JP2002213452A - Method of manufacturing dynamic pressure bearing - Google Patents

Method of manufacturing dynamic pressure bearing

Info

Publication number
JP2002213452A
JP2002213452A JP2001011530A JP2001011530A JP2002213452A JP 2002213452 A JP2002213452 A JP 2002213452A JP 2001011530 A JP2001011530 A JP 2001011530A JP 2001011530 A JP2001011530 A JP 2001011530A JP 2002213452 A JP2002213452 A JP 2002213452A
Authority
JP
Japan
Prior art keywords
lubricating fluid
dynamic pressure
pressure bearing
vacuum chamber
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001011530A
Other languages
Japanese (ja)
Other versions
JP3972173B2 (en
Inventor
Takeshi Takahashi
高橋  毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2001011530A priority Critical patent/JP3972173B2/en
Publication of JP2002213452A publication Critical patent/JP2002213452A/en
Application granted granted Critical
Publication of JP3972173B2 publication Critical patent/JP3972173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a dynamic pressure bearing, capable of increasing efficiency of sealing work of a lubricating fluid in the dynamic pressure bearing, and capable of surely preventing mixing of air in the dynamic pressure bearing, after sealing the lubricating fluid. SOLUTION: Two vacuum chambers 1 and 2 communicated via an opening- closing valve 3 are prepared. The dynamic pressure bearing 6 is arranged in one vacuum chamber 1, in a state of closing the opening-closing valve 4 to be evacuated. The lubricating fluid 8 is housed in the other vacuum chamber 2 to be agitated and deaerated. After evacuating the chambers 1 and 2 up to the required pressure, the lubricating fluid 8 in the other vacuum chamber 2 is introduced into the first vacuum chamber 1 by opening the opening-closing valve 4, the lubricating fluid 8 is filled in the dynamic pressure bearing 6, and each time one dynamic pressure bearing 6 is processed, one vacuum chamber 1 required to be exposed to the atomosphere can be evacuated in the absence of the lubricating fluid 8 to shorten the required time. The other vacuum chamber 2 for housing the lubricating fluid 8 is not exposed to the atmosphere, so that air in the lubricating fluid 8 can be surely removed while performing agitation and deaeration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は動圧軸受の製造方法
に関し、更に詳しくは、動圧軸受の内部への潤滑流体の
充填を確実かつ能率的に行うことのできる動圧軸受の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a dynamic pressure bearing, and more particularly, to a method of manufacturing a dynamic pressure bearing capable of reliably and efficiently filling a lubricating fluid into a dynamic pressure bearing. .

【0002】[0002]

【従来の技術】動圧軸受においては、一般に、円筒体の
内面とその内部に挿入された軸の外面や、端面どうし
等、軸受を構成する2つの面のいずれか一方に動圧溝を
形成し、その間にオイル等の潤滑流体を封入した構造を
採る。そして、円筒体と軸などの部材間の相対回転時に
動圧溝のポンピング作用等によって潤滑流体の膜圧を発
生させ、その流体膜圧力によって部材間を非接触状態と
しつつ相対回転させることを可能とする。
2. Description of the Related Art In a dynamic pressure bearing, a dynamic pressure groove is generally formed on one of two surfaces constituting a bearing, such as an inner surface of a cylindrical body, an outer surface of a shaft inserted therein, and end faces. In the meantime, a structure in which a lubricating fluid such as oil is sealed is adopted. Then, during relative rotation between the cylindrical body and the member such as the shaft, a film pressure of the lubricating fluid is generated by a pumping action of the dynamic pressure groove, and the members can be relatively rotated while the members are in a non-contact state by the fluid film pressure. And

【0003】このような動圧軸受においては、従って、
軸受を構成する部材を組み立てた後に、その部材間の隙
間に、空気を含むことなくオイル等の潤滑流体を封入す
る必要がある。潤滑流体を動圧軸受内に封入すべく、部
材間の隙間に潤滑流体を充填する方法として、従来、図
2に模式的に示す方法が知られている。
In such a dynamic pressure bearing, therefore,
After assembling the members constituting the bearing, it is necessary to seal a lubricating fluid such as oil into the gap between the members without containing air. 2. Description of the Related Art As a method of filling a gap between members with a lubricating fluid in order to enclose the lubricating fluid in a dynamic pressure bearing, a method schematically illustrated in FIG. 2 is conventionally known.

【0004】すなわち、この従来方法では、真空チャン
バ21内に潤滑流体22を収容するとともに、その上方
に、内部隙間を有する動圧軸受23を吊り下げ、その状
態で真空ポンプによりチャンバ21内を脱気し、その
後、動圧軸受23を下降させて潤滑流体22に浸すこと
により、潤滑流体22が上記内部隙間の開口部を通じて
動圧軸受23内に入り込み、その内部隙間が潤滑流体に
よって充たされる。その後、真空チャンバ21を開放し
て大気圧として動圧軸受23を取り出すことにより、内
部隙間に潤滑流体が封入された動圧軸受が得られる。
That is, in this conventional method, a lubricating fluid 22 is accommodated in a vacuum chamber 21, and a dynamic pressure bearing 23 having an internal clearance is suspended above the lubricating fluid 22. In this state, the inside of the chamber 21 is removed by a vacuum pump. After that, the dynamic pressure bearing 23 is lowered and immersed in the lubricating fluid 22, whereby the lubricating fluid 22 enters the dynamic pressure bearing 23 through the opening of the internal gap, and the internal gap is filled with the lubricating fluid. Thereafter, the vacuum chamber 21 is opened and the dynamic pressure bearing 23 is taken out at atmospheric pressure, thereby obtaining a dynamic pressure bearing in which a lubricating fluid is sealed in an internal gap.

【0005】[0005]

【発明が解決しようとする課題】ところで、以上のよう
な従来の潤滑流体の充填方法によると、真空チャンバ2
1内に潤滑流体22を収容した状態でその内部の真空脱
気を行うために、真空チャンバ21内が所要の真空度に
達するまでに長時間を要するという問題がある。この真
空チャンバ21内の脱気は、1つの動圧軸受23を処理
するごとに行う必要があるため、その作業能率は相当に
低いものとなる。しかも、このような従来の方法におい
ては、潤滑流体の内部の空気を取りきれない場合があ
り、潤滑流体封入後の動圧軸受の品質の点において問題
があった。
According to the conventional lubricating fluid filling method described above, the vacuum chamber 2
Since vacuum lubrication inside the lubricating fluid 22 is performed in a state where the lubricating fluid 22 is contained in the vacuum chamber 1, it takes a long time until the inside of the vacuum chamber 21 reaches a required degree of vacuum. Since the deaeration in the vacuum chamber 21 needs to be performed each time one dynamic pressure bearing 23 is processed, the work efficiency is considerably low. In addition, in such a conventional method, the air inside the lubricating fluid may not be completely removed, and there is a problem in the quality of the dynamic pressure bearing after the lubricating fluid is filled.

【0006】本発明はこのような実情に鑑みてなされた
もので、動圧軸受内への潤滑流体の封入作業の能率化を
達成し、しかも潤滑流体封入後の動圧軸受内への空気の
混入を確実に防止することのできる動圧軸受の製造方法
の提供を目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and achieves a more efficient operation of enclosing a lubricating fluid in a dynamic pressure bearing. It is an object of the present invention to provide a method of manufacturing a dynamic pressure bearing capable of reliably preventing mixing.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の動圧軸受の製造方法は、動圧軸受の内部隙
間に潤滑流体を充填するに当たり、開閉弁を介して互い
に連通する2つの真空チャンバを用い、開閉弁を閉じた
状態で一方のチャンバに動圧軸受を収容して真空脱気す
るとともに、他方のチャンバに潤滑流体を収容して攪拌
脱気した後、開閉弁を開いて上記一方のチャンバ内に潤
滑流体を導くことにより、その潤滑流体を上記内部隙間
の開口部を通じて動圧軸受内に充填することによって特
徴づけられる。
In order to achieve the above object, a method of manufacturing a dynamic pressure bearing according to the present invention, when filling a lubricating fluid into an internal clearance of the dynamic pressure bearing, communicates with each other via an on-off valve. Using two vacuum chambers, with the on-off valve closed and one chamber containing a dynamic pressure bearing for vacuum degassing, and the other chamber containing a lubricating fluid and stirring and deaeration, then open the on-off valve. It is characterized by being opened to guide the lubricating fluid into the one chamber and filling the lubricating fluid into the dynamic pressure bearing through the opening of the internal gap.

【0008】本発明は、動圧軸受と潤滑流体とを個別に
脱気することによって、動圧軸受を収容する真空チャン
バ内の脱気に要する時間を短縮化するとともに、潤滑流
体についてはチャンバ内で攪拌しつつ脱気したものを、
開閉弁を開いて動圧軸受側に供給することで、内部の空
気が確実に取り除かれた潤滑流体を動圧軸受内に充填す
ることを可能としている。
According to the present invention, the time required for deaeration in the vacuum chamber accommodating the dynamic pressure bearing is reduced by separately degassing the dynamic pressure bearing and the lubricating fluid. What was degassed while stirring with
By opening the on-off valve and supplying the fluid to the dynamic pressure bearing side, the lubricating fluid from which the internal air has been reliably removed can be filled into the dynamic pressure bearing.

【0009】すなわち、本発明においては、開閉弁で仕
切られた2つの真空チャンバを用いて、一方の真空チャ
ンバには動圧軸受のみを収容して真空脱気を行う。これ
により、動圧軸受と潤滑流体とを収容して真空チャンバ
内の脱気を行う従来の方法に比して、チャンバ内を所要
の真空度にまで達するのに要する時間を大幅に短縮化す
ることができる。また、他方の真空チャンバには潤滑流
体を収容して攪拌脱気を行うことで、その内部の空気を
確実に除去することを可能とする。そして、各チャンバ
内を脱気した状態で開閉弁を開き、動圧軸受を収容して
いる真空チャンバ内に必要な量の潤滑流体を供給するこ
とにより、動圧軸受の内部隙間に開口部を通じて潤滑流
体を充填する。
That is, in the present invention, two vacuum chambers separated by an on-off valve are used, and one of the vacuum chambers accommodates only a dynamic pressure bearing to perform vacuum degassing. As a result, the time required to reach the required degree of vacuum in the chamber is significantly reduced as compared with the conventional method of degassing the inside of the vacuum chamber by containing the dynamic pressure bearing and the lubricating fluid. be able to. The other vacuum chamber contains a lubricating fluid and is agitated and deaerated so that the air inside the vacuum chamber can be reliably removed. Then, the on-off valve is opened in a state where each chamber is evacuated, and a necessary amount of lubricating fluid is supplied to the vacuum chamber containing the dynamic pressure bearing, so that the opening is formed in the internal gap of the dynamic pressure bearing. Fill with lubricating fluid.

【0010】ここで、本発明において、潤滑流体を収容
している他方の真空チャンバは、動圧軸受を収容して脱
気されている一方の真空チャンバに対して所要量の潤滑
流体を供給した後に開閉弁を閉じることで、動圧軸受の
交換時においても大気圧に曝されることがないため、当
初の脱気にのみ従来方法と同等の時間を要するものの、
動圧軸受の交換ごとの脱気は殆ど必要がないと同時に、
攪拌脱気を行うことと併せて、潤滑流体内の空気を確実
に取り除くことができる。
Here, in the present invention, a required amount of the lubricating fluid is supplied to the other vacuum chamber which accommodates the dynamic pressure bearing and which is degassed, in the other vacuum chamber which accommodates the lubricating fluid. By closing the on-off valve later, it will not be exposed to atmospheric pressure even when replacing the dynamic pressure bearing, but it takes the same time as the conventional method only for the initial degassing,
There is almost no need to deaerate each time the dynamic pressure bearing is replaced,
In addition to performing the stirring and deaeration, air in the lubricating fluid can be reliably removed.

【0011】なお、本発明において、開閉弁を開くこと
によって他方の真空チャンバ内の潤滑流体を一方の真空
チャンバ内に供給する手段としては、チャンバ相互の圧
力差および/またはチャンバ相互の位置(高低)に基づ
く重力を利用することができる。
In the present invention, the means for supplying the lubricating fluid in the other vacuum chamber into the one vacuum chamber by opening the on-off valve includes a pressure difference between the chambers and / or a position (high or low) between the chambers. ) Can be used.

【0012】[0012]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1は本発明方法を適用
して動圧軸受内に潤滑流体を充填する工程に用いる装置
の構成を示す模式図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of an apparatus used in a step of applying a lubricating fluid to a dynamic pressure bearing by applying the method of the present invention.

【0013】第1の真空チャンバ1と、その斜め上方に
配置された第2の真空チャンバ2とは、配管3を介して
連通しているとともに、その配管3には開閉弁4が設け
られており、この開閉弁4を開閉することによって、第
1の真空チャンバ1と第2の真空チャンバ2とを連通状
態または遮断状態のいずれかの状態とすることができ
る。また、第1の真空チャンバ1および第2の真空チャ
ンバ2は、それぞれ個別の真空ポンプ(いずれも図示せ
ず)によってその内部を脱気することができる。更に、
第2の真空チャンバ2には攪拌装置5が設けられてい
る。
The first vacuum chamber 1 and a second vacuum chamber 2 disposed diagonally above the first vacuum chamber 1 communicate with each other via a pipe 3, and the pipe 3 is provided with an on-off valve 4. By opening and closing the on-off valve 4, the first vacuum chamber 1 and the second vacuum chamber 2 can be in either a communication state or a cutoff state. The inside of the first vacuum chamber 1 and the second vacuum chamber 2 can be evacuated by separate vacuum pumps (both not shown). Furthermore,
A stirring device 5 is provided in the second vacuum chamber 2.

【0014】次に、以上の装置を用いて動圧軸受6内に
潤滑流体7を充填する手順について説明する。第1の真
空チャンバ1内に、内部隙間を有する動圧軸受6を、内
部隙間の開口部位を下に向けてトレイ7上に載せた状態
で配置するとともに、第2の真空チャンバ2内には潤滑
流体8を収容し、開閉弁4を閉じた状態で両チャンバ
1,2内を脱気する。その際、第1の真空チャンバ1内
に配置するトレイ7は、その上方に配管3の先端開口部
が位置するように位置決めするとともに、第2の真空チ
ャンバ2の攪拌装置5を駆動し、潤滑流体8を攪拌脱気
する。
Next, a procedure for filling the lubricating fluid 7 into the dynamic pressure bearing 6 using the above-described apparatus will be described. In the first vacuum chamber 1, a dynamic pressure bearing 6 having an internal gap is placed on a tray 7 with the opening portion of the internal gap facing down, and inside the second vacuum chamber 2. The two chambers 1 and 2 are evacuated while the lubricating fluid 8 is contained and the on-off valve 4 is closed. At this time, the tray 7 arranged in the first vacuum chamber 1 is positioned so that the tip opening of the pipe 3 is located above the tray 7, and the stirring device 5 of the second vacuum chamber 2 is driven to lubricate the tray. The fluid 8 is stirred and degassed.

【0015】各真空チャンバ1,2内がそれぞれにあら
かじめ設定されている圧力にまで脱気された後、開閉弁
4を開く。ここで、第1の真空チャンバ1の設定圧力
は、第2の真空チャンバ2の設定圧力に対して同等もし
くは若干低くすることにより、開閉弁4を開いたとき、
第2の真空チャンバ2内の潤滑流体8が、重力と、両チ
ャンバ1,2に圧力差をつけている場合にはそれに加え
てその圧力差によって第1の真空チャンバ1側へと流
れ、トレイ7内に流入する。トレイ7内に流入した潤滑
流体8は、動圧軸受6の開口部を介して内部隙間内へと
入り込んでいく。
After the inside of each of the vacuum chambers 1 and 2 is evacuated to a preset pressure, the on-off valve 4 is opened. Here, when the set pressure of the first vacuum chamber 1 is equal to or slightly lower than the set pressure of the second vacuum chamber 2, when the on-off valve 4 is opened,
The lubricating fluid 8 in the second vacuum chamber 2 flows toward the first vacuum chamber 1 due to gravity and the pressure difference between the two chambers 1 and 2 if a pressure difference is applied between the two chambers. 7 flows into. The lubricating fluid 8 flowing into the tray 7 enters into the internal gap through the opening of the dynamic pressure bearing 6.

【0016】第2の真空チャンバ2内の潤滑流体8のト
レイ7への流入量が、動圧軸受6の内部隙間を十分に満
たすだけの量に達したことを、例えばあらかじめ設定さ
れている開閉弁4の開放時間等によって認識した後、開
閉弁4を閉じる。その後、第1の真空チャンバ1を開放
してその内部を大気圧とし、動圧軸受6をトレイ7ごと
取り出すとともに,次の動圧軸受6を上記と同様にして
乾いたトレイ7上に載せた状態で第1の真空チャンバ1
内に配置し、この第1の真空チャンバ1の脱気を開始
し、上記と同じ手順を繰り返す。
The fact that the amount of the lubricating fluid 8 in the second vacuum chamber 2 flowing into the tray 7 has reached an amount sufficient to fill the internal clearance of the dynamic pressure bearing 6 is determined by, for example, a predetermined opening / closing operation. After recognition based on the opening time of the valve 4 and the like, the on-off valve 4 is closed. Thereafter, the first vacuum chamber 1 was opened to make the inside thereof atmospheric pressure, the dynamic pressure bearing 6 was taken out together with the tray 7, and the next dynamic pressure bearing 6 was placed on the dry tray 7 in the same manner as described above. The first vacuum chamber 1 in the state
And the deaeration of the first vacuum chamber 1 is started, and the same procedure as above is repeated.

【0017】以上の実施の形態において特に注目すべき
点は、潤滑流体8は第2の真空チャンバ2内に収容され
て攪拌脱気され、かつ、この第2の真空チャンバ2は、
第1の真空チャンバ1内が脱気された状態でのみ開閉弁
4を通じて当該第1の真空チャンバ1に連通するととも
に、第1の真空チャンバ1内の脱気時にはその内部に潤
滑流体8が存在しない点であり、これにより、大気圧と
真空脱気体とを繰り返す必要のある第1の真空チャンバ
1を所要圧力までの脱気に要する時間が、潤滑流体を収
容した状態で脱気する従来方法に比して大幅に短縮化さ
れ、しかも潤滑流体8を収容している第2の真空チャン
バ2は、工程中において大気に曝されることがないた
め、当初に所要の圧力にまで潤滑流体8を攪拌しつつ脱
気をしておけば後は殆ど脱気をする必要がなくなると同
時に、潤滑流体8内の空気をほぼ完全に取り除くことが
でき、内部隙間に空気の存在しない高品質の動圧軸受が
得られる。
It should be particularly noted in the above embodiment that the lubricating fluid 8 is accommodated in the second vacuum chamber 2 and agitated and degassed, and the second vacuum chamber 2
Only when the inside of the first vacuum chamber 1 is evacuated, it communicates with the first vacuum chamber 1 through the on-off valve 4, and when the inside of the first vacuum chamber 1 is evacuated, the lubricating fluid 8 is present therein. Therefore, the time required for degassing the first vacuum chamber 1 which needs to repeat the atmospheric pressure and the vacuum degassing to the required pressure is reduced by the conventional method of degassing with the lubricating fluid contained therein. The second vacuum chamber 2 which is greatly shortened as compared with the first embodiment and in which the lubricating fluid 8 is accommodated is not exposed to the atmosphere during the process. If the air is deaerated while stirring the air, it is not necessary to deaerate the air afterwards, and at the same time, the air in the lubricating fluid 8 can be almost completely removed. A pressure bearing is obtained.

【0018】[0018]

【発明の効果】以上のように、本発明によれば、動圧軸
受の内部隙間に潤滑流体を充填するに当たって、開閉弁
を介して連通する2つの真空チャンバを用い、開閉弁を
閉じた状態で、一方の真空チャンバには動圧軸受を配置
して脱気するとともに、他方の真空チャンバには潤滑流
体を収容して攪拌脱気し、双方のチャンバが脱気された
状態で開閉弁を開いて他方の真空チャンバ内の潤滑流体
を一方の真空チャンバ内へと導いて動圧軸受内に充填す
るので、1つの動圧軸受を処理するごとに大気に曝す必
要のある一方の真空チャンバについては、潤滑流体が存
在しない状態で脱気することができ、動圧軸受と潤滑流
体を収容した状態で脱気する従来方法に比して、所要の
圧力にまで脱気するための時間を大幅に短縮化すること
ができ、作業の能率化を達成することができる。
As described above, according to the present invention, when filling the internal clearance of the dynamic pressure bearing with the lubricating fluid, the two vacuum chambers communicating with each other through the on-off valve are used, and the on-off valve is closed. In one vacuum chamber, a dynamic pressure bearing is arranged to evacuate, and in the other vacuum chamber, a lubricating fluid is stored and agitated and evacuated, and the on-off valve is opened with both chambers evacuated. Since the lubricating fluid in the other vacuum chamber is opened to guide the lubricating fluid into the one vacuum chamber and fill the dynamic pressure bearing, one of the vacuum chambers that needs to be exposed to the atmosphere each time one dynamic pressure bearing is processed is described. Can deaerate in the absence of lubricating fluid, significantly increasing the time required to deaerate to the required pressure, compared to the conventional method of deaeration with the hydrodynamic bearing and lubricating fluid contained. Work time. It is possible to achieve the reduction.

【0019】また、潤滑流体を収容する他方の真空チャ
ンバについては、1つの動圧軸受の処理ごとに大気に曝
されることがなくなるため、当初に所要の圧力にまで脱
気した後は殆ど脱気をする必要がなくなり、潤滑流体は
攪拌脱気されることと併せて、内部の空気を確実に取り
除くことができ、内部隙間に空気の存在しない高品質の
動圧軸受を得ることができる。
Since the other vacuum chamber containing the lubricating fluid is not exposed to the atmosphere each time one dynamic pressure bearing is processed, the vacuum chamber is almost completely degassed after being degassed to the required pressure. This eliminates the need for care, and in addition to the lubricating fluid being agitated and degassed, the internal air can be reliably removed, and a high-quality dynamic pressure bearing free of air in the internal gap can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を適用して動圧軸受内に潤滑流体を
充填する工程に用いる装置の構成を示す模式図である。
FIG. 1 is a schematic diagram showing a configuration of an apparatus used in a step of filling a lubricating fluid into a dynamic pressure bearing by applying the method of the present invention.

【図2】動圧軸受内に潤滑流体を充填する従来の工程に
用いる装置の構成を示す模式図である。
FIG. 2 is a schematic diagram showing a configuration of an apparatus used in a conventional process of filling a lubricating fluid into a dynamic pressure bearing.

【符号の説明】[Explanation of symbols]

1 第1の真空チャンバ 2 第2の真空チャンバ 3 配管 4 開閉弁 5 攪拌装置 6 動圧軸受 7 トレイ 8 潤滑流体 DESCRIPTION OF SYMBOLS 1 1st vacuum chamber 2 2nd vacuum chamber 3 piping 4 on-off valve 5 stirrer 6 dynamic pressure bearing 7 tray 8 lubricating fluid

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 動圧軸受の内部隙間に潤滑流体を充填す
るに当たり、開閉弁を介して互いに連通する2つの真空
チャンバを用い、開閉弁を閉じた状態で一方のチャンバ
に動圧軸受を収容して真空脱気するとともに、他方のチ
ャンバに潤滑流体を収容して攪拌脱気した後、開閉弁を
開いて上記一方のチャンバ内に潤滑流体を導くことによ
り、その潤滑流体を上記内部隙間の開口部を通じて動圧
軸受内に充填することを特徴とする動圧軸受の製造方
法。
In filling an internal clearance of a dynamic pressure bearing with a lubricating fluid, two vacuum chambers communicating with each other via an on / off valve are used, and the dynamic pressure bearing is housed in one of the chambers with the on / off valve closed. After performing vacuum degassing and lubricating fluid being accommodated in the other chamber and stirring and degassing, the on-off valve is opened to guide the lubricating fluid into the one chamber, thereby allowing the lubricating fluid to flow through the internal clearance. A method of manufacturing a dynamic pressure bearing, wherein the dynamic pressure bearing is filled through an opening.
JP2001011530A 2001-01-19 2001-01-19 Manufacturing apparatus and manufacturing method of hydrodynamic bearing Expired - Fee Related JP3972173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001011530A JP3972173B2 (en) 2001-01-19 2001-01-19 Manufacturing apparatus and manufacturing method of hydrodynamic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001011530A JP3972173B2 (en) 2001-01-19 2001-01-19 Manufacturing apparatus and manufacturing method of hydrodynamic bearing

Publications (2)

Publication Number Publication Date
JP2002213452A true JP2002213452A (en) 2002-07-31
JP3972173B2 JP3972173B2 (en) 2007-09-05

Family

ID=18878661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001011530A Expired - Fee Related JP3972173B2 (en) 2001-01-19 2001-01-19 Manufacturing apparatus and manufacturing method of hydrodynamic bearing

Country Status (1)

Country Link
JP (1) JP3972173B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078291A1 (en) * 2004-02-18 2005-08-25 Seiko Instruments Inc. Device and method for filling working fluid in fluid dynamic pressure bearing and method of manufacturing fluid dynamic pressure bearing
US7168463B2 (en) 2004-02-23 2007-01-30 Nidec Corporation Method of charging dynamic-pressure bearing device with lubricating fluid, and method of inspecting dynamic-pressure bearing device
US7328511B2 (en) 2003-07-02 2008-02-12 Nidec Corporation Method for use in the manufacturing of a fluid dynamic pressure bearing
US7343682B2 (en) 2003-10-08 2008-03-18 Nidec Corporation Technique for filling bearing clearance of fluid-dynamic-pressure bearing unit with oil
US8643230B2 (en) 2009-05-14 2014-02-04 Sinfonia Technology Co., Ltd. Linear actuator and method of manufacturing linear actuator including a deaerating step
CN106050923A (en) * 2015-04-01 2016-10-26 日本电产株式会社 Bearing manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512997A (en) * 1990-11-28 1993-01-22 Toshiba Corp Method and device for manufacture x-ray tube with rotary anode
JPH0654916U (en) * 1987-08-12 1994-07-26 ディジタル イクイプメント コーポレーション Hydrodynamic bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654916U (en) * 1987-08-12 1994-07-26 ディジタル イクイプメント コーポレーション Hydrodynamic bearing
JPH0512997A (en) * 1990-11-28 1993-01-22 Toshiba Corp Method and device for manufacture x-ray tube with rotary anode

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7676928B2 (en) 2003-07-02 2010-03-16 Nidec Corporation Method for use in the manufacturing of a fluid dynamic pressure bearing
US7328511B2 (en) 2003-07-02 2008-02-12 Nidec Corporation Method for use in the manufacturing of a fluid dynamic pressure bearing
US7343682B2 (en) 2003-10-08 2008-03-18 Nidec Corporation Technique for filling bearing clearance of fluid-dynamic-pressure bearing unit with oil
JP2005233262A (en) * 2004-02-18 2005-09-02 Seiko Instruments Inc Working fluid injecting device and method for fluid dynamic-pressure bearing, and manufacturing method of fluid dynamic-pressure bearing
US7905019B2 (en) 2004-02-18 2011-03-15 Seiko Instruments Inc. Working fluid injection apparatus for a fluid dynamic pressure bearing
WO2005078291A1 (en) * 2004-02-18 2005-08-25 Seiko Instruments Inc. Device and method for filling working fluid in fluid dynamic pressure bearing and method of manufacturing fluid dynamic pressure bearing
JP4525102B2 (en) * 2004-02-18 2010-08-18 セイコーインスツル株式会社 Working fluid injection device and method for fluid dynamic pressure bearing, and method for manufacturing fluid dynamic pressure bearing
CN100365300C (en) * 2004-02-23 2008-01-30 日本电产株式会社 Method of charging dynamic-pressure bearing device with lubricating fluid, and method of inspecting dynamic-pressure bearing device
CN100376815C (en) * 2004-02-23 2008-03-26 日本电产株式会社 Lubricating-fluid infusion apparatus
US7168463B2 (en) 2004-02-23 2007-01-30 Nidec Corporation Method of charging dynamic-pressure bearing device with lubricating fluid, and method of inspecting dynamic-pressure bearing device
US8643230B2 (en) 2009-05-14 2014-02-04 Sinfonia Technology Co., Ltd. Linear actuator and method of manufacturing linear actuator including a deaerating step
CN106050923A (en) * 2015-04-01 2016-10-26 日本电产株式会社 Bearing manufacturing method
US9856913B2 (en) 2015-04-01 2018-01-02 Nidec Corporation Fluid dynamic bearing manufacturing method

Also Published As

Publication number Publication date
JP3972173B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
US8118576B2 (en) Oil rotary vacuum pump and manufacturing method thereof
US7676928B2 (en) Method for use in the manufacturing of a fluid dynamic pressure bearing
JPS62243982A (en) 2-stage vacuum pump and operating method thereof
JP2002213452A (en) Method of manufacturing dynamic pressure bearing
JP4478297B2 (en) Viscous fluid filling method of fluid bearing, motor
KR20060051788A (en) Compressor
US20220235772A1 (en) Vacuum pumping system having an oil-lubricated vacuum pump
US20050095159A1 (en) Method of Manufacturing, Including Method of Inspecting, Fluid-Dynamic-Pressure Bearing Units
TWI248664B (en) A system and a method for fluid filling wafer level packages
KR100797725B1 (en) System and Method for filling fluid into hydrodynamics bearings
JP7303529B2 (en) Filling device and filled container manufacturing method
JP4525102B2 (en) Working fluid injection device and method for fluid dynamic pressure bearing, and method for manufacturing fluid dynamic pressure bearing
JPS61111130A (en) Method and apparatus for mixing liquid
JPS6189999A (en) Method of charging oil to closed container
JP7324544B1 (en) Ultrasonic cleaning equipment equipped with degassing mechanism for cleaning solution
JP4020416B2 (en) Fluid lubricant injection device
JP4073698B2 (en) Hydraulic oil filling system and method in a hydraulic pump
KR20190129176A (en) Rotary vane type vacuum pump
CN219176553U (en) Oil injection mechanism of sewage pump
JP2001082401A (en) Liquid filling method of pressure vessel
JP6450627B2 (en) Anti-vibration device manufacturing method
JPS6332187A (en) Shaft sealing method and device for screw vacuum pump
JP3788860B2 (en) Slide bearing device
JP3901522B2 (en) Lubricating oil lubrication jig
JP2001280262A (en) Gear pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees