JP2002217663A - High frequency triple mode piezoelectric filter and frequency adjustment method - Google Patents

High frequency triple mode piezoelectric filter and frequency adjustment method

Info

Publication number
JP2002217663A
JP2002217663A JP2001013392A JP2001013392A JP2002217663A JP 2002217663 A JP2002217663 A JP 2002217663A JP 2001013392 A JP2001013392 A JP 2001013392A JP 2001013392 A JP2001013392 A JP 2001013392A JP 2002217663 A JP2002217663 A JP 2002217663A
Authority
JP
Japan
Prior art keywords
frequency
electrode
electrodes
triple mode
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001013392A
Other languages
Japanese (ja)
Other versions
JP4701504B2 (en
JP2002217663A5 (en
Inventor
Jun Watanabe
潤 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2001013392A priority Critical patent/JP4701504B2/en
Publication of JP2002217663A publication Critical patent/JP2002217663A/en
Publication of JP2002217663A5 publication Critical patent/JP2002217663A5/ja
Application granted granted Critical
Publication of JP4701504B2 publication Critical patent/JP4701504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a means for improving a frequency adjustment method for a high frequency triple mode piezoelectric filter. SOLUTION: In the frequency adjustment method for the high frequency triple mode piezoelectric filter, a piezoelectric board having a recessed part on one main face is user. An electrode on one edge of three electrodes on the surface and the whole electrode on the rear face function as a driving electrode, and the other electrodes are short-circuited with the whole electrode. According to the resonance characteristics offered from a one terminal pair resonator, a small mass is applied to the central electrode and a large mass is applied to the edge electrode concurrently to carry our frequency adjustment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高周波三重モード圧
電フィルタとその周波数調整法関し、特に高周波三重モ
ードフィルタの周波数調整方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency triple mode piezoelectric filter and a method of adjusting the frequency thereof, and more particularly to an improvement of a frequency adjustment method of the high frequency triple mode filter.

【0002】[0002]

【従来の技術】高周波圧電デバイス、特に水晶基板を用
いた多重モード圧電フィルタ(以下、多重モードフィル
タと称す)は、小型、軽量、堅牢であると共に優れた周
波数温度特性を有することから、近年では携帯電話の端
末に広く使用されている。図4(a)は従来の三重モー
ドフィルタの構成を示す平面図であって、水晶基板31
の主面上に対向する3対の電極32−33、34−3
5、36−37を近接配置すると共に、それぞれの電極
対から水晶基板31の端部に向けてリード電極を延在
し、端子T1−T1’、T2−T2’、T3−T3’と
接続して三重モードフィルタを構成する。図4(b)は
フィルタとして機能させるために、各電極の接続を示す
図であって端子T2−T2’を短絡すると共に、T
1’、T2’、T3’接続して共通端子Tcとし、入出
力端子T1−Tc、T3−Tcに適当な終端を施すこと
により、バンドパスフィルタとして作用する。また、電
極33、35、37を接続して1つの共通電極として
も、三重モードフィルタとして機能することは周知のこ
とである。
2. Description of the Related Art In recent years, high-frequency piezoelectric devices, especially multi-mode piezoelectric filters using a quartz substrate (hereinafter, referred to as multi-mode filters) are small, lightweight, robust and have excellent frequency-temperature characteristics. Widely used for mobile phone terminals. FIG. 4A is a plan view showing a configuration of a conventional triple mode filter, and the quartz substrate 31 is shown in FIG.
Pairs of electrodes 32-33, 34-3 opposed on the main surface of
5, 36-37 are arranged close to each other, and a lead electrode is extended from each electrode pair toward the end of the quartz substrate 31 and connected to the terminals T1-T1 ', T2-T2', T3-T3 '. To form a triple mode filter. FIG. 4B is a diagram showing the connection of each electrode in order to function as a filter.
1 ', T2', and T3 'are connected to form a common terminal Tc, and the input / output terminals T1-Tc and T3-Tc are terminated appropriately so as to function as a band-pass filter. It is well known that the electrodes 33, 35, and 37 are connected to function as a triple mode filter even as one common electrode.

【0003】三重モードフィルタの周波数調整法につい
ては、例えば特開平7−189884号公報に公開され
ている。図4(b)において端子T3とTcとを短絡し
て、T1−Tcの1端子対共振子とした場合の共振周波
数を低い周波数からf1、f2、f3とする。ここで、
水晶基板31の平面度及び平行度が理想的であり、電極
対32−33、34−35、36−37の質量負荷が同
一であるならば、図5の上段に示すような共振特性を呈
する。そこで、図5の右端に示すように相並んだ3電極
の両端の電極にのみに質量を付加すると、その共振特性
は下段に示すような共振特性となる。即ち、f2の周波
数変動がf1、f3に比べて大きく移動する。周波数f
1と周波数f3の周波数移動量は大略同じで周波数差
(f3’−f1’)は(f3−f1)とほぼ同じである
が、周波数f2の変化量は大きくなり、周波数差(f
2’−f1’)は(f2−f1)と比べて大幅に小さく
なる。これは、反対称零次モードA0(共振周波数f
2)の振動変位は電極34の中央で0となり、電極3
2、36のほぼ中央で最大の変位を呈する。周知のよう
に、振動体の振動部分に質量を付加する際、振動変位が
最大である位置に付加すると周波数変化量が最大になる
からである。また、逆に両端の電極の質量を電子ビーム
等で一様に削取ると(f3’−f1’)はほぼ一定の状
態で、周波数差(f2’−f1’)は(f2−f1)と
比べて増大することになる。
A method of adjusting the frequency of a triple mode filter is disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 7-189883. In FIG. 4B, when the terminals T3 and Tc are short-circuited to form a one-terminal pair resonator of T1-Tc, the resonance frequencies are set to f1, f2, and f3 from a low frequency. here,
If the flatness and parallelism of the quartz substrate 31 are ideal and the mass loads of the electrode pairs 32-33, 34-35, 36-37 are the same, the resonance characteristics as shown in the upper part of FIG. 5 are exhibited. . Therefore, if mass is added only to the electrodes at both ends of the three electrodes arranged side by side as shown in the right end of FIG. That is, the frequency fluctuation of f2 moves larger than f1 and f3. Frequency f
1 and the frequency shift amount of the frequency f3 are substantially the same and the frequency difference (f3′−f1 ′) is substantially the same as (f3−f1), but the change amount of the frequency f2 is large, and the frequency difference (f
2′−f1 ′) is significantly smaller than (f2−f1). This is because the antisymmetric zero-order mode A 0 (resonance frequency f
The vibration displacement of 2) becomes 0 at the center of the electrode 34, and the vibration displacement of the electrode 3
The maximum displacement is exhibited in the approximate center of 2,36. This is because, as is well known, when the mass is added to the vibrating portion of the vibrating body, if the mass is added to the position where the vibration displacement is maximum, the amount of frequency change becomes maximum. Conversely, when the masses of the electrodes at both ends are uniformly removed by an electron beam or the like, (f3′−f1 ′) is almost constant, and the frequency difference (f2′−f1 ′) is (f2−f1). It will increase in comparison.

【0004】次に、図6の右端に示すように相並んだ3
電極のうち、中央の電極34にのみ質量を付加すると、
周波数変化量の大きいモードは対称零次モードS0(周
波数f1)であり、次が対称1次モードS1(周波数f
3)、周波数の変動の少ないモードは反対称零次モード
0(f2)である。従って三重モードフィルタの中央
の電極34に質量を付加し周波数を低下させると、反対
称零次モードA0の周波数変動量が小さいため、周波数
差(f3’−f1 ’)をほぼ一定に保持したまま周波
数差(f3’−f2’)を減少させることが出来る。逆
に電極34の質量を削り取りと周波数差(f3’−f
2’)を増大させることができる。
Next, as shown at the right end of FIG.
When mass is added only to the center electrode 34 among the electrodes,
The mode having a large frequency change is the symmetric zero-order mode S 0 (frequency f1), and the next is the symmetric first-order mode S 1 (frequency f1).
3) The mode with less frequency variation is the antisymmetric zero-order mode A 0 (f2). Therefore, when the mass is added to the central electrode 34 of the triple mode filter to reduce the frequency, the frequency difference (f3′−f1 ′) is kept almost constant because the frequency variation of the antisymmetric zero-order mode A 0 is small. The frequency difference (f3'-f2 ') can be reduced as it is. Conversely, the mass of the electrode 34 is removed and the frequency difference (f3'-f
2 ′) can be increased.

【0005】また、三重モードフィルタのいずれの電極
に質量を付加した場合でも程度の差はあれ全体の周波数
に影響するため、各々の周波数配列を崩さず全体の周波
数を低下する方法が必要であるが、電極33、35、3
7の全体に蒸着などの方法を用いて質量を付加すれば、
3つの周波数を並行移動させることができる。
Further, even if a mass is added to any of the electrodes of the triple mode filter, the overall frequency is affected to some extent, so that a method of reducing the overall frequency without breaking the respective frequency arrangements is required. Are the electrodes 33, 35, 3
If the mass is added to the whole of 7 using a method such as vapor deposition,
The three frequencies can be translated.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
たような三重モードフィルタの周波数調整法は、従来の
平板状の水晶基板を用いた三重モードフィルタには適用
可能であったが、図7に断面図を示すような、水晶基板
40にエッチング等の手段を用いて凹陥部41を形成し
た高周波圧電基板に、3つの電極42、43、44を近
接配置し、凹陥側に全面電極45を配設した高周波三重
モードフィルタには、次に述べる理由で適用できないと
いう問題があった。即ち、凹陥部41の薄肉部(振動
部)の板厚は高周波を得るため十数ミクロンと極めて薄
く加工する必要があり、図8、9の上段に示すように、
平行度あるいは平面度が良好ではない場合が多い。例え
ば、図8に示すように、図中の左端から右端にかけて基
板の厚みが次第に薄くなるような基板に、電極42、4
3、44と全面電極45を付着し、電極43、44、4
5を短絡して、T1−Tcからみた1端子対共振子の共
振特性を測定すると、例えば図8の下段に示すような特
性となる。つまり、各電極対42−45、43−45、
44−45の共振周波数が大幅に異なるために、各電極
間に生じる結合が極めて弱くなり、図8に示すような振
動部の形状の場合には、駆動する電極42−45により
対称零次モードS0(共振周波数f1)が強く励振され
るが、反対称零次モードA0(共振周波数f2)、対称
1次モードS1(共振周波数f3)の共振レベルは極め
て小さくなり、場合によっては他のモードによる共振に
隠れて検出できないこともある。
However, the above-described method of adjusting the frequency of a triple mode filter is applicable to a conventional triple mode filter using a flat quartz substrate, but FIG. As shown in the drawing, three electrodes 42, 43, and 44 are arranged close to each other on a high-frequency piezoelectric substrate in which a concave portion 41 is formed by means of etching or the like on a quartz substrate 40, and an entire surface electrode 45 is disposed on the concave side. The high frequency triple mode filter described above has a problem that it cannot be applied for the following reason. That is, the thickness of the thin portion (vibrating portion) of the concave portion 41 needs to be processed to be as thin as ten and several microns in order to obtain a high frequency.
In many cases, the parallelism or flatness is not good. For example, as shown in FIG. 8, electrodes 42, 4 are provided on a substrate whose thickness gradually decreases from the left end to the right end in the figure.
3 and 44 and the whole surface electrode 45 are attached, and the electrodes 43, 44 and 4
5 is short-circuited, and the resonance characteristics of the one-port resonator viewed from T1-Tc are measured, for example, as shown in the lower part of FIG. That is, each electrode pair 42-45, 43-45,
Since the resonance frequencies of the electrodes 44-45 are significantly different, the coupling between the electrodes becomes extremely weak. In the case of the shape of the vibrating part as shown in FIG. Although S 0 is (resonance frequency f1) is strongly excited, antisymmetric zero-order mode a 0 (resonance frequency f2), resonance level of symmetry primary mode S 1 (resonance frequency f3) is extremely small, the other as the case In some cases, detection may not be possible because of the resonance caused by this mode.

【0007】逆に、図9の上段に示すように基板の厚み
が図中左端から右端にかけて次第に厚くなる場合、端子
T1−Tc側から駆動した共振特性は、同図の下段に示
すように各電極間の結合が弱いために対称1次モード
(S1)は強く励振されるが、他の対称零次モードS
0(共振周波数f1)、反対称零次モードA0(共振周波
数f2)の共振レベルは極めて小さくなる。そこで、図
10の上段左のような共振特性の場合に、対称1次モー
ドS1(f3)の共振レベルを大きくすべく電極44に
質量を付加すると、反対称零次モードA0(f2)が大
きく周波数移動することになり、図10の下段に示すよ
うに対称零次モードS0(f1)の共振と反対称零次モ
ードA0(f2)の共振周波数が接近するようになる。
また、図11の上段右に示すように、電極43、44に
質量を付加すると、下段に示すように反対称零次モード
0(f2)が対称1次モードS1(f3)と近接するよ
うになり、高周波三重モードフィルタの周波数調整に従
来の三重モードフィルタの周波数調整法が適用できない
という問題があった。本発明は上記問題を解決するため
になされたものであって、高周波圧電基板の平面度、平
行度が悪い場合でも高周波三重モードフィルタの周波数
調整を可能とし、所定のフィルタ特性に調整できる手法
を提供することを目的とする。
Conversely, when the thickness of the substrate gradually increases from the left end to the right end in the figure as shown in the upper part of FIG. 9, the resonance characteristics driven from the terminals T1-Tc side are as shown in the lower part of FIG. The symmetric first-order mode (S 1 ) is strongly excited due to weak coupling between the electrodes, but other symmetric zero-order modes S
0 (resonance frequency f1) and the resonance level of the antisymmetric zero-order mode A 0 (resonance frequency f2) are extremely small. Therefore, in the case of the resonance characteristic as shown in the upper left of FIG. 10, if mass is added to the electrode 44 to increase the resonance level of the symmetric first-order mode S 1 (f3), the antisymmetric zero-order mode A 0 (f2) Greatly shifts in frequency, and the resonance frequency of the symmetric zero-order mode S 0 (f1) and the resonance frequency of the antisymmetric zero-order mode A 0 (f2) become closer as shown in the lower part of FIG.
When mass is added to the electrodes 43 and 44 as shown in the upper right of FIG. 11, the antisymmetric zero-order mode A 0 (f2) approaches the symmetric first-order mode S 1 (f3) as shown in the lower part. As a result, there is a problem that the frequency adjustment method of the conventional triple mode filter cannot be applied to the frequency adjustment of the high frequency triple mode filter. The present invention has been made in order to solve the above-described problem, and has a technique capable of adjusting the frequency of a high-frequency triple mode filter even when the flatness and parallelism of a high-frequency piezoelectric substrate are poor, and adjusting the filter characteristics to predetermined filter characteristics. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る三重モード圧電フィルタとその周波数調
整法の請求項1記載の発明は、一方の主面上に凹陥部を
形成した圧電基板の平坦面側に3つの電極を近接配置す
ると共に、凹陥面側に全面電極を施した高周波三重モー
ド圧電フィルタの周波数調整法において、前記3つの電
極の一方の端の電極と前記全面電極とを駆動電極とし、
他の電極を全面電極と短絡した1端子対共振子が呈する
共振特性に応じて、前記中央の電極には少なく、端の電
極には多くの質量を同時に付加して周波数調整すること
を特徴とする三重モード圧電フィルタの周波数調整法で
ある。請求項2記載の発明は、請求項1に記載の周波数
調整法を用いて構成したことを特徴とする三重モード圧
電フィルタである。
To achieve the above object, a triple mode piezoelectric filter according to the present invention and a method for adjusting the frequency thereof are provided by a piezoelectric filter having a concave portion formed on one main surface. In a frequency adjustment method of a high-frequency triple mode piezoelectric filter in which three electrodes are arranged close to a flat surface side of a substrate and a whole surface electrode is provided on a concave surface side, an electrode at one end of the three electrodes and the whole surface electrode Is the drive electrode,
According to the resonance characteristics exhibited by the one-terminal pair resonator in which the other electrodes are short-circuited to the entire surface electrodes, the frequency is adjusted by simultaneously adding a large amount of mass to the center electrode and adding a large amount of mass to the end electrodes. This is a method of adjusting the frequency of the triple mode piezoelectric filter. According to a second aspect of the present invention, there is provided a triple mode piezoelectric filter configured using the frequency adjustment method according to the first aspect.

【0009】[0009]

【発明の実施の形態】以下本発明を図面に示した実施の
形態に基づいて詳細に説明する。図1(a)は本発明に
係る三重モードフィルタの構成を示す平面図であって、
水晶基板1の一方の主面の一部をエッチング等の手段に
より、振動部となる凹陥部2を形成すると共に、該凹陥
面に全面電極3を施し、端子Tcと接続する。一方、平
坦側に3つの電極4、5、6を近接して配置すると共
に、該電極4、5、6から水晶基板1の端部に向けてリ
ード電極を延在し、それぞれ端子T1,T2、T3と接
続して高周波三重モードフィルタを構成する。図1
(b)は三重モードフィルタとして機能させるように各
電極を接続した場合であり、端子T1−Tc、T3−T
cにそれぞれ適当な終端を施すことによりバンドパスフ
ィルタとして作用する。図1(c)は本発明になる三角
形状、矩形状に孔を開けた周波数調整用のマスク7a、
7bを三重モードフィルタ素子に被せて周波数を行う場
合の状態を示す図で、端の電極6上にはマスク7bをと
おしてほぼ全面に質量が付加されるが、中央の電極5上
はマスク7aをとおして電極5の一部にのみ質量が付加
されるようになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on an embodiment shown in the drawings. FIG. 1A is a plan view showing a configuration of a triple mode filter according to the present invention,
A part of one main surface of the quartz substrate 1 is formed with a concave portion 2 serving as a vibrating portion by means of etching or the like, and the entire surface electrode 3 is formed on the concave surface to be connected to the terminal Tc. On the other hand, three electrodes 4, 5, and 6 are arranged close to each other on the flat side, and lead electrodes extend from the electrodes 4, 5, and 6 toward the end of the quartz substrate 1, and terminals T1 and T2 are respectively provided. , T3 to form a high frequency triple mode filter. Figure 1
(B) shows a case where the respective electrodes are connected so as to function as a triple mode filter, and terminals T1-Tc, T3-T
By providing an appropriate termination to each of c, it functions as a bandpass filter. FIG. 1 (c) shows a frequency adjusting mask 7a having a triangular or rectangular hole according to the present invention.
FIG. 7B is a view showing a state in which the frequency is performed by covering the triple-mode filter element 7b with a mass. The mass is added to almost the entire surface of the end electrode 6 through the mask 7b, but the mask 7a is formed on the central electrode 5. Accordingly, the mass is added to only a part of the electrode 5.

【0010】本発明の特徴は、従来のように電極6(電
極4)、あるいは電極5、6(電極4、5)のようにそ
れぞれの電極にほぼ等面積に質量付加するのではなく、
電極6(電極4)のほぼ全面、電極5の一部、例えば電
極の1/4に質量付加することにより、対称零次モード
(f1)、反対称零次モード(f2)、対称1次モード
(f3)の共振周波数は互いに接近することなく、しか
もその共振レベルが増大するようになる。従って、各モ
ードの周波数とレベルを確認しながら周波数を調整する
ことができるようになったことである。
A feature of the present invention is that, instead of adding a mass to each electrode in substantially the same area as the electrode 6 (electrode 4) or the electrodes 5, 6 (electrodes 4, 5) as in the prior art,
By adding mass to almost the entire surface of the electrode 6 (electrode 4), a part of the electrode 5, for example, 1 / of the electrode, a symmetric zero-order mode (f1), an antisymmetric zero-order mode (f2), and a symmetric first-order mode The resonance frequencies of (f3) do not approach each other, and the resonance level increases. Therefore, it is possible to adjust the frequency while checking the frequency and level of each mode.

【0011】図2は本発明になる三角形状の周波数調整
用マスクを用いて、三重モードフィルタの周波数調整を
行った際の周波数特性を示す図である。始めに、端子T
1−Tcから三重モードフィルタ素子の周波数特性を測
定したとき図2の上段に示すような場合とする。電極
5、6上に図1(c)に示すようなマスクで覆い、質量
付加を始めると図2下段に示すように各モードのレベル
が大きくなり、共振周波数の測定が容易になる。このよ
うに各モードのレベルが大きくなると、各モードの共振
周波数を精度良く測定できるようになり、その後は従来
の調整法にて所望の周波数に調整すればよい。図3は1
30MHz帯の高周波三重モードフィルタを本発明にな
る周波数調整用マスクを用いて周波数調整し、1端子対
共振子として測定した例である。
FIG. 2 is a diagram showing the frequency characteristics when the frequency of the triple mode filter is adjusted using the triangular frequency adjustment mask according to the present invention. First, the terminal T
When the frequency characteristics of the triple mode filter element are measured from 1-Tc, the case shown in the upper part of FIG. 2 is assumed. When the electrodes 5 and 6 are covered with a mask as shown in FIG. 1 (c) and mass addition is started, the level of each mode increases as shown in the lower part of FIG. 2, and the measurement of the resonance frequency becomes easy. As described above, when the level of each mode is increased, the resonance frequency of each mode can be measured with high accuracy, and thereafter, the frequency may be adjusted to a desired frequency by a conventional adjustment method. FIG.
This is an example in which a high frequency triple mode filter in a 30 MHz band is frequency-adjusted using the frequency adjustment mask according to the present invention, and is measured as a one-port resonator.

【0012】以上では圧電基板に水晶を用いた三重モー
ドフィルタの例を説明したが、本発明はこれのみに限る
ことなく他の圧電基板、四硼酸リチウム、タンタル酸リ
チウム、ランガサイト等の圧電基板を用いた三重モード
フィルタに適用してもよい。また、周波数調整用マスク
の形状としては必ずしも三角形状である必要はなく、中
央の電極と端の電極とに付着する質量付加を異なるよう
にした形状であればよい。また、上記説明は質量を付加
して三重モードフィルタの周波数調整法を説明したが、
電極膜を薄く削り取るように調整してもよい。この場合
も中央の電極と、一方の端の電極とを同時に削り取る量
を異なるようにすればよい。
Although an example of a triple mode filter using quartz for the piezoelectric substrate has been described above, the present invention is not limited to this, and the present invention is not limited to this. Other piezoelectric substrates, such as lithium tetraborate, lithium tantalate, and langasite May be applied to a triple mode filter using. Further, the shape of the frequency adjustment mask does not necessarily have to be a triangular shape, but may be any shape as long as the mass added to the center electrode and the end electrode is different. In the above description, the method of adjusting the frequency of the triple mode filter by adding mass has been described.
Adjustment may be made so that the electrode film is thinly removed. Also in this case, the amount of shaving the central electrode and the electrode at one end may be different at the same time.

【0013】[0013]

【発明の効果】本発明は、以上説明したように構成した
ので、請求項1に記載の発明は高周波三重モードフィル
タの周波数調整法が、従来の試行錯誤による調整法に比
べて遙かに優れた効果を表す。請求項2に記載の発明
は、各電極に余分な質量付加を行うことがないので、ス
プリアス等の少ないフィルタが得られるという効果があ
る。
As described above, the present invention is constructed as described above, and the invention according to claim 1 has a method of adjusting the frequency of the high frequency triple mode filter which is far superior to the conventional adjustment method by trial and error. Effect. According to the second aspect of the present invention, since no extra mass is added to each electrode, there is an effect that a filter with little spurious or the like can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明に係る三重モードフィルタの構
成を示す平面図、(b)は各電極の接続法を示す図、
(c)は三重モードフィルタ素子に周波数調整用マスク
を被せた場合の平面図である。
1A is a plan view showing a configuration of a triple mode filter according to the present invention, FIG. 1B is a diagram showing a connection method of each electrode,
(C) is a plan view in the case where the triple mode filter element is covered with a frequency adjustment mask.

【図2】周波数調整前後の周波数特性を示す図である。FIG. 2 is a diagram illustrating frequency characteristics before and after frequency adjustment.

【図3】各電極の周波数調整が完了した後の周波数特性
を示す図である。
FIG. 3 is a diagram showing frequency characteristics after the frequency adjustment of each electrode is completed.

【図4】(a)は従来の三重モードフィルタの構成を示
す平面図、(b)はフィルタとして機能させる場合の各
電極の接続状態を示す図である。
FIG. 4A is a plan view showing a configuration of a conventional triple mode filter, and FIG. 4B is a diagram showing a connection state of each electrode when functioning as a filter.

【図5】従来の三重モードフィルタの周波数調整法を示
す図である。
FIG. 5 is a diagram illustrating a conventional method of adjusting the frequency of a triple mode filter.

【図6】従来の三重モードフィルタの周波数調整法を示
す図である。
FIG. 6 is a diagram illustrating a conventional method of adjusting the frequency of a triple mode filter.

【図7】従来の高周波三重モードフィルタの構成を示す
断面図である。
FIG. 7 is a cross-sectional view showing a configuration of a conventional high-frequency triple mode filter.

【図8】圧電基板の振動部が一様でない場合(図中左か
ら右にかけて厚みが薄くなる)の周波数特性である。
FIG. 8 shows frequency characteristics when the vibrating portion of the piezoelectric substrate is not uniform (the thickness decreases from left to right in the figure).

【図9】圧電基板の振動部が一様でない場合(図中左か
ら右にかけて厚みが厚くなる)の周波数特性である。
FIG. 9 shows frequency characteristics when the vibrating portion of the piezoelectric substrate is not uniform (the thickness increases from left to right in the figure).

【図10】第3電極への質量付加と周波数特性との関係
を示す図である。
FIG. 10 is a diagram showing a relationship between mass addition to a third electrode and frequency characteristics.

【図11】第2、第3電極への質量付加と周波数特性と
の関係を示す図である。
FIG. 11 is a diagram showing the relationship between the addition of mass to the second and third electrodes and frequency characteristics.

【符号の説明】[Explanation of symbols]

1・・圧電基板 2・・凹陥部 3・・全面電極 4、5、6・・電極 T1、T2、T3、Tc・・端子 7・・周波数調整用マスク 8、9・・付加された質量 1 ··· Piezoelectric substrate 2 ··· Recess 3 ··· Full-surface electrode 4, 5,6 ··· Electrode T1, T2, T3, Tc ··· Terminal 7 ··· Frequency adjustment mask 8,9 ··· Additional mass

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一方の主面上に凹陥部を形成した圧電基
板の平坦面側に3つの電極を近接配置すると共に、凹陥
面側に全面電極を施した高周波三重モード圧電フィルタ
の周波数調整法において、前記3つの電極の一方の端の
電極と前記全面電極とを駆動電極とし、他の電極を全面
電極と短絡した1端子対共振子が呈する共振特性に応じ
て前記中央の電極には少なく、端の電極には多くの質量
を同時に付加して周波数調整することを特徴とする三重
モード圧電フィルタの周波数調整法。
1. A frequency adjusting method for a high frequency triple mode piezoelectric filter in which three electrodes are arranged close to a flat surface side of a piezoelectric substrate having a concave portion formed on one main surface, and all electrodes are provided on the concave surface side. , The electrode at one end of the three electrodes and the entire surface electrode are used as drive electrodes, and the other electrode is less likely to be provided at the center electrode in accordance with resonance characteristics exhibited by a one-port resonator that is short-circuited with the entire surface electrode. A frequency adjustment method for a triple mode piezoelectric filter, wherein a large amount of mass is simultaneously added to an end electrode to adjust a frequency.
【請求項2】 請求項1に記載の周波数調整法を用いて
構成したことを特徴とする三重モード圧電フィルタ。
2. A triple mode piezoelectric filter which is constructed by using the frequency adjustment method according to claim 1.
JP2001013392A 2001-01-22 2001-01-22 Manufacturing method of triple mode piezoelectric filter Expired - Fee Related JP4701504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001013392A JP4701504B2 (en) 2001-01-22 2001-01-22 Manufacturing method of triple mode piezoelectric filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001013392A JP4701504B2 (en) 2001-01-22 2001-01-22 Manufacturing method of triple mode piezoelectric filter

Publications (3)

Publication Number Publication Date
JP2002217663A true JP2002217663A (en) 2002-08-02
JP2002217663A5 JP2002217663A5 (en) 2008-03-27
JP4701504B2 JP4701504B2 (en) 2011-06-15

Family

ID=18880249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001013392A Expired - Fee Related JP4701504B2 (en) 2001-01-22 2001-01-22 Manufacturing method of triple mode piezoelectric filter

Country Status (1)

Country Link
JP (1) JP4701504B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7019604B2 (en) 2002-07-23 2006-03-28 Murata Manufacturing Co., Ltd. Piezoelectric filter, duplexer, composite piezoelectric resonator, communication device and method for adjusting frequency of piezoelectric filter
WO2006062082A1 (en) * 2004-12-07 2006-06-15 Matsushita Electric Industrial Co., Ltd. Thin film elastic wave resonator
US9325046B2 (en) 2012-10-25 2016-04-26 Mesaplexx Pty Ltd Multi-mode filter
US9401537B2 (en) 2011-08-23 2016-07-26 Mesaplexx Pty Ltd. Multi-mode filter
US9406988B2 (en) 2011-08-23 2016-08-02 Mesaplexx Pty Ltd Multi-mode filter
US9843083B2 (en) 2012-10-09 2017-12-12 Mesaplexx Pty Ltd Multi-mode filter having a dielectric resonator mounted on a carrier and surrounded by a trench

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113451A (en) * 1977-03-15 1978-10-03 Fujitsu Ltd Zone adjustment method for piezoelectric filter
JPH0918266A (en) * 1995-07-03 1997-01-17 Toyo Commun Equip Co Ltd Frequency adjustment method for triple mode piezoelectric filter
JP2000341067A (en) * 1999-05-28 2000-12-08 Daishinku Corp Method and device for adjusting frequency of piezoelectric device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113451A (en) * 1977-03-15 1978-10-03 Fujitsu Ltd Zone adjustment method for piezoelectric filter
JPH0918266A (en) * 1995-07-03 1997-01-17 Toyo Commun Equip Co Ltd Frequency adjustment method for triple mode piezoelectric filter
JP2000341067A (en) * 1999-05-28 2000-12-08 Daishinku Corp Method and device for adjusting frequency of piezoelectric device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7019604B2 (en) 2002-07-23 2006-03-28 Murata Manufacturing Co., Ltd. Piezoelectric filter, duplexer, composite piezoelectric resonator, communication device and method for adjusting frequency of piezoelectric filter
WO2006062082A1 (en) * 2004-12-07 2006-06-15 Matsushita Electric Industrial Co., Ltd. Thin film elastic wave resonator
US7446455B2 (en) 2004-12-07 2008-11-04 Matsushita Electric Industrial Co., Ltd. Thin film elastic wave resonator
US9401537B2 (en) 2011-08-23 2016-07-26 Mesaplexx Pty Ltd. Multi-mode filter
US9406988B2 (en) 2011-08-23 2016-08-02 Mesaplexx Pty Ltd Multi-mode filter
US9406993B2 (en) 2011-08-23 2016-08-02 Mesaplexx Pty Ltd Filter
US9437916B2 (en) 2011-08-23 2016-09-06 Mesaplexx Pty Ltd Filter
US9437910B2 (en) 2011-08-23 2016-09-06 Mesaplexx Pty Ltd Multi-mode filter
US9559398B2 (en) 2011-08-23 2017-01-31 Mesaplex Pty Ltd. Multi-mode filter
US9698455B2 (en) 2011-08-23 2017-07-04 Mesaplex Pty Ltd. Multi-mode filter having at least one feed line and a phase array of coupling elements
US9843083B2 (en) 2012-10-09 2017-12-12 Mesaplexx Pty Ltd Multi-mode filter having a dielectric resonator mounted on a carrier and surrounded by a trench
US9325046B2 (en) 2012-10-25 2016-04-26 Mesaplexx Pty Ltd Multi-mode filter

Also Published As

Publication number Publication date
JP4701504B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP2001244778A (en) High-frequency piezoelectric vibrator
US20130043960A1 (en) Resonating element, resonator, electronic device, electronic apparatus, moving vehicle, and method of manufacturing resonating element
JP4665282B2 (en) AT cut crystal unit
WO2022000809A1 (en) Resonator and method for making same
JP3767425B2 (en) Piezoelectric vibrating piece and piezoelectric device
US6492759B1 (en) Piezoelectric resonator and a filter
JP2002217663A (en) High frequency triple mode piezoelectric filter and frequency adjustment method
JP2003087086A (en) Piezoelectric resonator and manufacturing method therefor, piezoelectric filter and manufacturing method therefor, duplexer and electronic communications equipment
CN114124021A (en) Elastic wave resonator and multi-passband filter
JP2000031781A (en) Piezoelectric vibrator
KR910001647B1 (en) A trapped energy resonator
JP4196641B2 (en) Ultra-thin piezoelectric device and manufacturing method thereof
JP2003037476A (en) High-frequency piezoelectric filter
US6621194B1 (en) Piezoelectric element having thickness shear vibration and mobile communication device using the same
WO2002101923A1 (en) Piezoelectric vibrator and filter using the same
US4542355A (en) Normal coordinate monolithic crystal filter
JP2000312130A (en) Piezoelectric device, manufacture thereof and mobile communication unit employing them
JP2009188484A (en) Piezoelectric filter
JP2002190717A (en) High frequency piezoelectric device
JP4513150B2 (en) High frequency piezoelectric vibrator
JP3965681B2 (en) Piezoelectric vibration filter and frequency adjusting method thereof
JP2001326554A (en) Piezoelectric vibrator
JP2003234635A (en) Crystal filter
JP4784699B2 (en) AT cut crystal unit
JP2000151354A (en) Piezoelectric filter

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees