment or coating of ceramic material on the outer layer side by sputtering method, Formation of hydrogen selective permeable membrane: Pd-Ag on the surface of each supporting base material with a cap joined and a diffusion prevention layer formed on the outer surface side
A film was formed by the AIP method, and a hydrogen selective permeation test: 600 ° C. for 24 hours.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】表1,2からも明らかなように、本発明の
規定要件を全て満たす実施例は、何れも透過水素の純度
が99.99%以上で且つ高い水素透過量が得られてい
る。なお実施例3は、基材と水素選択透過膜の間に拡散
防止層を形成しなかった例であり、耐久性に問題があ
る。これらに対し本発明の何れかの要件を欠く比較例で
は、透過水素の純度が目標レベルに達していないか、水
素透過量不足で生産性を満足できず、あるいは溶接不良
で実用性を欠く。
As is clear from Tables 1 and 2, in all of the examples satisfying the specified requirements of the present invention, the purity of permeated hydrogen is 99.99% or more and a high hydrogen permeation amount is obtained. Example 3 is an example in which the diffusion prevention layer was not formed between the base material and the hydrogen selective permeable membrane, and had a problem in durability. On the other hand, in Comparative Examples lacking any of the requirements of the present invention, the purity of permeated hydrogen does not reach the target level, the productivity cannot be satisfied due to the insufficient amount of hydrogen permeation, or the welding is poor and lacks practicality.

【0054】[0054]

【発明の効果】本発明は以上の様に構成されており、水
素選択透過膜を支持するための基材として、多層構造の
多孔質金属焼結体を使用し、該透過膜形成側の平均粒径
と最大粒径および開口面積率を特定すると共に、その反
対面側の相対密度と平均粒径を特定することによって、
従来のセラミックス質の支持用基材に指摘される溶接性
や耐久性不良を解消すると共に、粗製ガスから99.9
9%レベル以上の高純度の水素を高い水素透過量で生産
性よく得ることのできる水素選択透過部材を提供し得る
ことになった。
According to the present invention, a porous metal sintered body having a multilayer structure is used as a substrate for supporting a hydrogen selective permeable membrane, and an average of the permeable membrane forming side is used. By specifying the particle size and the maximum particle size and the opening area ratio, by specifying the relative density and the average particle size on the opposite surface side,
In addition to eliminating the poor weldability and poor durability pointed out in the conventional ceramic support base material, the raw gas is used to remove 99.9% from crude gas.
It has become possible to provide a hydrogen selective permeable member that can obtain high-purity hydrogen of 9% level or more with a high hydrogen permeation amount and high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る水素選択透過膜支持用基材と水素
選択透過部材の断面構造を例示する要部断面模式図であ
る。
FIG. 1 is a schematic cross-sectional view of an essential part illustrating a cross-sectional structure of a hydrogen selective permeable membrane supporting substrate and a hydrogen selective permeable member according to the present invention.

【図2】実験に用いた支持用基材を示す概略正面図であ
る。
FIG. 2 is a schematic front view showing a supporting base material used in the experiment.

【図3】実験で使用した水素選択透過部材の横断面略図
である。
FIG. 3 is a schematic cross-sectional view of a hydrogen selective permeable member used in an experiment.

【符号の説明】 A 水素選択透過面側焼結体層 B 粗製ガス接触面側焼結体層 C 水素選択透過膜 D 拡散防止層 1 水素選択透過管 2 接続用キャップ 3 支持用基材 4 水素選択透過膜[Description of References] A Sintered body layer on the hydrogen selective permeable surface side B Sintered body layer on the crude gas contact surface side C Hydrogen selective permeable membrane D Diffusion prevention layer 1 Hydrogen selective permeable tube 2 Connection cap 3 Supporting substrate 4 Hydrogen Permselective membrane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 俊樹 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 安永 龍哉 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 Fターム(参考) 4D006 GA41 HA22 JA03A JA03B JA03C JA22A JA27A MA02 MA23 MA24 MB04 MC02 MC02X NA31 NA32 PA04 PB18 PB66 PC80 4G040 FA06 FB09 FC01 FE01 4G075 AA25 BA08 BB02 BC03 CA17 FB02 FC02 4G140 FA06 FB09 FC01 FE01 4K029 BA02 BA21 BC00 CA03 DD06 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toshiki Sato 1-5-5 Takatsukadai, Nishi-ku, Kobe City Inside Kobe Research Institute, Kobe Steel Ltd. (72) Inventor Tatsuya Yasunaga 1-chome, Takatsukadai, Nishi-ku, Kobe-shi No. 5-5 Kobe Steel, Ltd.Kobe Research Institute, Kobe Research Institute F-term (reference) CA17 FB02 FC02 4G140 FA06 FB09 FC01 FE01 4K029 BA02 BA21 BC00 CA03 DD06

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 水素選択透過膜を支持するための基材で
あって、多層構造の金属製多孔質焼結体からなり、水素
選択透過面側は、焼結体の相対密度が少なくとも60%
で且つ焼結体粒子の平均粒径が10μm以上であり、粗
製ガス接触面側は、焼結体粒子の平均粒径が8μm以
下、最大粒径45μm以下で且つ開口面積率が30%以
上であることを特徴とする水素選択透過膜支持用基材。
1. A base material for supporting a hydrogen selective permeable membrane, comprising a metal porous sintered body having a multilayer structure, wherein a relative density of the sintered body is at least 60% on a hydrogen selective permeable surface side.
And the average particle size of the sintered particles is 10 μm or more, and the average particle size of the sintered particles is 8 μm or less, the maximum particle size is 45 μm or less, and the opening area ratio is 30% or more on the crude gas contact surface side. A substrate for supporting a hydrogen-selective permeable membrane, comprising:
【請求項2】 前記粗製ガス接触面側の焼結体表面に拡
散防止層が形成されている請求項1に記載の水素選択透
過膜支持用基材。
2. The hydrogen selective permeable membrane supporting substrate according to claim 1, wherein a diffusion preventing layer is formed on the surface of the sintered body on the side of the crude gas contact surface.
【請求項3】 前記拡散防止層が酸化被膜および/また
はセラミック層である請求項1または2に記載の水素選
択透過膜支持用基材。
3. The hydrogen selective permeable membrane supporting substrate according to claim 1, wherein the diffusion preventing layer is an oxide film and / or a ceramic layer.
【請求項4】 前記多孔質焼結体がステンレス鋼の焼結
体である請求項1〜3のいずれかに記載の水素選択透過
膜支持用基材。
4. The substrate according to claim 1, wherein said porous sintered body is a sintered body of stainless steel.
【請求項5】 前記請求項1〜4のいずれかに記載の水
素選択透過膜支持用基材における粗製ガス接触面側に、
水素選択透過膜を形成してなる水素選択透過部材。
5. The hydrogen selective permeable membrane supporting substrate according to any one of claims 1 to 4, wherein
A hydrogen selective permeable member formed with a hydrogen selective permeable membrane.
【請求項6】 前記水素選択透過膜が、水素選択透過性
の金属または合金の膜である請求項5に記載の水素選択
透過部材。
6. The hydrogen selective permeable member according to claim 5, wherein the hydrogen selective permeable membrane is a metal or alloy membrane having hydrogen selective permeability.
【請求項7】 金属または合金が、Pdまたはその合金
である請求項6に記載の水素選択透過部材。
7. The hydrogen selective permeable member according to claim 6, wherein the metal or alloy is Pd or an alloy thereof.
【請求項8】 前記水素選択透過膜が、気相成膜法によ
って形成されたものである請求項6または7に記載の水
素選択透過部材。
8. The hydrogen selective permeable member according to claim 6, wherein the hydrogen selective permeable film is formed by a vapor deposition method.
【請求項9】 前記気相成膜法がアークイオンプレーテ
ィング法である請求項8に記載の水素選択透過部材。
9. The hydrogen selective permeable member according to claim 8, wherein the vapor phase film forming method is an arc ion plating method.
JP2001021413A 2001-01-30 2001-01-30 Supporting base for hydrogen-permselective membrane and hydrogen-permselective member Pending JP2002219341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001021413A JP2002219341A (en) 2001-01-30 2001-01-30 Supporting base for hydrogen-permselective membrane and hydrogen-permselective member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001021413A JP2002219341A (en) 2001-01-30 2001-01-30 Supporting base for hydrogen-permselective membrane and hydrogen-permselective member

Publications (1)

Publication Number Publication Date
JP2002219341A true JP2002219341A (en) 2002-08-06

Family

ID=18886977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001021413A Pending JP2002219341A (en) 2001-01-30 2001-01-30 Supporting base for hydrogen-permselective membrane and hydrogen-permselective member

Country Status (1)

Country Link
JP (1) JP2002219341A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525119A (en) * 2003-05-02 2006-11-09 ウスター ポリテクニック インスティチュート Composite gas separation module with high Tamman temperature interlayer
JP2006314875A (en) * 2005-05-11 2006-11-24 Ngk Spark Plug Co Ltd Hydrogen separation apparatus
JP2006314876A (en) * 2005-05-11 2006-11-24 Ngk Spark Plug Co Ltd Hydrogen separator
JP2007000858A (en) * 2005-05-23 2007-01-11 Kobe Steel Ltd Hydrogen permeation member and its manufacturing method
JP2007090294A (en) * 2005-09-30 2007-04-12 Nippon Seisen Co Ltd Hydrogen separation member and hydrogen separation module using the hydrogen separation member
JP2007090295A (en) * 2005-09-30 2007-04-12 Nippon Seisen Co Ltd Hydrogen separation member and its manufacturing method
JP2007090293A (en) * 2005-09-30 2007-04-12 Nippon Seisen Co Ltd Member for hydrogen separation and its production method
JP2007269595A (en) * 2006-03-31 2007-10-18 Ngk Spark Plug Co Ltd Hydrogen production system
JP2008513337A (en) * 2004-09-21 2008-05-01 ウスター ポリテクニック インスティチュート Membrane enhanced reactor
JP2008513338A (en) * 2004-09-21 2008-05-01 ウスター ポリテクニック インスティチュート Membrane steam reformer
JP2008513339A (en) * 2004-09-21 2008-05-01 ウスター ポリテクニック インスティチュート Reactor and method for steam reforming
JP2008246430A (en) * 2007-03-30 2008-10-16 Nippon Seisen Co Ltd Support of hydrogen separation membrane and hydrogen separation module using the support
US8366805B2 (en) 2007-04-05 2013-02-05 Worcester Polytechnic Institute Composite structures with porous anodic oxide layers and methods of fabrication
US8652239B2 (en) 2010-05-03 2014-02-18 Worcester Polytechnic Institute High permeance sulfur tolerant Pd/Cu alloy membranes

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525119A (en) * 2003-05-02 2006-11-09 ウスター ポリテクニック インスティチュート Composite gas separation module with high Tamman temperature interlayer
JP2008513337A (en) * 2004-09-21 2008-05-01 ウスター ポリテクニック インスティチュート Membrane enhanced reactor
JP2008513339A (en) * 2004-09-21 2008-05-01 ウスター ポリテクニック インスティチュート Reactor and method for steam reforming
JP2008513338A (en) * 2004-09-21 2008-05-01 ウスター ポリテクニック インスティチュート Membrane steam reformer
JP2006314875A (en) * 2005-05-11 2006-11-24 Ngk Spark Plug Co Ltd Hydrogen separation apparatus
JP2006314876A (en) * 2005-05-11 2006-11-24 Ngk Spark Plug Co Ltd Hydrogen separator
JP2007000858A (en) * 2005-05-23 2007-01-11 Kobe Steel Ltd Hydrogen permeation member and its manufacturing method
KR100806489B1 (en) * 2005-05-23 2008-02-21 가부시키가이샤 고베 세이코쇼 Hydrogen permeable member and method for production thereof
JP2007090293A (en) * 2005-09-30 2007-04-12 Nippon Seisen Co Ltd Member for hydrogen separation and its production method
JP2007090295A (en) * 2005-09-30 2007-04-12 Nippon Seisen Co Ltd Hydrogen separation member and its manufacturing method
JP2007090294A (en) * 2005-09-30 2007-04-12 Nippon Seisen Co Ltd Hydrogen separation member and hydrogen separation module using the hydrogen separation member
JP2007269595A (en) * 2006-03-31 2007-10-18 Ngk Spark Plug Co Ltd Hydrogen production system
JP2008246430A (en) * 2007-03-30 2008-10-16 Nippon Seisen Co Ltd Support of hydrogen separation membrane and hydrogen separation module using the support
US8366805B2 (en) 2007-04-05 2013-02-05 Worcester Polytechnic Institute Composite structures with porous anodic oxide layers and methods of fabrication
US8652239B2 (en) 2010-05-03 2014-02-18 Worcester Polytechnic Institute High permeance sulfur tolerant Pd/Cu alloy membranes

Similar Documents

Publication Publication Date Title
JP2002219341A (en) Supporting base for hydrogen-permselective membrane and hydrogen-permselective member
JP4959804B2 (en) Gas separation membrane system and method for making it using nanoscale metallic materials
JP5997818B2 (en) Sinter bonded porous metal coating
US6899744B2 (en) Hydrogen transport membranes
US20050241477A1 (en) Hydrogen transport membranes
US7125440B2 (en) Composite structure for high efficiency hydrogen separation and its associated methods of manufacture and use
KR100806489B1 (en) Hydrogen permeable member and method for production thereof
JP2004275858A (en) Gas separation membrane supporting substrate, its production method, and gas separation filter
US20120060692A1 (en) Membrane tube and reactor having a membrane tube
JP2018538140A (en) Membrane device having a bonding layer
US7749305B1 (en) Composite structure for high efficiency hydrogen separation containing preformed nano-particles in a bonded layer
JP2006257451A (en) Structure of oxidation-resistant coating formed on heat-resistant alloy and coating method
Xiong et al. Fabrication and characterization of Pd/Nb40Ti30Ni30/Pd/porous nickel support composite membrane for hydrogen separation and purification
JP2002355537A (en) Hydrogen permeable film and producing method thereof
CN109414653B (en) Membrane device
WO2005075060A1 (en) Composite structure for high efficiency hydrogen separation and its associated methods of manufacture and use
WO2020171165A1 (en) Core-shell composite and method for producing same
JP3174668B2 (en) Hydrogen separation membrane
JPH11276867A (en) Joining of hydrogen-permeable membrane
JP2002219342A (en) Supporting base for gas-permselective membrane, supporting base for hydrogen-permselective membrane, and hydrogen-permselective member using the same
JP4064662B2 (en) Hydrogen permeator and method for producing the same
JP2005218963A (en) Member for hydrogen permeation and its producing method
WO2011003154A1 (en) A brazing process
JP2008272605A (en) Hydrogen permeable membrane and its manufacturing method
JP2011161402A (en) Hydrogen separation membrane module and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040401

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A977 Report on retrieval

Effective date: 20050707

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051122