JP4784699B2 - AT cut crystal unit - Google Patents

AT cut crystal unit Download PDF

Info

Publication number
JP4784699B2
JP4784699B2 JP2010231606A JP2010231606A JP4784699B2 JP 4784699 B2 JP4784699 B2 JP 4784699B2 JP 2010231606 A JP2010231606 A JP 2010231606A JP 2010231606 A JP2010231606 A JP 2010231606A JP 4784699 B2 JP4784699 B2 JP 4784699B2
Authority
JP
Japan
Prior art keywords
axis
thickness
parallel
thick part
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010231606A
Other languages
Japanese (ja)
Other versions
JP2011066905A (en
Inventor
松太郎 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2010231606A priority Critical patent/JP4784699B2/en
Publication of JP2011066905A publication Critical patent/JP2011066905A/en
Application granted granted Critical
Publication of JP4784699B2 publication Critical patent/JP4784699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は圧電振動子に関し、特に厚み滑り振動に結合する厚み屈曲振動モードを抑圧した圧電振動子に関する。   The present invention relates to a piezoelectric vibrator, and more particularly to a piezoelectric vibrator that suppresses a thickness bending vibration mode coupled to thickness shear vibration.

圧電振動子、例えばATカット水晶振動子は小型であること、高精度、高安定な周波数が容易に得られるため、通信機から電子機器まで広く使用されている。
図4は従来の表面実装形水晶振動子(SMD水晶振動子)の構成を示す斜視図であって、水晶結晶から短冊状に切り出されたATカット水晶基板11の両主面に対向する電極12a、12bを付着すると共に、該電極12a、12bからそれぞれ基板11の端部に向けてリード電極13a、13bを延在して、水晶振動素子Sを形成する。次に、水晶振動素子Sをセラミックパッケージ(図示しない)に収容し、そのリード電極13a、13bをパッケージ内部の段差部に設けた端子電極に、導電性接着剤等を用いて導通固定する。さらに、該水晶振動子を真空装置に入れて、蒸着等の手段を用いて所望の周波数に微調整した後、金属蓋を抵抗溶接して水晶振動子を構成する。
Piezoelectric vibrators, for example, AT-cut quartz crystal vibrators, are widely used from communication devices to electronic devices because they are small in size and can easily obtain highly accurate and highly stable frequencies.
FIG. 4 is a perspective view showing a configuration of a conventional surface-mount type crystal resonator (SMD crystal resonator), and electrodes 12a facing both main surfaces of an AT-cut crystal substrate 11 cut out from a crystal crystal in a strip shape. , 12b are attached, and the lead electrodes 13a, 13b are extended from the electrodes 12a, 12b toward the end of the substrate 11 to form the crystal resonator element S. Next, the crystal resonator element S is accommodated in a ceramic package (not shown), and the lead electrodes 13a and 13b are conductively fixed to the terminal electrodes provided in the step portions inside the package using a conductive adhesive or the like. Further, the quartz crystal unit is put in a vacuum apparatus, finely adjusted to a desired frequency using means such as vapor deposition, and then the metal lid is resistance-welded to constitute the quartz crystal unit.

図4に示すように、短冊状水晶振動子は長手方向をX軸に、幅方向をZ’軸に、厚さ方向をY’軸に設定するのが一般的である。周知のように、圧電基板の各部の寸法が適切でないと、X−Y’面に生ずる屈曲振動が厚み滑り振動と結合して、該振動の周波数及びクリスタルインピーダンス(CI)に変動を生じることになる。
近年、水晶振動子の更なる小型化を図るため、辺比(厚さに対する輪郭寸法の比)のより小さな短冊状の基板が採用されるようになった。そのため、主振動である厚み振動と、輪郭系振動、例えば面滑り振動や屈曲振動等との結合がわずかな加工誤差によっても生じるという問題をかかえている。
As shown in FIG. 4, it is general that the strip-shaped crystal resonator is set with the longitudinal direction as the X axis, the width direction as the Z ′ axis, and the thickness direction as the Y ′ axis. As is well known, if the dimensions of each part of the piezoelectric substrate are not appropriate, the bending vibration generated in the XY ′ plane is combined with the thickness-shear vibration, resulting in fluctuations in the frequency and crystal impedance (CI) of the vibration. Become.
In recent years, in order to further reduce the size of a crystal resonator, a strip-shaped substrate having a smaller side ratio (ratio of contour size to thickness) has been adopted. For this reason, there is a problem that the coupling between the thickness vibration, which is the main vibration, and the contour system vibration, for example, the face slip vibration, the bending vibration, or the like is caused by a slight processing error.

例えば、輪郭系振動との結合を避ける手段として、図5(a)、(b)、(c)に示す断面図ように、圧電基板の主面を加工した水晶振動子が考案され、使用されてきた。即ち、図5(a)は主面の端を斜めに切り落としたような形状で、一般に面取り振動子(ベベリング振動子)と称している。また、図5(b)は主面をレンズ状に加工する、所謂コンベックス振動子(プラノコンベックス振動子)、図5(c)は主面の一部を凸状に加工した振動子(メサ状振動子)である。いずれの場合も厚み滑り振動の振動エネルギーを基板中央部に集中させると共に、輪郭系振動との結合を弱めるように作用している。   For example, as means for avoiding coupling with outline vibration, a quartz crystal resonator in which the principal surface of a piezoelectric substrate is processed as shown in FIGS. 5A, 5B, and 5C is devised and used. I came. That is, FIG. 5A shows a shape in which the end of the main surface is cut off obliquely, and is generally called a chamfered vibrator (beveling vibrator). FIG. 5B shows a so-called convex vibrator (plano convex vibrator) in which the main surface is processed into a lens shape, and FIG. 5C shows a vibrator (mesa shape) in which a part of the main surface is processed into a convex shape. Vibrator). In either case, the vibration energy of the thickness shear vibration is concentrated at the center of the substrate and acts to weaken the coupling with the contour system vibration.

図6(a)に示す平板の短冊状振動子と、(b)に示すメサ状振動子との振動変位分布の違いを有限要素法を用いて、シミュレーションにより求めたものが図6(c)である。即ち、基板の長手方向の寸法X0を4800μm、幅方向の寸法Z0を780μm、厚さY0を128μmとし、金電極Dの寸法は3600μm、その膜厚を0.9μmとした水晶振動子の振動エネルギー分布Pを示している。また、電極Dによる周波数低下に相当する量をメサ構造の厚さに換算して、凸状部の厚みtを12.98μmとした水晶振動子の振動エネルギー分布をTで示す。このとき、薄い電極膜(導電性はあるが、質量負荷効果がないとした電極膜)を凸部と、該部と対向する基板の裏面に付着しているものとした。縦軸は振動変位の自乗、即ち振動エネルギーを基板中央の値で基準化し、横軸は基板中央からの距離を示している。
図6(c)から明らかなように、いずれの場合も基板の端部で高次の厚み屈曲振動による変位が生じているが、メサ状振動子(T)の方が平板短冊振動子(P)より振動変位が小さいことが分かる。
FIG. 6C shows the difference in vibration displacement distribution between the flat strip-like vibrator shown in FIG. 6A and the mesa-like vibrator shown in FIG. 6B by simulation using the finite element method. It is. That, 4800Myuemu a longitudinal dimension X 0 of the substrate, 780 nm dimensions Z 0 in the width direction, and a thickness of 128μm to Y 0, the size of the gold electrode D is 3600Myuemu, the quartz oscillator and 0.9μm thickness thereof The vibration energy distribution P is shown. Also, T represents the vibration energy distribution of the crystal resonator in which the amount corresponding to the frequency drop due to the electrode D is converted into the thickness of the mesa structure and the thickness t of the convex portion is 12.98 μm. At this time, it was assumed that a thin electrode film (an electrode film having conductivity but having no mass load effect) was attached to the convex portion and the back surface of the substrate facing the portion. The vertical axis indicates the square of the vibration displacement, that is, the vibration energy is normalized by the value at the center of the substrate, and the horizontal axis indicates the distance from the center of the substrate.
As apparent from FIG. 6 (c), in both cases, displacement due to higher-order thickness bending vibration occurs at the edge of the substrate, but the mesa-shaped vibrator (T) is more flat plate-shaped vibrator (P It can be seen that the vibration displacement is smaller.

しかしながら、メサ型構造の水晶振動子は従来の平板の短冊状水晶振動子より、ある程度厚み屈曲振動を抑圧できるものの、十分に抑圧しきれない場合もあり、これが厚み滑り振動と結合し、該振動の周波数温度特性になめらかな3次曲線からズレを生じさせたり、あるいはCI−温度特性に変動(CIディップ)を生じさせるという問題があった。
本発明は上記問題を解決するためになされたものであって、厚み屈曲振動を抑圧した水晶振動子を提供することを目的とする。
However, the mesa-type crystal resonator can suppress the thickness bending vibration to some extent than the conventional flat plate-shaped crystal resonator, but it may not be able to suppress the vibration sufficiently. There has been a problem that the frequency temperature characteristic of the curve shifts from a smooth cubic curve or the CI-temperature characteristic fluctuates (CI dip).
The present invention has been made to solve the above problems, and an object thereof is to provide a crystal resonator that suppresses thickness bending vibration.

上記目的を達成するために本発明の第1の形態に係るATカット水晶振動子は、水晶の結晶軸である、電気軸としてのX軸と、機械軸としてのY軸と、光学軸としてのZ軸と、からなる直交座標系の前記X軸を中心として、前記Z軸を前記Y軸の−Y方向へ傾けた軸をZ’軸とし、前記Y軸を前記Z軸の+Z方向へ傾けた軸をY’軸とし、前記X軸と前記Z’軸に平行な面で構成され、前記Y’軸に平行な方向を厚みとするATカット水晶基板と、前記ATカット水晶基板の表裏の主面上に対向するように夫々設けられた励振電極と、当該励振電極から延在されたリード電極と、を備え、前記ATカット水晶基板は、前記励振電極が形成された厚肉部と、当該厚肉部の周辺に形成された薄肉部とを有し、前記厚肉部の表面は矩形であり、当該矩形を構成する第1の一対の辺は前記X軸に平行であり、第2の一対の辺は前記Z’軸に平行であり、前記厚肉部と前記薄肉部との境界に位置し、前記Z’軸に平行な方向に直線的に伸びる2つの境界面を有し、前記X軸に対する前記境界面の仰角は、前記Z’軸の方向全体に亘って90°よりも小さく、前記厚肉部の前記X軸に平行な側面と、前記薄肉部との前記X軸に平行な側面とは同一平面内にあり、前記ATカット水晶基板の前記Z’軸に平行な辺の寸法をW、前記X軸に平行な辺の寸法をL1とし、前記厚肉部の前記Y’軸に平行な方向の厚み寸法をHとし、前記厚肉部の前記X軸に平行な辺の寸法をL2としたとき、W/H=5.53 かつ L2/L1=0.75の関係を満足することを特徴とする
本発明の第2の形態に係るATカット水晶振動子は、前記2つの境界面のうち少なくとも1つの境界面の仰角は、約35°であることを特徴とする。
本発明の第3の形態に係るATカット水晶振動子は、前記2つの境界面のうち少なくとも1つの境界面の仰角は、約63°であることを特徴とする。
本発明の第4の形態に係るATカット水晶振動子は、前記厚肉部の厚みと前記薄肉部の厚みとの差をtとし、前記厚肉部の厚みをHとしたとき、(H−t)/H=0.9を満足することを特徴とする。
[適用例1]適用例1に係る圧電振動子は、長手方向をX軸、幅方向をZ’軸、厚さ方向をY’軸とした短冊状ATカット水晶基板上にXY’断面の形状が台形状である凸部を前記水晶基板と一体的に形成し、該凸部上面と対向する基板裏面とに対向電極を設けたことを特徴とする圧電振動子である。
[適用例2]適用例2に係る圧電振動子は、前記凸部の斜面と基板面との仰角をθ1、θ2とするとき、該仰角θ1、θ2がいずれも90°より小さいことを特徴とする圧電振動子である。
[適用例3]適用例3に係る圧電振動子は、前記仰角θ1、θ2をそれぞれほぼ35°、63゜としたことを特徴とする圧電振動子である。

In order to achieve the above object, the AT-cut quartz crystal resonator according to the first embodiment of the present invention includes a crystal axis of quartz, an X axis as an electrical axis, a Y axis as a mechanical axis, and an optical axis. Centering on the X axis of the Cartesian coordinate system consisting of the Z axis, the Z axis is tilted in the −Y direction of the Y axis as the Z ′ axis, and the Y axis is tilted in the + Z direction of the Z axis An AT-cut quartz substrate having a Y′-axis, a plane parallel to the X-axis and the Z′-axis and having a thickness in a direction parallel to the Y′-axis, An excitation electrode provided so as to face each other on the main surface, and a lead electrode extending from the excitation electrode, and the AT-cut quartz substrate has a thick portion on which the excitation electrode is formed, A thin-walled portion formed around the thick-walled portion, the surface of the thick-walled portion is rectangular, and the rectangular A first pair of sides constituting the first pair of sides is parallel to the X-axis, a second pair of sides is parallel to the Z′-axis, and is located at a boundary between the thick portion and the thin portion, and the Z 'Having two boundary surfaces linearly extending in a direction parallel to the axis, and an elevation angle of the boundary surface with respect to the X axis is smaller than 90 ° over the entire direction of the Z' axis, The side surface parallel to the X axis and the side surface parallel to the X axis of the thin portion are in the same plane, and the dimension of the side parallel to the Z ′ axis of the AT-cut quartz substrate is W, The dimension of the side parallel to the X axis is L1, the thickness dimension of the thick part in the direction parallel to the Y ′ axis is H, and the dimension of the side of the thick part parallel to the X axis is L2. In this case, the relationship of W / H = 5.53 and L2 / L1 = 0.75 is satisfied .
The AT-cut crystal resonator according to the second aspect of the present invention is characterized in that an elevation angle of at least one of the two boundary surfaces is about 35 °.
The AT-cut quartz resonator according to the third aspect of the present invention is characterized in that an elevation angle of at least one of the two boundary surfaces is about 63 °.
In the AT-cut quartz crystal resonator according to the fourth aspect of the present invention, when the difference between the thickness of the thick part and the thickness of the thin part is t and the thickness of the thick part is H, (H− t) /H=0.9 is satisfied.
Application Example 1 A piezoelectric vibrator according to Application Example 1 has an XY ′ cross-sectional shape on a strip-shaped AT-cut quartz substrate with the longitudinal direction as the X axis, the width direction as the Z ′ axis, and the thickness direction as the Y ′ axis. The piezoelectric vibrator is characterized in that a convex portion having a trapezoidal shape is formed integrally with the quartz substrate, and a counter electrode is provided on the back surface of the substrate facing the upper surface of the convex portion.
Application Example 2 The piezoelectric vibrator according to Application Example 2 is characterized in that when the elevation angles between the slope of the convex portion and the substrate surface are θ1 and θ2, the elevation angles θ1 and θ2 are both smaller than 90 °. This is a piezoelectric vibrator.
Application Example 3 A piezoelectric vibrator according to Application Example 3 is characterized in that the elevation angles θ1 and θ2 are approximately 35 ° and 63 °, respectively.

本発明に係る圧電振動子の、(a)は斜視図、(b)はその断面図である。FIG. 2A is a perspective view and FIG. 2B is a sectional view of a piezoelectric vibrator according to the present invention. (a)、(b)、(c)は本発明に係る圧電基板を形成するプロセスを示す断面図である。(A), (b), (c) is sectional drawing which shows the process of forming the piezoelectric substrate based on this invention. (a)はシミュレーションに用いた台形状の凸部を有する圧電基板の断面図、(b)は仰角αをパラメータとした変位のエネルギー分布を示す図である。(A) is sectional drawing of the piezoelectric substrate which has the trapezoidal convex part used for simulation, (b) is a figure which shows the energy distribution of the displacement which used elevation angle (alpha) as a parameter. 従来の短冊状水晶振動子の斜視図である。It is a perspective view of the conventional strip-shaped crystal resonator. (a)は面取りをした基板、(b)コンベックス加工した基板、(c)はメサ状加工した基板の断面図である。(A) is a chamfered substrate, (b) a convex processed substrate, and (c) is a cross-sectional view of a mesa processed substrate. (a)は短冊状振動子の断面図、(b)はメサ状振動子の断面図、(c)は圧電基板の形状による振動変位エネルギー分布を示す図である。(A) is a cross-sectional view of a strip-like vibrator, (b) is a cross-sectional view of a mesa-like vibrator, and (c) is a diagram showing a vibration displacement energy distribution according to the shape of a piezoelectric substrate.

以下本発明を図面に示した実施の形態に基づいて詳細に説明する。
図1(a)は本発明に係る圧電振動子の構成を示す斜視図であって、長さLの長手方向をX軸、長さWの幅方向をZ’軸、厚みHの厚さ方向をY’軸とした圧電基板1のほぼ中央部にX軸方向の頂辺の長さをL2、該頂辺L2を望む仰角をそれぞれθ1とθ2、Z’軸方向の頂辺の長さをW、厚さをtとしたXY’断面が台形状の凸部を形成すると共に、該台形状の凸部上面と、該凸部と対向する圧電基板1の裏面に対向する電極2a、2bを付着し、電極2a、2bからそれぞれ圧電基板1の端部に向けてリード電極3a、3bを延在して圧電振動素子を構成したものである。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
FIG. 1A is a perspective view showing the configuration of a piezoelectric vibrator according to the present invention, where the longitudinal direction of length L is the X axis, the width direction of length W is the Z ′ axis, and the thickness direction of thickness H is FIG. L2 is the length of the apex side in the X-axis direction at the substantially central portion of the piezoelectric substrate 1 with Y ′ axis, θ 1 and θ 2 are the elevation angles at which the apex L2 is desired, and the length of the apex side in the Z′-axis direction An XY ′ cross section with a thickness of W and a thickness of t forms a trapezoidal convex portion, and an upper surface of the trapezoidal convex portion and an electrode 2a facing the back surface of the piezoelectric substrate 1 facing the convex portion, 2b is attached, and lead electrodes 3a and 3b are extended from the electrodes 2a and 2b toward the ends of the piezoelectric substrate 1, respectively, to constitute a piezoelectric vibration element.

本発明の特徴は、図6(c)に示すような凸部の両端が直角となっているメサ状圧電基板ではなく、図2(b)に断面図を示すように、台形状の頂辺を望む仰角をそれぞれθ1とθ2とした凸部を有する圧電基板を用いて圧電振動子を構成したことである。
本発明に係る圧電基板の形成法を図2に示した図面に従って説明する。始めに、所望の周波数を得るための厚みを有するATカット基板1に蒸着等の手段を用いて金属膜4、例えば金(Au)の膜を付着すると共に、該膜4の上にフォトレジスト膜を塗布し、マスクを介して露光、現像して図2(a)に示すような圧電基板1上に周期的に並んだ帯状電極膜4を形成する。次に、これをエッチング液、例えばフッ化アンモニウム液中でエッチングすると、水晶結晶の異方性により図2(b)に断面図を示すように、エッチングされた溝の両側の壁面が所定の角度を備えたエッチング面を呈することになる。金属膜4を剥離すると図2(c)に示すように、エッチング溝が規則的に並んだ圧電基板1となり、台形状の凸部の頂辺を望む仰角は、+X軸方向ではθ1=約35゜、−X軸方向ではθ2=約63゜の基板が得られ、該基板をQ−Qで切断することにより、本発明に係る台形状の凸部を有する基板が得られる。なお、凸部の厚みtはエッチングの時間により制御することができる。
The feature of the present invention is not a mesa-shaped piezoelectric substrate in which both ends of the convex portion are perpendicular to each other as shown in FIG. 6C, but a trapezoidal top side as shown in a sectional view in FIG. The piezoelectric vibrator is configured using a piezoelectric substrate having a convex portion with elevation angles θ 1 and θ 2 as desired.
A method for forming a piezoelectric substrate according to the present invention will be described with reference to the drawing shown in FIG. First, a metal film 4, for example, a gold (Au) film is attached to the AT cut substrate 1 having a thickness for obtaining a desired frequency by means of vapor deposition or the like, and a photoresist film is formed on the film 4. 2 is applied and exposed and developed through a mask to form a strip electrode film 4 periodically arranged on the piezoelectric substrate 1 as shown in FIG. Next, when this is etched in an etching solution, for example, an ammonium fluoride solution, the wall surfaces on both sides of the etched groove are at a predetermined angle as shown in the cross-sectional view of FIG. The etching surface provided with this will be exhibited. When the metal film 4 is peeled off, as shown in FIG. 2C, the etching substrate becomes a piezoelectric substrate 1 in which the etching grooves are regularly arranged, and the elevation angle at which the top side of the trapezoidal convex portion is desired is θ 1 = about A substrate with θ 2 = about 63 ° is obtained in the direction of 35 ° and −X axis, and the substrate having trapezoidal convex portions according to the present invention is obtained by cutting the substrate with QQ. The thickness t of the convex portion can be controlled by the etching time.

図3(a)は台形状の凸部を有する圧電基板の断面を示す図で、頂辺を望む仰角をいずれもαと設定し、頂辺の長さをL2、凸部の厚みをt、X軸方向の寸法をL1、基板の厚みをH、Z’方向の幅をW(図示しない)とした基板である。図3(b)は、(a)に示した基板の長手方向の寸法L1を4800μm、幅方向の寸法Wを780μm、厚さHを141μmとし、台形状の凸部の頂辺の長さL2を3600μm、その厚さtを12.98μmとした水晶基板に、薄い電極膜(導電性はあるが、質量負荷効果がないとした電極膜)を付着した水晶振動子の振動エネルギー分布を有限要素法を用いて、シミュレーションにより求めた図である。仰角αをパラメータとし、35゜、63゜、90゜と変化させて変位分布を比較した。図3(b)から明らかなように、仰角αを従来のように直角とするより、小さくして行くと基板周縁部に生ずる厚み屈曲振動の変位が小さくなることが判明した。
厚み屈曲振動の変位が小さいということは、厚みすべり振動と厚み屈曲振動との結合が小さいことを意味し、周波数温度特性がなめらかな3次曲線を描くことになり、CI−温度特性がフラットに近づくことになる。
FIG. 3A is a diagram showing a cross section of a piezoelectric substrate having a trapezoidal convex portion, where the elevation angle at which the apex is desired is set to α, the apex length is L2, the convex thickness is t, This is a substrate in which the dimension in the X-axis direction is L1, the thickness of the substrate is H, and the width in the Z ′ direction is W (not shown). FIG. 3B shows the length L2 of the top side of the trapezoidal convex portion, where the longitudinal dimension L1 of the substrate shown in FIG. 3A is 4800 μm, the width dimension W is 780 μm, the thickness H is 141 μm. Is the finite element method for the vibration energy distribution of a quartz crystal with a thin electrode film (an electrode film that has conductivity but no mass loading effect) attached to a quartz substrate with a thickness of 3600 μm and a thickness t of 12.98 μm It is the figure calculated | required by simulation using. Displacement distributions were compared by changing the elevation angle α as a parameter to 35 °, 63 °, and 90 °. As is clear from FIG. 3B, it has been found that the displacement of the thickness bending vibration generated at the peripheral edge of the substrate becomes smaller as the elevation angle α is made smaller than the conventional angle, rather than at a right angle.
The small displacement of the thickness flexural vibration means that the coupling between the thickness shear vibration and the thickness flexural vibration is small, and the frequency-temperature characteristic draws a smooth cubic curve, and the CI-temperature characteristic is flat. It will approach.

(発明の効果)
本発明は、以上説明したように構成したので、厚み振動と厚み屈曲振動との結合を抑圧でき、周波数温度特性がなめらかで、CIディップの少ない圧電振動子を可能とした。本発明になる圧電振動子を携帯電話等に多く使用されている温度補償水晶発振器等に用いればその歩留まりが向上しるという優れた効果を表す。
(The invention's effect)
Since the present invention is configured as described above, the coupling between the thickness vibration and the thickness bending vibration can be suppressed, and a piezoelectric vibrator having a smooth frequency temperature characteristic and a small CI dip can be realized. If the piezoelectric vibrator according to the present invention is used in a temperature-compensated crystal oscillator or the like often used in a mobile phone or the like, an excellent effect of improving the yield is exhibited.

1・・圧電基板 2a、2b・・電極 3a、3b・・リード電極 4・・エッチング用金属膜 L1・・X軸方向の寸法 W・・Z’方向の寸法 H・・基板の厚み L2・・凸部のX軸方向寸法 t・・凸部の厚み θ1、θ2・・仰角 Q・・切断面 α・・仰角。 1..Piezoelectric substrate 2a, 2b..Electrode 3a, 3b..Lead electrode 4..Metal film for etching L1..Dimension in X axis direction W..Dimension in Z 'direction H..Thickness of substrate L2. Dimension of convex part in X axis t ·· Thickness of convex part θ 1 , θ 2 ·· Elevation angle Q ·· Cutting plane α ·· Elevation angle.

Claims (4)

水晶の結晶軸である、電気軸としてのX軸と、機械軸としてのY軸と、光学軸としてのZ軸と、からなる直交座標系の前記X軸を中心として、前記Z軸を前記Y軸の−Y方向へ傾けた軸をZ’軸とし、前記Y軸を前記Z軸の+Z方向へ傾けた軸をY’軸とし、前記X軸と前記Z’軸に平行な面で構成され、前記Y’軸に平行な方向を厚みとするATカット水晶基板と、
前記ATカット水晶基板の表裏の主面上に対向するように夫々設けられた励振電極と、
当該励振電極から延在されたリード電極と、
を備え、
前記ATカット水晶基板は、前記励振電極が形成された厚肉部と、当該厚肉部の周辺に形成された薄肉部とを有し、
前記厚肉部の表面は矩形であり、
当該矩形を構成する第1の一対の辺は前記X軸に平行であり、第2の一対の辺は前記Z’軸に平行であり、
前記厚肉部と前記薄肉部との境界に位置し、前記Z’軸に平行な方向に直線的に伸びる2つの境界面を有し、
前記X軸に対する前記境界面の仰角は、前記Z’軸の方向全体に亘って90°よりも小さく、
前記厚肉部の前記X軸に平行な側面と、前記薄肉部との前記X軸に平行な側面とは同一平面内にあり、
前記ATカット水晶基板の前記Z’軸に平行な辺の寸法をW、前記X軸に平行な辺の寸法をL1とし、
前記厚肉部の前記Y’軸に平行な方向の厚み寸法をHとし、前記厚肉部の前記X軸に平行な辺の寸法をL2としたとき、
W/H=5.53 かつ L2/L1=0.75
の関係を満足することを特徴とするATカット水晶振動子
Centering on the X axis of an orthogonal coordinate system consisting of an X axis as an electric axis, a Y axis as a mechanical axis, and a Z axis as an optical axis, which are crystal axes of quartz, the Z axis is the Y axis. The axis tilted in the −Y direction is the Z ′ axis, the Y axis is tilted in the + Z direction of the Z axis, the Y ′ axis, and is configured by planes parallel to the X axis and the Z ′ axis. An AT-cut quartz substrate having a thickness in a direction parallel to the Y ′ axis,
Excitation electrodes respectively provided to face the main surfaces of the front and back surfaces of the AT-cut quartz substrate;
A lead electrode extending from the excitation electrode;
With
The AT-cut quartz substrate has a thick part where the excitation electrode is formed, and a thin part formed around the thick part,
The surface of the thick part is rectangular,
The first pair of sides constituting the rectangle is parallel to the X axis, and the second pair of sides is parallel to the Z ′ axis,
Two boundary surfaces located at the boundary between the thick part and the thin part and extending linearly in a direction parallel to the Z ′ axis,
The elevation angle of the boundary surface with respect to the X axis is smaller than 90 ° over the entire direction of the Z ′ axis,
The side surface parallel to the X axis of the thick portion and the side surface parallel to the X axis of the thin portion are in the same plane,
The dimension of the side parallel to the Z ′ axis of the AT-cut quartz substrate is W, and the dimension of the side parallel to the X axis is L1.
When the thickness dimension in the direction parallel to the Y ′ axis of the thick part is H, and the dimension of the side parallel to the X axis of the thick part is L2,
W / H = 5.53 and L2 / L1 = 0.75
An AT-cut quartz crystal resonator that satisfies the above relationship .
前記2つの境界面のうち少なくとも1つの境界面の仰角は、約35°であることを特徴とする請求項1に記載のATカット水晶振動子 The AT-cut crystal resonator according to claim 1, wherein an elevation angle of at least one of the two boundary surfaces is about 35 ° . 前記2つの境界面のうち少なくとも1つの境界面の仰角は、約63°であることを特徴とする請求項1に記載のATカット水晶振動子 2. The AT-cut crystal resonator according to claim 1, wherein an elevation angle of at least one of the two boundary surfaces is about 63 ° . 前記厚肉部の厚みと前記薄肉部の厚みとの差をtとし、
前記厚肉部の厚みをHとしたとき、
(H−t)/H=0.9
を満足することを特徴とする請求項1乃至3の何れか一項に記載のATカット水晶振動子
The difference between the thickness of the thick part and the thickness of the thin part is t,
When the thickness of the thick part is H,
(H−t) /H=0.9
The AT-cut crystal resonator according to claim 1, wherein the AT-cut crystal resonator is satisfied .
JP2010231606A 2010-10-14 2010-10-14 AT cut crystal unit Expired - Fee Related JP4784699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010231606A JP4784699B2 (en) 2010-10-14 2010-10-14 AT cut crystal unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010231606A JP4784699B2 (en) 2010-10-14 2010-10-14 AT cut crystal unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000042067A Division JP4665282B2 (en) 2000-02-18 2000-02-18 AT cut crystal unit

Publications (2)

Publication Number Publication Date
JP2011066905A JP2011066905A (en) 2011-03-31
JP4784699B2 true JP4784699B2 (en) 2011-10-05

Family

ID=43952580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010231606A Expired - Fee Related JP4784699B2 (en) 2010-10-14 2010-10-14 AT cut crystal unit

Country Status (1)

Country Link
JP (1) JP4784699B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048745A (en) * 2014-08-28 2016-04-07 株式会社デバイス技研 Crystal analysis method and system therefor

Also Published As

Publication number Publication date
JP2011066905A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP4665282B2 (en) AT cut crystal unit
US9231184B2 (en) Piezoelectric resonator element and piezoelectric resonator
JP2001244778A (en) High-frequency piezoelectric vibrator
JP5505647B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
US20190123714A1 (en) Quartz crystal resonator, quartz crystal resonator unit, and method of manufacturing quartz crystal resonator
JP2009065270A (en) Mesa type vibrating piece and mesa type vibrating device
JP5772082B2 (en) Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
JP6719313B2 (en) Piezoelectric resonator element and piezoelectric vibrator
JP3767425B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP5772081B2 (en) Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
JP2011151780A (en) Bending vibration piece, vibration device, and electronic apparatus
JP2013138512A (en) Method of manufacturing vibration piece
JP2008206000A (en) Piezoelectric vibration chip, piezoelectric device, and manufacturing method of the piezoelectric vibration chip
JP5741876B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
JP4784699B2 (en) AT cut crystal unit
JP4640511B2 (en) Piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator
US10305446B2 (en) Piezoelectric oscillator and method of making the same
JP4325178B2 (en) Piezoelectric vibration element, piezoelectric vibrator and piezoelectric oscillator
US10840882B2 (en) Crystal unit and manufacturing method thereof
JP5877746B2 (en) Piezoelectric vibrating piece and method for manufacturing the same
JP6327307B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
US8390180B2 (en) Surface mounted crystal resonator
JP6008151B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
JP6580921B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
JP5871144B2 (en) Piezoelectric vibrator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees