JP4478297B2 - Viscous fluid filling method of fluid bearing, motor - Google Patents

Viscous fluid filling method of fluid bearing, motor Download PDF

Info

Publication number
JP4478297B2
JP4478297B2 JP2000184208A JP2000184208A JP4478297B2 JP 4478297 B2 JP4478297 B2 JP 4478297B2 JP 2000184208 A JP2000184208 A JP 2000184208A JP 2000184208 A JP2000184208 A JP 2000184208A JP 4478297 B2 JP4478297 B2 JP 4478297B2
Authority
JP
Japan
Prior art keywords
bearing
fluid
viscous fluid
lubricating oil
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000184208A
Other languages
Japanese (ja)
Other versions
JP2002005170A (en
Inventor
進 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Japan Advanced Technology Co Ltd
Original Assignee
Alphana Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alphana Technology Co Ltd filed Critical Alphana Technology Co Ltd
Priority to JP2000184208A priority Critical patent/JP4478297B2/en
Publication of JP2002005170A publication Critical patent/JP2002005170A/en
Application granted granted Critical
Publication of JP4478297B2 publication Critical patent/JP4478297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Abstract

PROBLEM TO BE SOLVED: To provide a viscous fluid charging method of a fluid bearing generating no irregulality in generating of dynamic pressure, by certainly removing bubble in lubricating oil 25, viscous fluid generating the dynamic pressure, and certainly charging the lubricating oil in a predetermined space. SOLUTION: In this charging method, pressure of environment around an assembly body into which the lubricating oil 25 has been injected is reduced to previously exhaust air inside the bearing (process shown in Fig. 1 (B)), and then the pressure of the environment around the assembly body is returned to a normal value to press and charge the viscous fluid into the predetermined space (process shown in Fig. 1 (C)).

Description

【0001】
【発明の属する技術分野】
本発明は、例えばハードディスクドライブ(HDD)用又はCD−ROMドライブ用のモータ、このモータを製造する際の流体軸受の粘性流体充填方法に関する。
【0002】
【従来の技術】
従来、軸体(軸、シャフト)と、軸体が挿入される孔部(挿入穴)を有する軸受体(軸受、スリーブ、流体軸受部)と、軸体と軸受体とが向かい合う所定空間内に保持される粘性流体(潤滑油、空気等)とを備え、軸体と軸受体との相対回転時に粘性流体内に生じる動圧により軸受体が軸体を回転自在に支承する流体軸受を有するモータが周知である。
【0003】
また従来、動圧を発生する粘性流体として潤滑油等の液状の粘性流体を流体軸受に注入する方法として以下のものが知られていた。すなわち
(1)軸受装置全体を潤滑油中に浸したのち装置全体を減圧し潤滑油を注入する方法(米国特許5112142号公報に記載、以下「第1の従来技術」と記す)、
(2)潤滑油を軸受組立て体の外周面に塗布し毛細管現象により注入する方法(以下「第2の従来技術」と記す)、
(3)軸受装置を組立てる前に流体軸受を構成する部品に潤滑油をあらかじめ塗布しておく方法(以下「第3の従来技術」と記す)、
(4)軸受装置の組立て後に常圧環境下において軸受開口部から潤滑油を注入し浸透させる方法(以下「第4の従来技術」と記す)、
(5)軸受を構成する部品を組立てながら粘性流体である潤滑油を数回塗布する方法(以下「第5の従来技術」と記す)等である。
【0004】
【発明が解決しようとする課題】
HDD用モータやCD−ROMドライブ用モータに流体軸受を使用する場合のモータ組立て上の重要な点は、動圧発生部の潤滑油中に気泡がなく、モータの外周部に不必要かつ有害な潤滑油が残らない様にすることである。
そうすべき理由は、潤滑油中に気泡が残ると動圧の発生にムラが生じて流体軸受として正常に機能しない恐れがあり、またモータ外周部に不必要な潤滑油が残留すると、不浄物質となってディスク記録媒体等に付着しディスク媒体ドライブ装置の機能、性能を阻害する恐れがあるからである。
【0005】
然しながら上記した第1の従来技術は、軸受装置表面全体以外の不要部分に付着した潤滑油の除去が必要であるという問題があり、軸受間隙部分以外の不要な潤滑油を完全に除去する事は簡単ではなかった。
このため特開平8−270653号公報の請求項3に記載の技術が考案されているが、工程が増えて効率が悪くなるという、新たな問題を生じさせた。
【0006】
また上記第2の従来技術は、間隙部分の全てに潤滑油を満たすことが難しく潤滑油の満たされない部分に気泡が残ってしまい、気泡を除去する事が出来ない、という問題があった。
さらに上記第3の従来技術は、塗布むらや不均一の塗布になってしまう恐れがあり作業に熟練が必要であり、上記第4の従来技術は組立て時間が余計掛かり、上記第5の従来技術は余分な工数を要する、という其々の問題があった。
【0007】
そこで、本発明は、上記した問題点に鑑みてなされたものであり、特に開穴部に挿入された軸体の外周面に添接しつつ開穴部周縁へ粘性流体を所定量滴下する滴下ステップと、次に、粘性流体を滴下した組立体の外部を減圧状態にして、開穴部側から挿入穴内の空気を排気する排気ステップと、次に、減圧状態が常圧状態に復帰する際の大気圧で開穴部周縁の粘性流体を挿入穴内に充填する充填ステップとを有することにより、流体軸受に保持される粘性流体中の不要、有害な気泡を確実に除去し、粘性流体が充填されるべき空間に隙間無く確実に粘性流体を充填し、また余剰量の粘性流体を容易に除去可能として、動圧にムラが生じる恐れがなく、また潤滑油等の粘性流体が不浄物質となってディスク記録媒体を汚染する恐れもない流体軸受の粘性流体充填方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上述した課題を解決するために、本発明は、下記(1)、(2)の流体軸受の粘性流体充填方法、モータを提供する。
(1) 軸体(軸、シャフト)2と、
開穴部(孔部1a上方の開口部)から底部側(図6 モータベース側)に向かって回転可能なように挿入される前記軸体2の外周面に近接する内周面部(孔部1a内周面)と、この内周面部に連設しかつ前記軸体2の外周面に所定の空隙をもって対向する溜まり部(軸受1内部の孔部1a下方の空間)とを備えた挿入穴(孔部)1aを有する流体軸受部(軸受)1とを具備した組立体における、前記開穴部周縁に滴下した粘性流体(潤滑油)25で前記挿入穴内を充填する流体軸受の粘性流体充填方法であって、
前記開穴部に挿入された前記軸体2の外周面に添接しつつ前記開穴部周縁へ粘性流体25を所定量滴下する滴下ステップ(図1(A)図示の工程)と、
次に、粘性流体25を滴下した前記組立体の外部を減圧状態にして、前記開穴部側から前記挿入穴1a内の空気を排気する排気ステップ(図1(B)図示の工程)と、
次に、減圧状態が常圧状態に復帰する際の大気圧で前記開穴部周縁の粘性流体25を前記挿入穴1a内に充填する充填ステップ(図1(C)図示の工程)とを有することを特徴とする流体軸受の粘性流体充填方法。
(2) 請求項1記載の流体軸受の粘性流体充填方法によって粘性流体(潤滑油)25が充填された前記組立体を用いて構成されたモータであって、
前記組立体の底部(図6 軸受1の底部)を固着したステータ(図6 モータベース)9を備えたことを特徴とするモータ(図6 CD−ROMドライブ用スピンドルモータ)100。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態につき好ましい実施例を、図1乃至図6を用いて説明を行う。
図1は本発明の流体軸受の粘性流体充填方法、モータの一実施例における粘性流体充填を行なう各工程の説明図、図2は図1のモータにおいて潤滑油を供給するための凹部を設けた構成の流体軸受けの断面図、図3は本発明のモータの一実施例において撥油剤塗布領域を有する流体軸受けの断面図、図4は図1のモータの流体軸受けの組立図、図5は図1のモータにおいて遠心力により余剰の潤滑油を除去する工程の説明図、図6は図1のモータの断面図である。前述したものと同一部分には同一符号を付しその説明を省略する。
【0010】
まず、本実施例のモータであるCD−ROMドライブ用スピンドルモータ100の構造を図6の断面図を用いて説明する。
【0011】
図6において、スピンドルモータ100の軸受1の下端(底部)は鉄ベースプリント基板で形成されたモータベース9に固定されている。
また軸受1と、軸受1に形成された孔部1aに挿入される軸2とが流体軸受を構成している。
【0012】
ラジアル方向に軸2を支承する流体軸受けであるラジアル軸受は、回転時に動圧を発生する動圧溝部8が軸受1内周及び/又は軸2外周に形成され、軸2の回転時に粘性流体中に発生する動圧により、軸受1が軸2を回転自在に支承する構成としている。
なお、図6図示の動圧溝部8は平面的に模式的に描いてあるものである。
【0013】
スラスト方向に軸2を支承する流体軸受けであるスラスト軸受5は、軸2の下端に形成されたスラスト部の其々上下の対応面にスパイラル状動圧溝(不図示)を加工し流体軸受を構成している。(上下の方向は図6図示の姿勢を基準としている。以下同様)
【0014】
なお動圧溝はどちらの面に加工しても同様な効果が得られる。
軸2と軸受1の間の所定空間内には潤滑油が充填され軸2の回転により潤滑油内部に動圧が生じ、軸受装置として機能する。
【0015】
流体軸受の潤滑油は軸2又は軸受1の回転により軸受外部へ流出すると回転が不可能となるため、流体軸受けの上下にシール部を構成し流出を防いでいる。
【0016】
モータベース9には軸受1に対し同心状にコイル13を巻回したコア12が固定され、流体軸受により回転自在に保持されたロータ22には、ロータヨーク17を有し下部内周側にリング状磁石16が固着されている。
【0017】
次にスピンドルモータ100の流体軸受における潤滑油の、充填をなすべき所定空間内への充填方法について説明する。
【0018】
まず図4の組立図により流体軸受けの構成を説明すると、軸受1は孔部1a内周部に2個所の動圧溝部8が形成され、軸2下端には上下の面を有するスラスト部23を備え、プレート3は軸2のスラスト部23下面と対向する面に動圧溝を形成している。
スラスト部23を収納する軸受1内部の孔部1aは、他の部位より大きな径を有する空間を形成し、潤滑油25が充填される溜まり部となっている。
【0019】
図4図示の流体軸受けを組立てるに際しては、軸受1の孔部1aに軸2を挿入しプレート3を下から嵌合し、プレート3の外周を軸受1下部に接着又はカシメ等で固定する。
【0020】
次に組立て後の流体軸受けに潤滑油を注入、充填する方法を図1を用いて順を追って説明する。
【0021】
図1(A)は、軸受1と軸2及びプレート3の間隙部(潤滑油を保持すべき所定空間)に潤滑油25を供給する説明図である。図示の如く軸受1を低速で回転させながらディスペンサー4を軸2に添接しつつ潤滑油25を孔部1aの上方にある開口部周縁に静かに滴下して供給する。
この時点で軸受隙間には空気があり、また潤滑油25は軸受の間隙部の入り口付近にとどまり所定空間全体へ十分に行き渡っていない。
【0022】
次に図1(B)のように、潤滑油を注入した組立て体を、密閉した真空用チャンバー7に格納し、真空ポンプ6で内部の空気を0.01〜0.001Paまで減圧する。これにより軸受隙間部に残存した空気が気泡として除去(排気)される。
【0023】
続いて図1(C)のように、絞り弁24を開け真空用チャンバー7に空気を入れて、内部の圧力を徐々に常圧に復帰させる。
チャンバー7内に戻る空気によって、潤滑油をより内部へ押しこめるよう外部から圧力が加わるので、潤滑油が流体軸受けとして潤滑油を保持すべき所定空間(間隙部、孔部1a内部)の隅々まで行き渡り押圧充填がなされる。
充填後の潤滑油内部に残る気泡は1%以下となる。またこの時温度を60℃〜100℃に保持すればさらに気泡の量が減少する。
【0024】
次に図1(D)のように、所定空間である間隙部を満たし溢れ出た余剰量の潤滑油を真鍮又は銅製等の金属あるいはビニール等樹脂性の管14で減圧吸引10する。吸引された余剰分の潤滑油は潤滑油溜り18に溜まる。
以上の方法により潤滑油内部に残留する気泡の量を局限し、流体軸受けとして必要な所定空間内全てにもれなく潤滑油を充填し、余剰分の潤滑油を除去した流体軸受けの組立て体が完成する。
【0025】
図2は本実施例の他の好ましい構成として、潤滑油供給する部位である孔部1a開口部周囲に凹部11を設け、より多くの潤滑油を流れ出ることなく効率良く注入可能とするとともに、余剰量の潤滑油を除去しやすくした構成の流体軸受け組立て体の断面図である。
【0026】
図3は本発明の他の実施例として、孔部1a開口部の周囲に撥油剤20を塗付した撥油剤塗布領域を設けた流体軸受60として構成し、スピンドルモータの実使用回転数よりも低速で回転させながら間隙部に潤滑油を注入している状態の説明図である。
図3図示の流体軸受60を搭載したスピンドルモータは、軸受け1の開口端部(孔部1aの周辺)に撥油剤20を塗布してあるので端部の残存潤滑油は、既に所定空間内に充填された必要量と分離され容易に除去出来る効果を発揮する。
【0027】
図5は、潤滑油25を充填すべき所定空間である間隙部を満たし溢れ出た余剰量の潤滑油を除去する本実施例の他の方法を説明する図であり、図示の如く軸受け組立て体を覆う潤滑油飛散防止カバー50内で、軸受の実使用回転数よりさらに早く回転させ、回転遠心力により潤滑油を除去する工程の説明図である。
図5図示の方法によれば、遠心力により、より強力確実に潤滑油を除去でき、また先に説明したノズルで吸い取る方法と比較して作業が単純化され、より自動化が容易である、等の効果がある。
【0028】
以上説明した本発明の実施例によれば、潤滑油中の気泡を少なくすることが出来、軸受間隙部分の体積のバラツキに関係なく潤滑油を満たすことが出来る効果がある。更に潤滑油の中に浸漬する方法と異なり、潤滑油供給部のみ、潤滑油を除去すれば良いので作業が簡単で済む。潤滑油供給部に撥油剤を塗布する事により簡単確実に潤滑油を除去出来る、等の効果が得られる。
【0029】
【発明の効果】
以上詳述した如く、本発明は、特に開穴部に挿入された軸体の外周面に添接しつつ開穴部周縁へ粘性流体を所定量滴下する滴下ステップと、次に、粘性流体を滴下した組立体の外部を減圧状態にして、開穴部側から挿入穴内の空気を排気する排気ステップと、次に、減圧状態が常圧状態に復帰する際の大気圧で開穴部周縁の粘性流体を挿入穴内に充填する充填ステップとを有することにより、流体軸受に保持される粘性流体中の不要、有害な気泡を確実に除去し、粘性流体が充填されるべき空間に隙間無く確実に粘性流体を充填し、また余剰量の粘性流体を容易に除去可能として、動圧にムラが生じる恐れがなく、また潤滑油等の粘性流体が不浄物質となってディスク記録媒体を汚染する恐れもない流体軸受の粘性流体充填方法を提供することができる。
【図面の簡単な説明】
【図1】 本発明の流体軸受の粘性流体充填方法、モータの一実施例における粘性流体充填を行なう各工程の説明図である。
【図2】 図1のモータにおいて潤滑油を供給するための凹部を設けた構成の流体軸受けの断面図である。
【図3】 本発明のモータの一実施例において撥油剤塗布領域を有する流体軸受けの断面図である。
【図4】 図1のモータの流体軸受けの組立図である。
【図5】 図1のモータにおいて遠心力により余剰の潤滑油を除去する工程の説明図である。
【図6】 図1のモータの断面図である。
【符号の説明】
1 軸受(流体軸受部)
1a 孔部(挿入穴)
2 軸(軸体)
9 モータベース(ステータ)
25 潤滑油(粘性流体)
100 CD−ROMドライブ用スピンドルモータ(モータ)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a motor for a hard disk drive (HDD) or a CD-ROM drive, for example, and a viscous fluid filling method of a fluid bearing when manufacturing the motor.
[0002]
[Prior art]
Conventionally, a shaft body (shaft, shaft), a bearing body (bearing, sleeve, fluid bearing portion) having a hole (insertion hole) into which the shaft body is inserted, and a predetermined space where the shaft body and the bearing body face each other. A motor having a fluid bearing having a viscous fluid (lubricating oil, air, etc.) to be held, and the bearing body rotatably supporting the shaft body by dynamic pressure generated in the viscous fluid when the shaft body and the bearing body rotate relative to each other Is well known.
[0003]
Conventionally, the following methods have been known as a method of injecting a liquid viscous fluid such as lubricating oil into a fluid bearing as a viscous fluid that generates dynamic pressure. That is, (1) a method of immersing the entire bearing device in lubricating oil and then depressurizing the entire device and injecting lubricating oil (described in US Pat. No. 5,112,142, hereinafter referred to as “first prior art”),
(2) A method in which lubricating oil is applied to the outer peripheral surface of the bearing assembly and injected by capillary action (hereinafter referred to as “second prior art”),
(3) A method in which lubricating oil is applied in advance to components constituting the fluid bearing before the bearing device is assembled (hereinafter referred to as “third prior art”),
(4) A method of injecting and infiltrating lubricating oil from the bearing opening under the normal pressure environment after the assembly of the bearing device (hereinafter referred to as “fourth prior art”),
(5) A method of applying lubricating oil, which is a viscous fluid, several times while assembling parts constituting the bearing (hereinafter referred to as “fifth prior art”).
[0004]
[Problems to be solved by the invention]
When fluid bearings are used for HDD motors and CD-ROM drive motors, the important points in motor assembly are that there are no bubbles in the lubricating oil of the dynamic pressure generating part, which is unnecessary and harmful to the outer periphery of the motor. It is to prevent the lubricant from remaining.
The reason for this is that if air bubbles remain in the lubricating oil, the generation of dynamic pressure may become uneven and the fluid bearing may not function properly.If unnecessary lubricating oil remains on the outer periphery of the motor, it will become an unclean substance. This is because it may adhere to the disk recording medium or the like and hinder the function and performance of the disk medium drive device.
[0005]
However, the first prior art described above has a problem that it is necessary to remove the lubricating oil adhering to the unnecessary portion other than the entire surface of the bearing device, and it is impossible to completely remove the unnecessary lubricating oil other than the bearing gap portion. It was not easy.
For this reason, although the technique of Claim 3 of Unexamined-Japanese-Patent No. 8-270653 is devised, the new problem that the number of processes increased and efficiency deteriorated was caused.
[0006]
In addition, the second prior art has a problem that it is difficult to fill the entire portion of the gap with the lubricating oil, and bubbles remain in the portion where the lubricating oil is not filled, so that the bubbles cannot be removed.
Further, the third conventional technique may cause uneven coating or uneven application, and requires skill in the work. The fourth conventional technique requires extra assembly time, and the fifth conventional technique. Had their own problems of requiring extra man-hours.
[0007]
Therefore, the present invention has been made in view of the above-described problems, and in particular, a dropping step for dropping a predetermined amount of viscous fluid onto the periphery of the hole portion while being in contact with the outer peripheral surface of the shaft body inserted into the hole portion. Next, the outside of the assembly into which the viscous fluid is dropped is decompressed, and the exhaust step of exhausting the air in the insertion hole from the opening portion side, and then when the decompressed state returns to the normal pressure state The filling step fills the insertion hole with the viscous fluid at the periphery of the hole at atmospheric pressure, so that unnecessary and harmful bubbles in the viscous fluid held by the fluid bearing are reliably removed and the viscous fluid is filled. The space to be filled is surely filled with viscous fluid, and excess viscous fluid can be easily removed, there is no risk of uneven dynamic pressure, and viscous fluid such as lubricating oil becomes an unclean substance. Fluid shaft that does not contaminate disc recording media And to provide a method for the viscous fluid-filled.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a viscous fluid filling method for a fluid bearing and a motor according to the following (1) and (2).
(1) A shaft body (shaft, shaft) 2;
An inner peripheral surface portion (hole portion 1a) close to the outer peripheral surface of the shaft body 2 inserted so as to be rotatable from the opening portion (opening portion above the hole portion 1a) toward the bottom side (motor base side in FIG. 6). An insertion hole (inner peripheral surface) and a reservoir (a space below the hole 1a inside the bearing 1) that is continuous with the inner peripheral surface and faces the outer peripheral surface of the shaft body 2 with a predetermined gap. Viscous fluid filling method for a fluid bearing in which the inside of the insertion hole is filled with a viscous fluid (lubricating oil) 25 dropped on the periphery of the opening portion in an assembly including a fluid bearing portion (bearing) 1 having a hole portion 1a. Because
A dropping step (step shown in FIG. 1A) in which a predetermined amount of the viscous fluid 25 is dropped on the periphery of the opening portion while being in contact with the outer peripheral surface of the shaft body 2 inserted into the opening portion;
Next, an evacuation step (step shown in FIG. 1 (B)) in which the outside of the assembly into which the viscous fluid 25 is dropped is decompressed and the air in the insertion hole 1a is exhausted from the opening portion side;
Next, there is a filling step (step shown in FIG. 1C) that fills the insertion hole 1a with the viscous fluid 25 at the periphery of the opening at atmospheric pressure when the reduced pressure state returns to the normal pressure state. A viscous fluid filling method for a fluid dynamic bearing.
(2) A motor configured using the assembly filled with a viscous fluid (lubricating oil) 25 by the viscous fluid filling method for a hydrodynamic bearing according to claim 1,
A motor (FIG. 6 spindle motor for CD-ROM drive) 100, comprising a stator (FIG. 6 motor base) 9 to which the bottom of the assembly (FIG. 6 bottom of the bearing 1) is fixed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred example according to the embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is an explanatory view of each step of filling a viscous fluid in a fluid bearing method and motor according to an embodiment of the present invention, and FIG. 2 is provided with a recess for supplying lubricating oil in the motor of FIG. FIG. 3 is a sectional view of a fluid bearing having an oil repellent application region in one embodiment of the motor of the present invention, FIG. 4 is an assembly view of the fluid bearing of the motor of FIG. 1, and FIG. FIG. 6 is a cross-sectional view of the motor of FIG. 1, and FIG. 6 is an explanatory view of a process for removing excess lubricating oil by centrifugal force in the motor of 1. The same parts as those described above are denoted by the same reference numerals, and the description thereof is omitted.
[0010]
First, the structure of a spindle motor 100 for a CD-ROM drive which is a motor of this embodiment will be described with reference to a cross-sectional view of FIG.
[0011]
In FIG. 6, the lower end (bottom) of the bearing 1 of the spindle motor 100 is fixed to a motor base 9 formed of an iron base printed board.
Further, the bearing 1 and the shaft 2 inserted into the hole 1a formed in the bearing 1 constitute a fluid bearing.
[0012]
In a radial bearing that is a fluid bearing that supports the shaft 2 in the radial direction, a dynamic pressure groove portion 8 that generates dynamic pressure during rotation is formed in the inner periphery of the bearing 1 and / or the outer periphery of the shaft 2. The bearing 1 is configured to rotatably support the shaft 2 by the dynamic pressure generated in the shaft.
The dynamic pressure groove 8 shown in FIG. 6 is schematically drawn in a plan view.
[0013]
A thrust bearing 5, which is a fluid bearing that supports the shaft 2 in the thrust direction, is formed by processing spiral dynamic pressure grooves (not shown) on the upper and lower corresponding surfaces of the thrust portion formed at the lower end of the shaft 2, respectively. It is composed. (Up and down directions are based on the posture shown in FIG. 6. The same applies hereinafter)
[0014]
The same effect can be obtained regardless of which surface the dynamic pressure groove is processed.
Lubricating oil is filled in a predetermined space between the shaft 2 and the bearing 1, and dynamic pressure is generated inside the lubricating oil by the rotation of the shaft 2, and functions as a bearing device.
[0015]
Since the lubricating oil of the fluid bearing is not able to rotate when the shaft 2 or the bearing 1 flows out of the bearing due to the rotation of the shaft 2 or the bearing 1, seal portions are formed on the upper and lower sides of the fluid bearing to prevent the fluid from flowing out.
[0016]
A core 12 around which a coil 13 is wound concentrically with the bearing 1 is fixed to the motor base 9, and a rotor 22 rotatably held by a fluid bearing has a rotor yoke 17 and a ring shape on the lower inner peripheral side. A magnet 16 is fixed.
[0017]
Next, a method of filling the predetermined space to be filled with the lubricating oil in the fluid dynamic bearing of the spindle motor 100 will be described.
[0018]
First, the structure of the fluid bearing will be described with reference to the assembly diagram of FIG. 4. In the bearing 1, two dynamic pressure grooves 8 are formed in the inner peripheral portion of the hole 1a, and a thrust portion 23 having upper and lower surfaces is formed at the lower end of the shaft 2. The plate 3 has a dynamic pressure groove formed on a surface thereof facing the lower surface of the thrust portion 23 of the shaft 2.
The hole 1 a inside the bearing 1 that houses the thrust portion 23 forms a space having a larger diameter than other portions, and serves as a reservoir portion filled with the lubricating oil 25.
[0019]
When the fluid bearing shown in FIG. 4 is assembled, the shaft 2 is inserted into the hole 1a of the bearing 1 and the plate 3 is fitted from below, and the outer periphery of the plate 3 is fixed to the lower portion of the bearing 1 by bonding or caulking.
[0020]
Next, a method for injecting and filling lubricating oil into the fluid bearing after assembly will be described in order with reference to FIG.
[0021]
FIG. 1A is an explanatory diagram for supplying the lubricating oil 25 to the gap portion (predetermined space in which the lubricating oil should be retained) between the bearing 1 and the shaft 2 and the plate 3. Lubricating oil 25 is gently dripped and supplied to the periphery of the opening above the hole 1a while the dispenser 4 is in contact with the shaft 2 while rotating the bearing 1 at a low speed as shown in the figure.
At this time, there is air in the bearing gap, and the lubricating oil 25 stays in the vicinity of the entrance of the gap portion of the bearing and does not sufficiently reach the entire predetermined space.
[0022]
Next, as shown in FIG. 1B, the assembly into which the lubricating oil has been injected is stored in a sealed vacuum chamber 7, and the internal air is reduced to 0.01 to 0.001 Pa by the vacuum pump 6. Thereby, the air remaining in the bearing gap is removed (exhausted) as bubbles.
[0023]
Subsequently, as shown in FIG. 1C, the throttle valve 24 is opened, air is introduced into the vacuum chamber 7, and the internal pressure is gradually returned to normal pressure.
The air returning into the chamber 7 applies pressure from the outside so as to push the lubricating oil further into the interior, so that every corner of the predetermined space (gap, hole 1a) where the lubricating oil should hold the lubricating oil as a fluid bearing. Until it is pressed and filled.
Bubbles remaining inside the lubricating oil after filling are 1% or less. At this time, if the temperature is maintained at 60 ° C. to 100 ° C., the amount of bubbles is further reduced.
[0024]
Next, as shown in FIG. 1 (D), a surplus amount of lubricating oil that overflows and fills the gap portion, which is a predetermined space, is vacuumed and sucked 10 by a metal or plastic resin tube 14 such as brass or copper. The excess lubricating oil sucked up is stored in the lubricating oil reservoir 18.
By the above method, the amount of air bubbles remaining in the lubricating oil is limited, the lubricating oil is completely filled in the predetermined space required as a fluid bearing, and a fluid bearing assembly in which excess lubricating oil is removed is completed. .
[0025]
FIG. 2 shows another preferred configuration of the present embodiment, in which a recess 11 is provided around the opening of the hole 1a, which is a portion for supplying lubricating oil, so that more lubricating oil can be injected efficiently without flowing out, and surplus 2 is a cross-sectional view of a fluid bearing assembly configured to facilitate removal of a quantity of lubricating oil. FIG.
[0026]
FIG. 3 shows another embodiment of the present invention, which is configured as a fluid bearing 60 provided with an oil repellent application region in which the oil repellent 20 is applied around the opening of the hole 1a, and more than the actual rotational speed of the spindle motor. It is explanatory drawing of the state which has inject | poured lubricating oil to the gap | interval part, rotating at low speed.
The spindle motor equipped with the hydrodynamic bearing 60 shown in FIG. 3 has the oil repellent 20 applied to the opening end (around the hole 1a) of the bearing 1, so that the remaining lubricating oil at the end is already in the predetermined space. Demonstrates the effect of being easily separated and separated from the required amount.
[0027]
FIG. 5 is a view for explaining another method of this embodiment for removing the excess amount of the lubricating oil that overflows and fills the gap that is the predetermined space to be filled with the lubricating oil 25. As shown in FIG. FIG. 6 is an explanatory diagram of a process of rotating the bearing more quickly than the actual use rotation speed of the bearing and removing the lubricant oil by a rotational centrifugal force in the lubricant scattering prevention cover 50 covering the bearing.
According to the method shown in FIG. 5, the lubricating oil can be removed more strongly and reliably by the centrifugal force, and the operation is simplified compared to the method of sucking with the nozzle described above, and automation is easier. There is an effect.
[0028]
According to the embodiment of the present invention described above, bubbles in the lubricating oil can be reduced, and there is an effect that the lubricating oil can be filled regardless of the variation in the volume of the bearing gap portion. Further, unlike the method of immersing in the lubricating oil, only the lubricating oil supply section needs to remove the lubricating oil, so the operation is simple. By applying an oil repellent to the lubricating oil supply section, it is possible to remove the lubricating oil easily and reliably.
[0029]
【The invention's effect】
As described above in detail, the present invention particularly includes a dropping step for dropping a predetermined amount of viscous fluid to the periphery of the aperture while contacting the outer peripheral surface of the shaft inserted in the aperture, and then dropping the viscous fluid. Exhaust step of exhausting the air in the insertion hole from the opening side, and then the viscosity of the periphery of the opening at atmospheric pressure when the reduced pressure state returns to normal pressure. And a filling step for filling the fluid into the insertion hole, so that unnecessary and harmful bubbles in the viscous fluid held by the fluid bearing are surely removed, and the space to be filled with the viscous fluid is surely viscous without any gap. Fills the fluid and easily removes excess amount of viscous fluid, there is no risk of uneven dynamic pressure, and there is no risk of viscous fluid such as lubricating oil becoming an unclean substance and contaminating disc recording media. To provide a viscous fluid filling method for a fluid bearing Can.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram of each step of performing viscous fluid filling in an embodiment of a viscous bearing filling method and motor of the present invention.
2 is a cross-sectional view of a fluid bearing having a configuration in which a recess for supplying lubricating oil is provided in the motor of FIG.
FIG. 3 is a cross-sectional view of a fluid bearing having an oil repellent application region in an embodiment of the motor of the present invention.
4 is an assembly diagram of a fluid bearing of the motor of FIG. 1. FIG.
5 is an explanatory diagram of a process of removing excess lubricating oil by centrifugal force in the motor of FIG.
6 is a cross-sectional view of the motor of FIG.
[Explanation of symbols]
1 Bearing (fluid bearing)
1a Hole (insertion hole)
2 shaft (shaft body)
9 Motor base (stator)
25 Lubricating oil (viscous fluid)
100 Spindle motor (motor) for CD-ROM drive

Claims (2)

軸体と、
周囲に撥油剤を塗付した開穴部から底部側に向かって回転可能なように挿入される前記軸体の外周面に近接する内周面部と、この内周面部に連設しかつ前記軸体の外周面に所定の空隙をもって対向する溜まり部とを備えた挿入穴を有する流体軸受部とを具備した組立体における、前記開穴部周縁に設けた上部が開放された凹部に滴下した粘性流体で前記挿入穴内を充填する流体軸受の粘性流体充填方法であって、
実使用回転数よりも低速で前記流体軸受部を回転させながら、前記開穴部に挿入された前記軸体の外周面に添接しつつ前記開穴部周縁へ粘性流体を所定量滴下する滴下ステップと、
次に、粘性流体を滴下した前記組立体の外部を減圧状態にして、前記開穴部側から前記挿入穴内の空気を排気する排気ステップと、
次に、減圧状態が常圧状態に復帰する際の大気圧で前記開穴部周縁の粘性流体を前記挿入穴内の所定空間の隅々まで行き渡るように充填する充填ステップとを有することを特徴とする流体軸受の粘性流体充填方法。
A shaft,
An inner peripheral surface portion that is close to the outer peripheral surface of the shaft body that is inserted so as to be rotatable toward the bottom side from an aperture portion that is coated with an oil repellent agent, and is connected to the inner peripheral surface portion and is connected to the shaft. Viscosity dropped in a recessed portion in which an upper portion provided at the periphery of the opening portion is opened in an assembly including a fluid bearing portion having an insertion hole provided with a reservoir portion facing the outer peripheral surface of the body with a predetermined gap. A viscous fluid filling method of a fluid bearing for filling the inside of the insertion hole with a fluid,
A dropping step of dropping a predetermined amount of viscous fluid onto the periphery of the aperture while rotating the fluid bearing at a speed lower than the actual rotation speed and contacting the outer peripheral surface of the shaft inserted into the aperture When,
Next, an exhausting step of exhausting the air in the insertion hole from the opening portion side by setting the outside of the assembly to which the viscous fluid is dropped to a reduced pressure state,
And a filling step of filling the viscous fluid at the periphery of the opening portion so as to reach every corner of the predetermined space in the insertion hole at atmospheric pressure when the reduced pressure state returns to the normal pressure state. A viscous fluid filling method for a fluid bearing.
請求項1記載の流体軸受の粘性流体充填方法によって粘性流体が充填された前記組立体を用いて構成されたモータであって、
前記組立体の底部を固着したステータを備えたことを特徴とするモータ。
A motor configured using the assembly filled with a viscous fluid by the viscous fluid filling method for a fluid bearing according to claim 1,
A motor comprising a stator to which a bottom portion of the assembly is fixed.
JP2000184208A 2000-06-20 2000-06-20 Viscous fluid filling method of fluid bearing, motor Expired - Fee Related JP4478297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000184208A JP4478297B2 (en) 2000-06-20 2000-06-20 Viscous fluid filling method of fluid bearing, motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000184208A JP4478297B2 (en) 2000-06-20 2000-06-20 Viscous fluid filling method of fluid bearing, motor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008255106A Division JP4865778B2 (en) 2008-09-30 2008-09-30 Fluid bearing and lubricating oil filling method for fluid bearing

Publications (2)

Publication Number Publication Date
JP2002005170A JP2002005170A (en) 2002-01-09
JP4478297B2 true JP4478297B2 (en) 2010-06-09

Family

ID=18684679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000184208A Expired - Fee Related JP4478297B2 (en) 2000-06-20 2000-06-20 Viscous fluid filling method of fluid bearing, motor

Country Status (1)

Country Link
JP (1) JP4478297B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174243A (en) 2000-12-11 2002-06-21 Matsushita Electric Ind Co Ltd Manufacturing method for dynamic pressure bearing device and dynamic pressure bearing device
US7040019B2 (en) * 2002-04-03 2006-05-09 Ntn Corporation Method and apparatus for manufacturing hydro dynamic bearing device
US8020301B2 (en) 2003-03-28 2011-09-20 Ntn Corporation Method for manufacturing hydro dynamic bearing device
US7043839B2 (en) * 2002-10-31 2006-05-16 Nidec Corporation Method and apparatus for charging oil into fluid-dynamic-pressure bearings, spindle motor utilizing fluid-dynamic-pressure bearings, and signal record-and-playback device utilizing fluid-dynamic-pressure bearings
JP2005036974A (en) 2003-07-02 2005-02-10 Nippon Densan Corp Method for manufacturing fluid dynamic pressure bearing
JP2005114051A (en) 2003-10-08 2005-04-28 Nippon Densan Corp Manufacturing method for fluid dynamic pressure bearing and motor using the fluid dynamic pressure bearing
JP4525102B2 (en) 2004-02-18 2010-08-18 セイコーインスツル株式会社 Working fluid injection device and method for fluid dynamic pressure bearing, and method for manufacturing fluid dynamic pressure bearing
US7182106B2 (en) 2004-02-23 2007-02-27 Nidec Corporation Fluid dispensation method
WO2006027970A1 (en) * 2004-09-07 2006-03-16 Seiko Instruments Inc. Operation fluid pouring device, operation fluid pouring method, and method of producing fluid dynamic pressure bearing
JP4742906B2 (en) * 2006-02-23 2011-08-10 パナソニック株式会社 Manufacturing method of hydrodynamic bearing and spindle motor using the same
KR100797725B1 (en) 2006-03-15 2008-01-23 삼성전기주식회사 System and Method for filling fluid into hydrodynamics bearings
JP2007271010A (en) * 2006-03-31 2007-10-18 Matsushita Electric Ind Co Ltd Fluid bearing device and its manufacturing method, spindle motor, and information recording and regenerating device
JP2008008313A (en) * 2006-06-27 2008-01-17 Matsushita Electric Ind Co Ltd Method for manufacturing hydrodynamic fluid bearing, and electric motor and rotary device using the same
JP4724086B2 (en) * 2006-10-03 2011-07-13 アルファナテクノロジー株式会社 Hydrodynamic bearing device
JP2007147088A (en) * 2007-03-12 2007-06-14 Ntn Corp Method and device for manufacturing dynamical pressure bearing device
JP4977150B2 (en) 2009-02-04 2012-07-18 アルファナテクノロジー株式会社 Method for manufacturing fluid dynamic bearing
JP5020990B2 (en) * 2009-04-07 2012-09-05 アルファナテクノロジー株式会社 Method and apparatus for manufacturing fluid dynamic bearing
JP5389209B2 (en) * 2012-03-16 2014-01-15 サムスン電機ジャパンアドバンスドテクノロジー株式会社 Fluid dynamic pressure bearing manufacturing method, fluid dynamic pressure bearing, motor, and disk drive device
CN114263833B (en) * 2021-12-01 2023-04-07 北京智束科技有限公司 Liquid metal lubrication bearing filling device and method

Also Published As

Publication number Publication date
JP2002005170A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
JP4478297B2 (en) Viscous fluid filling method of fluid bearing, motor
US6246136B1 (en) Motor and method for manufacturing the same
US6817766B2 (en) Dynamic pressure bearing devices and method for manufacturing the same
JPH11187611A (en) Spindle motor and rotating body device using the motor as driving source of rotating body
JP2007170641A (en) Fluid bearing device and its manufacturing method, spindle motor, and record/reproduction device
JP2009201309A (en) Spindle motor and storage disk drive apparatus
JP3663325B2 (en) Motor assembly method
US6371649B1 (en) Method for lubricating a fluid dynamic pressure bearing
JP4865778B2 (en) Fluid bearing and lubricating oil filling method for fluid bearing
JP4360482B2 (en) Hydrodynamic bearing device
JP4657734B2 (en) Hydrodynamic bearing device
JP2005337490A (en) Dynamic pressure bearing device
JP2005180622A (en) Fluid bearing device and lubricant filling method for the same
JP3405750B2 (en) Spindle motor
JP2007333134A (en) Fluid bearing type rotary device
US20070000132A1 (en) Method of Manufacturing Porous Bearing Component, and Method of Manufacturing Fluid Dynamic-Pressure Bearing Furnished with the Porous Bearing Component
JP2003130053A (en) Method of manufacturing fluid bearing
JP3054946B1 (en) Manufacturing method of oil dynamic bearing motor
JP3989282B2 (en) Manufacturing method and apparatus for hydrodynamic bearing device
JP2008008313A (en) Method for manufacturing hydrodynamic fluid bearing, and electric motor and rotary device using the same
JP2001159420A (en) Dynamic pressure bearing motor
JPH11317004A (en) Spindle motor
JP4005825B2 (en) Hydrodynamic bearing, spindle motor, and recording disk drive
JP4742906B2 (en) Manufacturing method of hydrodynamic bearing and spindle motor using the same
JP2001140864A (en) Fluid dynamic pressure bearing and spindle motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080401

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees