JP2002213963A - Vibration gyroscope - Google Patents

Vibration gyroscope

Info

Publication number
JP2002213963A
JP2002213963A JP2001049383A JP2001049383A JP2002213963A JP 2002213963 A JP2002213963 A JP 2002213963A JP 2001049383 A JP2001049383 A JP 2001049383A JP 2001049383 A JP2001049383 A JP 2001049383A JP 2002213963 A JP2002213963 A JP 2002213963A
Authority
JP
Japan
Prior art keywords
mode
axis
outer legs
displaced
middle leg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001049383A
Other languages
Japanese (ja)
Inventor
Yoshiro Tomikawa
義朗 富川
Hideki Tamura
英樹 田村
Norihiko Shiratori
典彦 白鳥
Yoshiya Okada
恵也 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microstone Corp
Original Assignee
Microstone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microstone Corp filed Critical Microstone Corp
Priority to JP2001049383A priority Critical patent/JP2002213963A/en
Publication of JP2002213963A publication Critical patent/JP2002213963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a miniaturized, highly practical vibration gyroscope with a single vibration body capable of multi-axial detection by improving the electrode location of a three-legged tuning fork and its driving method so that signal leakage between respective directions can be reduced and relatively high sensitivity can be obtained. SOLUTION: This vibration gyroscope has the three-legged tuning fork made of a crystalline material, etc. The tuning fork has, as possible vibration modes, an HS mode wherein its two outer legs are simultaneously opened/closed in X direction, a V mode wherein the two outer legs are alike displaced in Z direction and its middle leg is displaced in the opposite direction, and an HA mode wherein the two outer legs are alike displaced in the X direction and its middle leg is displaced in the opposite direction. It is excited to develop the HS mode by being driven so that the two outer legs are opened/closed in the X direction with the HS and V modes coupled to each other by being given natural vibration frequencies sufficiently close to each other. By synchronously detecting two lines made by giving a 90 deg. phase difference to a voltage induced by the motion of the middle leg in the X direction, the respective components of a Coriolis force developed by rotational movement of the vibrating body around Y and Z axes are separately detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は振動ジャイロスコー
プに関する。更に詳しくは、三脚型の音叉を用いた多軸
の振動ジャイロスコープに関する。
The present invention relates to a vibratory gyroscope. More specifically, the present invention relates to a multi-axis vibratory gyroscope using a tripod type tuning fork.

【0002】[0002]

【従来の技術】三脚型の音叉を用いて、2軸あるいは3
軸の回転方向の角速度を検出する多軸の振動ジャイロス
コープが既に提案されている。三脚音叉は本発明と従来
技術とに実質的に共通であり図1(b)の平面図に示す
ような形状を持つ。(ただし電極幕6の形状は異な
る。)同図において1は三脚音叉で、水晶あるいは圧電
性磁器等の平板条の材料から切り出されている。2は基
部で、これに3本の平行な振動脚が形成される。3、4
はそれぞれ外脚で、図示のように先端部に突起部(質量
が軸線より偏心した張出し部)を有することが多い。ま
た音叉に対する方向を定義するため、基部2の面に重ね
て図示した如くX、Y、Zの直交座標軸を設定する。Z
軸は板面に垂直、Y軸は平行な各脚の軸方向にとる。
2. Description of the Related Art Using a tripod type tuning fork, two axes or three axes are used.
A multi-axis vibratory gyroscope for detecting an angular velocity in the rotation direction of a shaft has already been proposed. The tripod tuning fork is substantially common to the present invention and the prior art, and has a shape as shown in the plan view of FIG. (However, the shape of the electrode curtain 6 is different.) In the figure, reference numeral 1 denotes a tripod tuning fork, which is cut out of a flat plate material such as quartz or piezoelectric porcelain. Reference numeral 2 denotes a base on which three parallel vibrating legs are formed. 3, 4
Each of the outer legs has a protruding portion (a protruding portion whose mass is eccentric from the axis) at the distal end as shown in the drawing. Further, in order to define the direction with respect to the tuning fork, orthogonal coordinate axes of X, Y, and Z are set as shown in FIG. Z
The axis is perpendicular to the plate surface, and the Y axis is in the axial direction of each parallel leg.

【0003】図3は三脚音叉に生起しうる基本的な(最
低次数の)振動モードを定義するものでる。(a)は両
外脚3、4がZ方向に同じ向きに変位し中脚5がその反
対向きに変位するVモード、(b)は両外脚3、4がX
方向に同時に開閉するHSモード、(c)は両外脚3、
4がX方向で同じ向きに変位し中脚5がその反対向きに
変位するHAモード、(d)は両外脚3、4がZ方向に
互いに反対向きに変位するTモードである。なお本発明
に特に関係するのはHSモード、Vモード、HAモード
である。図中U3、U4、U5は各脚の各モードにおけ
るある時点(図示のような変位に移行しつつある状態
の)における速度成分を示す。
FIG. 3 defines a fundamental (lowest order) vibration mode that can occur in a tripod tuning fork. (A) is a V mode in which both outer legs 3 and 4 are displaced in the same direction in the Z direction and the middle leg 5 is displaced in the opposite direction.
HS mode that opens and closes simultaneously in the directions, (c) shows both outer legs 3,
4 is an HA mode in which the center leg 5 is displaced in the same direction in the X direction and the middle leg 5 is displaced in the opposite direction, and FIG. 4D is a T mode in which the outer legs 3 and 4 are displaced in the Z direction in opposite directions. Note that the HS mode, the V mode, and the HA mode are particularly related to the present invention. In the figure, U3, U4, and U5 indicate velocity components at a certain point in time in each mode of each leg (in a state of shifting to a displacement as shown).

【0004】振動ジャイロの動作原理を図4を用いて説
明する。(a)は本発明と従来技術に共通して使用され
る駆動(励振)モードであり、V+HSモードと呼ばれ
る。これは二つのモードが結合した状態の振動モードで
ある。各脚の寸法等を変えて固有振動数を調節し、X方
向の固有振動数とZ方向の固有振動数とを極めて接近さ
せると両モードが同時に生起され、両外脚3、4はXZ
面内で面対称的な楕円運動(円運動の場合も含む)を行
う。このとき各外脚にはX、Z方向に共に駆動力を与え
る必要はなく、1方向のみに駆動力を与えれば結合した
両モードが同時に励振できる。また各振動モードの固有
振動数の差を調節すると両モードの位相差が変化する。
位相差が90°に極めて近くなるように加工し、両外脚
(の先端部)の描く楕円軌跡の長短軸を直交させX方
向、Z方向に向けておく。このことは混合した信号から
ノイズを含まない検出をするため重要である。
The principle of operation of the vibrating gyroscope will be described with reference to FIG. (A) is a drive (excitation) mode commonly used in the present invention and the prior art, and is called a V + HS mode. This is a vibration mode in which the two modes are combined. When the natural frequency in the X direction and the natural frequency in the Z direction are brought close to each other by changing the size and the like of each leg and the natural frequency in the X direction is extremely close, both modes are generated at the same time.
Perform elliptical motion (including circular motion) that is plane-symmetric in the plane. At this time, it is not necessary to apply a driving force to both the outer legs in the X and Z directions. If a driving force is applied to only one direction, both combined modes can be excited simultaneously. Adjusting the difference between the natural frequencies of the respective vibration modes changes the phase difference between the two modes.
Processing is performed so that the phase difference is extremely close to 90 °, and the long and short axes of the elliptical trajectories drawn by (the distal ends of) the outer legs are orthogonally oriented in the X and Z directions. This is important for noise-free detection of the mixed signal.

【0005】図4の他の図(b)、(c)、(d)は駆
動モードと検出モードとの関係を示す。(b)の右側は
駆動のVモード成分を示し、右側は振動体にX軸回りの
回転が与えられたときに駆動による振動速度と角速度Ω
xのベクトル積に比例したコリオリ力Fcxが生じた状
態を示す。両外脚の突起部に作用するコリオリ力Fcx
は両外脚の撓みを無回転時と異ならせ、新しいHSモー
ドを生じるので、その付加的撓みを回路的な処理によっ
て求めれば、結果的にΩxを検出することができる。な
お中脚にもコリオリ力Fcxが発生するが、軸方向であ
って新しい振動を生じ難く、検出には寄与し難い。
[0005] Other figures (b), (c) and (d) of FIG. 4 show the relationship between the drive mode and the detection mode. The right side of (b) shows the V mode component of the drive, and the right side shows the vibration speed and the angular velocity Ω by the drive when the vibrating body is rotated around the X axis.
This shows a state in which a Coriolis force Fcx proportional to the vector product of x has occurred. Coriolis force Fcx acting on projections of both outer legs
Makes the deflection of both outer legs different from that at the time of non-rotation, and a new HS mode is generated. If the additional deflection is obtained by a circuit processing, Ωx can be detected as a result. Although the Coriolis force Fcx is also generated on the middle leg, it is hard to generate new vibration in the axial direction and does not contribute to detection.

【0006】図4(c)は、図の左側に示す駆動のVモ
ード成分によって、Y軸回りの回転角速度Ωyが作用し
たとき、両外脚にX方向に発生するコリオリ力Fcyに
よって付加的なHAモードが生起された状態を右側に示
す。中脚に作用するコリオリ力Fcyは中脚をX方向に
振動させるので、中脚の運動を圧電的に検出すればΩy
に比例する出力が得られる。また(d)では左側のHS
モードの駆動成分によって、Z軸回りの回転角速度Ωz
が作用したとき、両外脚の突起部にY方向に発生したコ
リオリ力Fczによって付加的なHAモードが生起され
た状態を示す。HAモードの両外脚の運動の非対称性を
打ち消すため中脚がX方向に振動するので、中脚の運動
を圧電的に検出すればΩzに比例する出力が得られる。
なお(c)(d)においてはいずれも中脚がX方向に振
動するが、加振力であるコリオリ力に90°の位相差が
あるので、異なる位相で同期検波を行うことにより出力
を分離できる。
FIG. 4 (c) shows a V-mode component of the drive shown on the left side of the figure, when a rotational angular velocity Ωy about the Y-axis is applied, and additional Coriolis force Fcy is generated in both outer legs in the X direction. The state in which the HA mode is generated is shown on the right side. Since the Coriolis force Fcy acting on the middle leg oscillates the middle leg in the X direction, if the movement of the middle leg is detected piezoelectrically, Ωy
Is obtained. In (d), the left HS
The rotational angular velocity Ωz about the Z axis depends on the driving component of the mode.
Shows a state where an additional HA mode is generated by the Coriolis force Fcz generated in the Y direction on the projections of both outer legs when. Since the middle leg vibrates in the X direction to cancel the asymmetry of the movement of both outer legs in the HA mode, an output proportional to Ωz can be obtained by piezoelectrically detecting the movement of the middle leg.
In both cases (c) and (d), the center leg vibrates in the X direction. However, since the Coriolis force, which is the exciting force, has a phase difference of 90 °, the outputs are separated by performing synchronous detection at different phases. it can.

【0007】図5は従来の技術における三脚音叉の脚部
側面の電極配置を示すための断面図で、図1(b)のA
−A断面に相当する。素材は水晶を想定しており、既に
説明したX、Y、Z軸の方位は水晶材の結晶軸と基本的
に一致させる。(特性改善のため所定の回転を行っても
よい。)6は各脚の表面および側面に設けた電極膜(脚
面から浮かして表示してある)、Eは脚内部に生ずる電
界である。各電極膜からの引出線は図の如く結線され
る。GNDは参照電位を与える接地端子である。Drv
は駆動端子で、一定電圧の正弦波が与えられ、両外脚
3、4をVモードで駆動する。(結合によってHSモー
ドの振動も自動的に生起する。)
FIG. 5 is a sectional view showing the arrangement of electrodes on the side surface of the leg of a tripod tuning fork according to the prior art.
-A section. The material is assumed to be quartz, and the azimuths of the X, Y, and Z axes described above are basically made to coincide with the crystal axes of the quartz material. (Predetermined rotation may be performed to improve the characteristics.) Reference numeral 6 denotes an electrode film provided on the surface and side surface of each leg (shown floating above the leg surface), and E denotes an electric field generated inside the leg. Lead lines from each electrode film are connected as shown in the figure. GND is a ground terminal for applying a reference potential. Drv
Is a drive terminal, which is supplied with a sine wave of a constant voltage and drives both outer legs 3, 4 in the V mode. (The vibration of the HS mode is automatically generated by the coupling.)

【0008】[0008]

【発明が解決しようとする課題】本従来例において、三
脚音叉の主要寸法は板厚0.3mm、各脚部の幅0.3
mm、中脚長さ4.5mm、外脚長さ4.2mm、外脚
の内側から突起部先端まで0.8mmとしてシミュレー
ションによる運動解析を行った。その結果を評価した結
果、ΩxとΩzを測定したときに、各出力に約3%の信
号漏れがあることと、脚の圧電特性の利用効率を高め感
度向上のための改善が望ましいことがわかった。また狭
い脚幅を2分して更に幅の狭い電極膜を併置するので製
造上の問題等も懸念された。本発明の目的は、各方向間
の信号漏れが少なくかつ高い感度が得られるように三脚
音叉の電極配置と駆動法を改善し、1個の振動体で多軸
検出が可能な小型で高度な実用性を有する振動ジャイロ
スコープを提供することである。
In this conventional example, the main dimensions of the tripod tuning fork are a plate thickness of 0.3 mm and a width of each leg of 0.3 mm.
mm, the middle leg length was 4.5 mm, the outer leg length was 4.2 mm, and the distance from the inside of the outer leg to the tip of the protruding portion was 0.8 mm. As a result of evaluating the results, it was found that, when Ωx and Ωz were measured, there was a signal leakage of about 3% at each output, and it was desirable to improve the use efficiency of the piezoelectric characteristics of the legs and improve the sensitivity. Was. Also, since the narrow leg width is divided into two and the narrower electrode film is juxtaposed, there is a concern about manufacturing problems. SUMMARY OF THE INVENTION An object of the present invention is to improve the electrode arrangement and driving method of a tripod tuning fork so that signal leakage in each direction is small and high sensitivity is obtained, and a small and advanced triangular tuning fork capable of multi-axis detection with one vibrator. An object of the present invention is to provide a vibrating gyroscope having practical utility.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
本発明の振動ジャイロスコープは次の特徴を備える。 (1)三脚型音叉の概形をなし両外脚は先端部にそれぞ
れ突起部を有しており、三脚面に垂直な方向にZ軸を、
音叉軸に平行な方向にY軸を、Z軸とY軸とに直交する
方向にX軸をとったとき、両外脚がX方向に同時に開閉
するHSモードと、両外脚がZ方向に同じ向きに変位し
中脚がその反対向きに変位するVモードと、両外脚がX
方向で同じ向きに変位し中脚がその反対向きに変位する
HAモードを可能な振動モードとして有し、HSモード
とVモードの両モードは互いに結合が起こるように十分
近い固有振動数を与えられており、前記両外脚をX方向
に開閉するように駆動したとき前記両モードが同時に生
起されて前記両外脚がXZ面内で楕円運動を行うように
励振される圧電材料より成る振動体を有し、前記中脚の
周囲に設けた電極膜により検出された前記中脚のX方向
の運動に基づく誘起電圧に対して90°の位相差を与え
た2系統の同期検波を行うことによって、前記振動体の
Y軸回りおよびZ軸回りの回転運動によって現れるコリ
オリ力の成分をそれぞれ分離して検出すること。
In order to achieve the above object, a vibration gyroscope according to the present invention has the following features. (1) The outline of a tripod type tuning fork is formed, and both outer legs each have a projection at the tip, and the Z axis is perpendicular to the tripod surface.
When the Y axis is taken in the direction parallel to the tuning fork axis and the X axis is taken in the direction perpendicular to the Z axis and the Y axis, both outer legs open and close simultaneously in the X direction. In the V mode where the middle leg is displaced in the opposite direction and the middle leg is displaced in the opposite direction,
Has the HA mode in which the center leg is displaced in the same direction and the middle leg is displaced in the opposite direction, and the HS mode and the V mode are given natural frequencies sufficiently close so that coupling occurs with each other. A vibrating body made of a piezoelectric material which is generated when the outer legs are driven so as to open and close in the X direction, the modes are simultaneously generated, and the outer legs are excited to perform an elliptical motion in the XZ plane. By performing synchronous detection of two systems in which a phase difference of 90 ° is given to an induced voltage based on the movement of the middle leg in the X direction detected by an electrode film provided around the middle leg. And separately detecting the components of the Coriolis force appearing due to the rotational movement of the vibrating body around the Y axis and the Z axis.

【0010】本発明の振動ジャイロスコープは更に以下
の特徴の少なくとも一つを備えることがある。 (2)前記HSモードが励振されているとき、両外脚の
撓み量の変化を検出することによって、前記振動体のX
軸回りの回転運動によって前記突起部に作用するY方向
のコリオリ力の成分を更に検出すること。 (3)前記振動体の圧電材料は水晶であること。
[0010] The vibration gyroscope of the present invention may further include at least one of the following features. (2) When the HS mode is excited, by detecting a change in the amount of bending of both outer legs, X of the vibrating body is detected.
Further detecting a component of the Coriolis force in the Y direction acting on the projection by the rotation about the axis. (3) The piezoelectric material of the vibrator is quartz.

【0011】[0011]

【発明の実施の形態】図1は本発明の振動ジャイロスコ
ープ用の振動体の第1の実施の形態を示し、(b)はそ
の形状を示す平面図(既に従来技術に関連して説明し
た)、(a)は脚の周囲の電極配置を示すA−A断面図
である。(a)において、電極膜は各脚の4面の全てに
脚幅を一杯に用いて設けてある。駆動端子Drv1には
一定振幅の正弦波、駆動端子Drv2には同じ振幅で1
80°位相の異なる正弦波が与えられるので、各外脚
3、4はX方向と−X方向とに駆動され、HSモードが
まず励起され、これに結合するVモードの振動(両モー
ドの固有振動数の差はあらかじめ調整しておく)も90
°の位相差で同時に励振される。
FIG. 1 shows a first embodiment of a vibrating body for a vibrating gyroscope according to the present invention, and FIG. 1 (b) is a plan view showing its shape (already described in connection with the prior art). FIGS. 3A and 3A are AA sectional views showing the arrangement of electrodes around the legs. In (a), the electrode film is provided on all four surfaces of each leg using the full width of the leg. The drive terminal Drv1 has a sine wave with a constant amplitude, and the drive terminal Drv2 has a sine wave with the same amplitude.
Since sine waves having phases different from each other by 80 ° are given, the outer legs 3 and 4 are driven in the X direction and the −X direction, and the HS mode is first excited, and the V mode vibration coupled thereto (the natural mode of both modes) The difference in frequency is adjusted in advance) and 90
Excited simultaneously with a phase difference of °.

【0012】検出端子Det1、Det2は中脚5のX
方向の運動を検出する。検出端子Det3およびDet
4は外脚3、4のX方向の運動を個別に検出するが、そ
れと共に駆動回路(発振回路)用のフィードバック信号
を抽出する端子ともなり得る。この電極配置は汎用の水
晶音叉(二脚)の電極配置に近く、脚内部の電界Eも同
様である。従って図5の従来例よりも電極面積は大きく
(幅の狭い電極膜を脚の同じ面に併置する必要がな
い)、脚周囲の全ての面に配置でき利用効率も高く(内
部電界Eも強いと思われる)、また各脚ともほぼ同形で
あり、製造も従来の手法を利用できるので比較的容易に
なる。
The detection terminals Det1 and Det2 are connected to the X
Detects directional movement. Detection terminals Det3 and Det
Reference numeral 4 individually detects the movement of the outer legs 3 and 4 in the X direction, and can also serve as a terminal for extracting a feedback signal for a drive circuit (oscillation circuit). This electrode arrangement is close to the electrode arrangement of a general-purpose quartz tuning fork (two legs), and the electric field E inside the legs is also the same. Therefore, the electrode area is larger than that of the conventional example shown in FIG. 5 (it is not necessary to arrange a narrow electrode film on the same surface of the leg), it can be arranged on all surfaces around the leg, and the utilization efficiency is high (the internal electric field E is also strong). Probably, each leg is almost the same shape, and the manufacture is relatively easy because the conventional method can be used.

【0013】図2は本発明の振動ジャイロスコープの駆
動検出回路の実施の形態の一例を示すブロック図であ
る。駆動回路24は、検出端子Det3およびDet4
の電圧信号(図示を省略したがIV変換器を通して電荷
量を電圧に変換する。他の検出端子についても同様にす
ればよい。また必要に応じて要所に増幅器等を追加す
る。)は減算器28(あるいは一方を反転させてから加
算器を通してもよい)によって差をとられたフィードバ
ック信号を受けてタイミングを規制された一定電圧の駆
動信号を出力し、駆動端子Drv1に供給する。またこ
の信号は反転増幅回路25によって位相を反転し、駆動
端子Drv2に供給され、三脚音叉をV+HSの混合モ
ードで駆動する。
FIG. 2 is a block diagram showing an embodiment of a drive detection circuit for a vibration gyroscope according to the present invention. The drive circuit 24 includes detection terminals Det3 and Det4
(Not shown, but the charge amount is converted to a voltage through an IV converter. The same can be applied to other detection terminals. If necessary, an amplifier or the like is added to a key point). In response to the feedback signal obtained by the difference by the adder 28 (or one of which may be inverted before passing through the adder), a drive signal of a constant voltage whose timing is regulated is output and supplied to the drive terminal Drv1. The phase of this signal is inverted by an inverting amplifier circuit 25 and supplied to a drive terminal Drv2 to drive the tripod tuning fork in a mixed mode of V + HS.

【0014】参照信号作成回路20は駆動出力を供給さ
れ、同期検波を行う期間を定めるための所定の位相を持
った参照信号(矩形波)を作成し、調整回路21、22
で位相を微調整した上で同期検波回路12、13に供給
する。また90°移相回路23で位相を90°変換した
参照信号が同期検波回路11に供給される。検出端子D
et1およびDet2の加算機27による和信号(Ωy
とΩzの情報を含んでいる)が検波回路11に入力さ
れ、Ωz情報のみが取り出された検波出力はLPF1
4、積分回路17を経て平滑化されΩzに比例する電圧
としてZout端子に出力される。検出端子Det1お
よびDet2の加算信号は同期検波回路12にも印加さ
れ、検波出力(Ωy情報)はLPF15、積分回路18
で処理されΩyに比例する電圧としてYout端子に出
力される。
The reference signal generation circuit 20 is supplied with a drive output, generates a reference signal (rectangular wave) having a predetermined phase for determining a period for performing synchronous detection, and adjusts circuits 21 and 22.
After finely adjusting the phase, the signals are supplied to the synchronous detection circuits 12 and 13. The reference signal whose phase has been converted by 90 ° by the 90 ° phase shift circuit 23 is supplied to the synchronous detection circuit 11. Detection terminal D
The sum signal (Ωy) of the adder 27 of et1 and Det2 by the adder 27
And information on Ωz) are input to the detection circuit 11, and the detection output from which only the Ωz information is extracted is LPF1.
4. The voltage is smoothed through the integration circuit 17 and output to the Zout terminal as a voltage proportional to Ωz. The added signal of the detection terminals Det1 and Det2 is also applied to the synchronous detection circuit 12, and the detection output (Ωy information) is converted to the LPF 15 and the integration circuit 18
And output to the Yout terminal as a voltage proportional to Ωy.

【0015】検出端子Det3およびDet4の差信号
は駆動電圧と図4(c)に示したΩx情報とを含んでい
る。これを同期検波回路13、LPF16、積分回路1
9で直流化・平滑化した後、駆動回路24の出力を直流
化・平滑化した補正電圧作成回路26の出力を減算器2
9により差し引いてやるとΩxに比例した成分のみが残
り、Xout端子に出力される。(本例のようにΩx情
報を含む検出信号を検波し直流化してから駆動成分を差
し引き補正するのでなく、同期検波以前の信号から位相
・振幅を調整した交流の駆動成分を差し引いてΩx成分
のみとしてから同期検波を行ってもよい。)このように
して単一の振動体から最大3軸の回転角速度情報が得ら
れる。勿論任意の2軸あるいは1軸を選んで出力させ、
2軸ジャイロスコープや単軸ジャイロスコープを構成す
ることも可能である。
The difference signal between the detection terminals Det3 and Det4 includes the drive voltage and the Ωx information shown in FIG. This is synchronized with the synchronous detection circuit 13, the LPF 16, the integration circuit 1
9, the output of the driving circuit 24 is converted to DC and smoothed, and the output of the correction voltage generation circuit 26 is subtracted from the subtractor 2
9, only the component proportional to Ωx remains and is output to the Xout terminal. (Instead of detecting and converting the detection signal containing Ωx information to DC as in this example, and subtracting and correcting the drive component, the AC drive component whose phase and amplitude have been adjusted is subtracted from the signal before synchronous detection to obtain only the Ωx component. After that, synchronous detection may be performed.) In this manner, rotation angular velocity information of up to three axes can be obtained from a single vibrator. Of course, any two or one axis can be selected and output,
It is also possible to configure a two-axis gyroscope or a single-axis gyroscope.

【0016】図7には本発明の第1の実施の形態によっ
て得られた出力信号特性と、従来例によるものとを、比
較が容易なように表1〜表5に纒めたものを掲げる。表
1と表2とを比較すると、従来例(表1)においてはX
outとZoutに測定対象ではないΩz、Ωx信号が
約3%も混入していた。YoutにもΩz信号の約1%
の混入があった。しかるに表2(本発明)ではどの出力
にも他信号の混入は微々たるもので(1万分の1未
満)、全く問題がないことがわかる。また表3(従来
例)と表4(本発明)とによって各信号の出力感度を比
較すると、Ωx、Ωy、Ωzとも本発明の方が飛躍的に
(22倍〜60倍)高感度であることがわかる。また外
脚の先端の楕円運動の各方向の振動振幅(片側振幅)を
比較した表5を見ると、X方向の最大変位、Z方向の最
大変位共に、従来例に対して本発明の方が格段に大きな
振幅が得られることがわかり、このことは感度の大幅な
向上の理由であると考えられる。
FIG. 7 shows the output signal characteristics obtained by the first embodiment of the present invention and those of the conventional example combined in Tables 1 to 5 for easy comparison. . When Table 1 and Table 2 are compared, in the conventional example (Table 1), X
About 3% of Ωz and Ωx signals, which are not measurement targets, were mixed in out and Zout. About 1% of Ωz signal in Yout
Was mixed in. However, in Table 2 (the present invention), it can be seen that other signals are insignificantly mixed into any of the outputs (less than 1/10000), and that there is no problem at all. When the output sensitivities of the respective signals are compared according to Table 3 (conventional example) and Table 4 (the present invention), the present invention is significantly higher (22 to 60 times) in all of Ωx, Ωy, and Ωz. You can see that. Also, in Table 5 comparing the vibration amplitudes (one-sided amplitudes) of the tip of the outer leg in each direction of the elliptical motion, it can be seen that both the maximum displacement in the X direction and the maximum displacement in the Z direction of the present invention are greater than those of the conventional example. It can be seen that a much larger amplitude can be obtained, which is thought to be the reason for the significant improvement in sensitivity.

【0017】図6は本発明の振動ジャイロスコープ用三
脚音叉の電極配置の第2の実施の形態を示す断面図であ
る。本例においては外脚の一方4の電極を入れ換えて単
相の駆動ができるようにした。即ち駆動端子Drv1、
Drv2には逆相の駆動信号を与える必要はなく、単一
の正弦波を与えればよい。従って図2における反転増幅
回路25が不要になる。また検出端子Det3、Det
4の信号の差をとるため一方の信号を反転させて加算す
る場合の反転回路(図示せず)も不要となり、回路構成
が簡素化できることになる。
FIG. 6 is a sectional view showing a second embodiment of the electrode arrangement of a tripod tuning fork for a vibrating gyroscope according to the present invention. In the present embodiment, one electrode of one of the outer legs is replaced so that single-phase driving can be performed. That is, the drive terminal Drv1,
It is not necessary to provide the drive signal of the opposite phase to Drv2, and it is sufficient to provide a single sine wave. Therefore, the inverting amplifier circuit 25 in FIG. 2 becomes unnecessary. Also, detection terminals Det3, Det
An inverting circuit (not shown) for inverting and adding one of the signals to obtain the difference between the four signals is not required, and the circuit configuration can be simplified.

【0018】本発明の実施の形態は既述の例に限られな
い。三脚音叉の形状寸法、振動体の材質、電極膜や引出
線の構造、駆動回路や検出回路の構成、等に種々変更の
余地があることはもちろんである。
The embodiment of the present invention is not limited to the above-described example. Needless to say, there is room for various changes in the shape and dimensions of the tripod tuning fork, the material of the vibrating body, the structures of the electrode films and the lead wires, and the configurations of the drive circuit and the detection circuit.

【0019】[0019]

【発明の効果】本発明においては、外脚をX方向に駆動
して結合モードを励振する構成にしたので、電極の面積
も広くとれて有効利用され、構造も各脚について同様で
単純化され製造が容易になった。そして感度が飛躍的に
向上し、角速度検出の際の相互の信号漏れも極度に少な
くなった。そのため小型で支持の容易な1個の振動体を
用いて複数軸の角速度を検出できる、実用性の高い2軸
または3軸の多機能の振動ジャイロスコープを提供する
ことができる効果が得られた。
According to the present invention, since the outer legs are driven in the X direction to excite the coupling mode, the area of the electrodes can be increased and effectively used, and the structure of each leg can be similarly simplified. Manufacturing has become easier. The sensitivity has been dramatically improved, and mutual signal leakage during angular velocity detection has been extremely reduced. Therefore, there is obtained an effect that it is possible to provide a highly practical two-axis or three-axis multifunctional vibration gyroscope that can detect angular velocities of a plurality of axes using a single vibrator that is small and easily supported. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の振動ジャイロスコープの振動体の第1
の実施の形態を示し、(b)は形状を示す平面図、
(a)は脚の電極配置を示すA−A断面図である。
FIG. 1 shows a first example of a vibrating body of a vibrating gyroscope according to the present invention.
(B) is a plan view showing a shape,
(A) is AA sectional drawing which shows the electrode arrangement | positioning of a leg.

【図2】本発明の振動ジャイロスコープの駆動検出回路
の実施の形態を示すブロック図である。
FIG. 2 is a block diagram illustrating an embodiment of a drive detection circuit of the vibration gyroscope according to the present invention.

【図3】三脚音叉の4種の振動モードを説明するための
模式図である。
FIG. 3 is a schematic diagram for explaining four types of vibration modes of a tripod tuning fork.

【図4】(a)は振動ジャイロスコープの駆動モード、
(b)、(c)、(d)は駆動および各軸方向の検出に
用いる振動モードの関連を説明するための模式図であ
る。
FIG. 4A shows a driving mode of a vibration gyroscope,
(B), (c), (d) is a schematic diagram for explaining the relationship between the vibration modes used for driving and detection in each axis direction.

【図5】従来の振動ジャイロスコープ用三脚音叉の電極
配置を示す断面図である。
FIG. 5 is a sectional view showing an electrode arrangement of a conventional tripod tuning fork for a vibrating gyroscope.

【図6】本発明の振動ジャイロスコープ用三脚音叉の電
極配置の第2の実施の形態を示す断面図である。
FIG. 6 is a sectional view showing an electrode arrangement of a tripod tuning fork for a vibrating gyroscope according to a second embodiment of the present invention.

【図7】本発明によって得られた信号特性を従来例のそ
れと対比した各表を掲げたものである。
FIG. 7 is a table listing signal characteristics obtained by the present invention in comparison with those of a conventional example.

【符号の説明】[Explanation of symbols]

1 三脚音叉 2 基部 3、4 外脚 5 中脚 6 電極膜 11、12、13 同期検波回路 14、15、16 LPF 17、18、19 積分回路 20 参照電圧作成回路 21、22 調整回路 23 90°移相回路 24 駆動回路 25 反転増幅回路 26 補正電圧作成回路 27 加算器 28、29 減算器 Drv、Drv1、Drv2 駆動端子 Det1、Det2、Det3、Det4 検出端子 GND 接地端子 E 電界 Fcx、Fcy、Fcz コリオリ力 U3、U4、U5 脚の速度成分 X、Y、Z 座標軸 DESCRIPTION OF SYMBOLS 1 Tripod tuning fork 2 Base 3, 4 Outer leg 5 Middle leg 6 Electrode film 11, 12, 13 Synchronous detection circuit 14, 15, 16 LPF 17, 18, 19 Integration circuit 20 Reference voltage generation circuit 21, 22, Adjustment circuit 23 90 ° Phase shift circuit 24 Drive circuit 25 Inverting amplifier circuit 26 Correction voltage generation circuit 27 Adder 28, 29 Subtractor Drv, Drv1, Drv2 Drive terminal Det1, Det2, Det3, Det4 Detection terminal GND Ground terminal E Electric field Fcx, Fcy, Fcz Coriolis Force U3, U4, U5 Leg velocity component X, Y, Z coordinate axes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白鳥 典彦 長野県北佐久郡御代田町大字草越1173番地 1394 マイクロストーン株式会社内 (72)発明者 岡田 恵也 長野県北佐久郡御代田町大字草越1173番地 1394 マイクロストーン株式会社内 Fターム(参考) 2F105 BB02 BB03 BB13 BB15 CC01 CC06 CD02 CD06 CD11 CD13 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Norihiko Shiratori 1173 Kusakoshi, Oaza, Miyoda-cho, Kitasaku-gun, Nagano Prefecture Inside 1394 Micro Stone Co., Ltd. 1394 Micro Stone Co., Ltd. F term (reference) 2F105 BB02 BB03 BB13 BB15 CC01 CC06 CD02 CD06 CD11 CD13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 三脚型音叉の概形をなし両外脚は先端部
にそれぞれ突起部を有しており、三脚面に垂直な方向に
Z軸を、音叉軸に平行な方向にY軸を、Z軸とY軸とに
直交する方向にX軸をとったとき、両外脚がX方向に同
時に開閉するHSモードと、両外脚がZ方向に同じ向き
に変位し中脚がその反対向きに変位するVモードと、両
外脚がX方向で同じ向きに変位し中脚がその反対向きに
変位するHAモードを可能な振動モードとして有し、H
SモードとVモードの両モードは互いに結合が起こるよ
うに十分近い固有振動数を与えられており、前記両外脚
をX方向に開閉するように駆動したとき前記両モードが
同時に生起されて前記両外脚がXZ面内で楕円運動を行
うように励振される圧電材料より成る振動体を有し、前
記中脚の周囲に設けた電極膜により検出された前記中脚
のX方向の運動に基づく誘起電圧に対して90°の位相
差を与えた2系統の同期検波を行うことによって、前記
振動体のY軸回りおよびZ軸回りの回転運動によって現
れるコリオリ力の成分をそれぞれ分離して検出すること
を特徴とする振動ジャイロスコープ。
1. An outline of a tripod type tuning fork, both outer legs each having a projection at a tip end thereof, having a Z axis in a direction perpendicular to the tripod surface and a Y axis in a direction parallel to the tuning fork axis. When the X-axis is taken in a direction perpendicular to the Z-axis and the Y-axis, the HS mode in which both outer legs open and close simultaneously in the X-direction, and the two legs are displaced in the same direction in the Z-direction and the middle leg is opposite The vibration modes include a V mode in which the outer legs are displaced in the same direction and an HA mode in which both outer legs are displaced in the same direction in the X direction and the middle leg is displaced in the opposite direction.
The S mode and the V mode are given natural frequencies sufficiently close so that coupling occurs with each other, and when the outer legs are driven to open and close in the X direction, the two modes are simultaneously generated and the two modes are simultaneously generated. Both outer legs have a vibrating body made of a piezoelectric material that is excited so as to perform an elliptical motion in the XZ plane, and the outer leg has a movement in the X direction of the middle leg detected by an electrode film provided around the middle leg. By performing synchronous detection of two systems in which a phase difference of 90 ° is given to an induced voltage based on the induced voltage, components of Coriolis force appearing due to rotational motion of the vibrating body around the Y axis and the Z axis are separately detected. A vibratory gyroscope characterized by:
【請求項2】 前記HSモードが励振されているとき、
両外脚の撓み量の変化を検出することによって、前記振
動体のX軸回りの回転運動によって前記突起部に作用す
るY方向のコリオリ力の成分を更に検出することを特徴
とする請求項1の振動ジャイロスコープ。
2. When the HS mode is excited,
2. A component of a Coriolis force in the Y direction acting on the protrusion due to a rotational movement of the vibrating body around the X axis by detecting a change in the amount of deflection of both outer legs. Vibratory gyroscope.
【請求項3】 前記振動体の圧電材料は水晶であること
を特徴とする請求項1あるいは2の振動ジャイロスコー
プ。
3. The vibrating gyroscope according to claim 1, wherein the piezoelectric material of the vibrating body is quartz.
JP2001049383A 2001-01-22 2001-01-22 Vibration gyroscope Pending JP2002213963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001049383A JP2002213963A (en) 2001-01-22 2001-01-22 Vibration gyroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001049383A JP2002213963A (en) 2001-01-22 2001-01-22 Vibration gyroscope

Publications (1)

Publication Number Publication Date
JP2002213963A true JP2002213963A (en) 2002-07-31

Family

ID=18910492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001049383A Pending JP2002213963A (en) 2001-01-22 2001-01-22 Vibration gyroscope

Country Status (1)

Country Link
JP (1) JP2002213963A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010659A (en) * 2004-06-21 2006-01-12 Microstone Corp Oscillation gyroscope
EP1619472A2 (en) 2004-07-21 2006-01-25 Fujitsu Media Devices Limited Angular velocity sensor
JP2006125917A (en) * 2004-10-27 2006-05-18 Kyocera Kinseki Corp Angular velocity sensor
WO2007097098A1 (en) * 2006-02-21 2007-08-30 Microstone Corporation Angular speed sensor and method for measuring angular speed
US7320253B2 (en) 2004-04-01 2008-01-22 Fujitsu Media Devices Limited Stress detection method for sensor device with multiple axis sensor and sensor device employing this method
JP2008082730A (en) * 2006-09-26 2008-04-10 Japan Aviation Electronics Industry Ltd Vibrating gyroscope
JP2009244161A (en) * 2008-03-31 2009-10-22 Tdk Corp Angular velocity sensor element
KR100943120B1 (en) * 2007-02-23 2010-02-18 타마가와 세이키 가부시키가이샤 Manufacturing method of angular sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327362A (en) * 1995-05-29 1996-12-13 Alps Electric Co Ltd Vibration type gyro scope
JPH10163780A (en) * 1996-12-04 1998-06-19 Ngk Insulators Ltd Production of oscillator composed of piezoelectric single crystal
JP2000074673A (en) * 1998-08-27 2000-03-14 Miyota Kk Compound movement sensor
JP2001194155A (en) * 2000-01-13 2001-07-19 Yoshiro Tomikawa Motion sensor
JP2001215122A (en) * 2000-02-03 2001-08-10 Matsushita Electric Ind Co Ltd Angular velocity sensor
JP2002022445A (en) * 2000-07-03 2002-01-23 Yoshiro Tomikawa Motion sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327362A (en) * 1995-05-29 1996-12-13 Alps Electric Co Ltd Vibration type gyro scope
JPH10163780A (en) * 1996-12-04 1998-06-19 Ngk Insulators Ltd Production of oscillator composed of piezoelectric single crystal
JP2000074673A (en) * 1998-08-27 2000-03-14 Miyota Kk Compound movement sensor
JP2001194155A (en) * 2000-01-13 2001-07-19 Yoshiro Tomikawa Motion sensor
JP2001215122A (en) * 2000-02-03 2001-08-10 Matsushita Electric Ind Co Ltd Angular velocity sensor
JP2002022445A (en) * 2000-07-03 2002-01-23 Yoshiro Tomikawa Motion sensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7320253B2 (en) 2004-04-01 2008-01-22 Fujitsu Media Devices Limited Stress detection method for sensor device with multiple axis sensor and sensor device employing this method
US7472611B2 (en) 2004-04-01 2009-01-06 Fujitsu Limited Stress detection method for force sensor device with multiple axis sensor and force sensor device employing this method
JP2006010659A (en) * 2004-06-21 2006-01-12 Microstone Corp Oscillation gyroscope
EP1619472A2 (en) 2004-07-21 2006-01-25 Fujitsu Media Devices Limited Angular velocity sensor
JP2006125917A (en) * 2004-10-27 2006-05-18 Kyocera Kinseki Corp Angular velocity sensor
WO2007097098A1 (en) * 2006-02-21 2007-08-30 Microstone Corporation Angular speed sensor and method for measuring angular speed
JP2008082730A (en) * 2006-09-26 2008-04-10 Japan Aviation Electronics Industry Ltd Vibrating gyroscope
KR100943120B1 (en) * 2007-02-23 2010-02-18 타마가와 세이키 가부시키가이샤 Manufacturing method of angular sensor
US7877848B2 (en) 2007-02-23 2011-02-01 Tamagawa Seiki Co., Ltd Method for fabricating an angular velocity sensor
JP2009244161A (en) * 2008-03-31 2009-10-22 Tdk Corp Angular velocity sensor element
JP4626858B2 (en) * 2008-03-31 2011-02-09 Tdk株式会社 Angular velocity sensor element
US8061202B2 (en) 2008-03-31 2011-11-22 Tdk Corporation Angular velocity sensor element

Similar Documents

Publication Publication Date Title
JPH07113645A (en) Vibrating gyro
JP2001255152A (en) Piezoelectric vibrating gyroscope and its frequency adjusting method
JP2006201118A (en) Piezoelectric vibrating gyroscope element and gyro sensor
JP2002213963A (en) Vibration gyroscope
JP2005098983A (en) Oscillator, electronic device, and frequency adjusting method for oscillator
JP2007232710A (en) Oscillator for oscillating gyroscope
JP2001264071A (en) Vibrator driving device
JP3369033B2 (en) Vibratory gyroscope
JPH02218914A (en) Vibrating gyroscope
JP2006266969A (en) Tuning fork type piezo-electric oscillating gyroscope
JPH10206166A (en) Vibration-type gyroscope
JPH11230760A (en) Semiconductor vibration gyro sensor
JP4440682B2 (en) Vibrating gyro
JPH1019576A (en) Angular velocity detector
JP2006308359A (en) Inertia sensor element, and manufacturing method of inertia sensor element
JPH10260043A (en) Angular velocity detecting device
JPH08334332A (en) Vibration gyro
JP2004301510A (en) Tuning fork type angular velocity sensor
JP2004333460A (en) Oscillating gyroscope
JP3419632B2 (en) Angular velocity sensor element and angular velocity detecting device
JP2003194543A (en) Angular velocity sensor
JP3732601B2 (en) Energy-confined piezoelectric vibration gyroscope
JP4183272B2 (en) Angular velocity sensor and measuring method of angular velocity
JP3665978B2 (en) Energy-confined piezoelectric vibration gyroscope
JP2004301575A (en) Angular velocity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308