JP2002212716A - Sintered sputtering target material for forming recording layer of magneto-optical recording medium exhibiting excellent cracking resistance under high sputtering power - Google Patents

Sintered sputtering target material for forming recording layer of magneto-optical recording medium exhibiting excellent cracking resistance under high sputtering power

Info

Publication number
JP2002212716A
JP2002212716A JP2000374543A JP2000374543A JP2002212716A JP 2002212716 A JP2002212716 A JP 2002212716A JP 2000374543 A JP2000374543 A JP 2000374543A JP 2000374543 A JP2000374543 A JP 2000374543A JP 2002212716 A JP2002212716 A JP 2002212716A
Authority
JP
Japan
Prior art keywords
target material
intermetallic compound
compound satisfying
sintered body
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000374543A
Other languages
Japanese (ja)
Inventor
Kenichi Hijikata
研一 土方
Terushi Mishima
昭史 三島
Shozo Komiyama
昌三 小見山
Yoshiaki Takada
佳明 高田
Hiroshi Nibuta
浩志 丹生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000374543A priority Critical patent/JP2002212716A/en
Publication of JP2002212716A publication Critical patent/JP2002212716A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sintered sputtering target material for forming a recording layer of a magneto-optical recording medium which exhibits excellent cracking resistance under high sputtering power. SOLUTION: The sintered sputtering target material consists of a press sintered body. The press sintered body has (a) a composition containing rare earth metals consisting of 41 to 49 mass% of one or more kinds selected from Tb, Gd and Dy, and the balance transition metals consisting of Fe or essentially consisting of Fe and containing Co or essentially consisting of Fe and containing Co and Cr with inevitable impurities. The press sintered body has (b) a structure consisting of: dispersed phases essentially consisting of an intermetallic compound satisfying the compositional formula of RT3 by atomic ratio wherein the rare earth metals are expressed by R, and the transition metals are expressed by T by structural observation with a scanning electron microscope; and continuous phases (skeletal structural phases) existing among the dispersed phases and essentially consisting of an intermetallic compound satisfying the compositional formula of R6T23. In the dispersed phases, a fine intermetallic compound satisfying the compositional formula of R2T17 is dispersedly distributed simultaneously with the intermetallic compound satisfying the compositional formula of R6T23. The press sintered body also has a theoretical density ratio of >=90%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、スパッタリング
装置で高速成膜を行うために、高スッパタ電力を印加し
ても割損の発生がない光磁気記録媒体の記録層形成用焼
結スパッタリングターゲット材(以下、単にターゲット
材と云う)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered sputtering target material for forming a recording layer of a magneto-optical recording medium, which does not cause breakage even when a high sputtering power is applied, in order to perform high-speed film formation with a sputtering apparatus. (Hereinafter, simply referred to as target material).

【0002】[0002]

【従来の技術】一般に、半導体レーザーなどの光ビーム
および電磁コイルを用いて、情報の記録や再生、さらに
消去を行う光磁気ディスクなどの光磁気記録媒体が、基
本的に例えばポリカーボネイトの基板と、これの表面に
いずれもスパッタリング法により形成された下部誘電体
保護層、記録層、上部誘電体保護層、および反射層の構
成層からなることが知られている。
2. Description of the Related Art In general, a magneto-optical recording medium such as a magneto-optical disk for recording, reproducing, and erasing information using a light beam such as a semiconductor laser and an electromagnetic coil is basically made of, for example, a polycarbonate substrate, It is known that each of the layers has a lower dielectric protection layer, a recording layer, an upper dielectric protection layer, and constituent layers of a reflection layer formed on the surface thereof by a sputtering method.

【0003】また、上記の光磁気記録媒体の構成層のう
ちの記録層(以下、単に記録層と云う)の形成に用いら
れるターゲット材として、例えば特開平8−30246
3号公報などに記載される通り、(a)希土類金属:4
1〜49質量%、を含有し、残りが遷移金属と不可避不
純物からなる組成、(b)希土類金属−遷移金属合金粉
末相と、これの相互間に介在した希土類金属−遷移金属
合金の粒界拡散相からなる組織、以上(a)および
(b)の組成と組織を有し、かつ90%以上の理論密度
比を有する加圧焼結体で構成されたターゲット材が知ら
れている。
Further, as a target material used for forming a recording layer (hereinafter, simply referred to as a recording layer) among the constituent layers of the above-described magneto-optical recording medium, for example, JP-A-8-30246.
As described in Japanese Patent Publication No. 3 (No. 3), (a) rare earth metal: 4
(B) a rare earth metal-transition metal alloy powder phase and a rare earth metal-transition metal alloy grain boundary interposed therebetween. 2. Description of the Related Art A target material having a structure composed of a diffusion phase, a composition and a structure described in (a) and (b) above, and a pressure sintered body having a theoretical density ratio of 90% or more is known.

【0004】さらに、上記のターゲット材が、原料粉末
として、アトマイズ法により粉化された希土類金属−遷
移金属合金粉末を用い、この原料粉末に、例えば理論密
度比が90〜97%未満の場合には、温度:液相出現温
度以下30〜100℃、圧力:10〜40MPaの条件
でのホットプレス処理、また理論密度比が97%以上の
場合には、同じく温度:液相出現温度以下30〜100
℃、圧力:50〜120MPaの条件でのHIP(熱間
静水圧プレス)処理を施すことにより製造されることも
知られている。
Further, as the above-mentioned target material, a rare earth metal-transition metal alloy powder powdered by an atomizing method is used as a raw material powder, and for example, when the theoretical density ratio is less than 90 to 97%, The hot press treatment is performed at a temperature of 30 to 100 ° C. and a pressure of 10 to 40 MPa below the liquid: appearance temperature of the liquid phase. 100
It is also known that it is manufactured by performing HIP (Hot Isostatic Pressing) treatment under conditions of ° C. and pressure: 50 to 120 MPa.

【0005】さらに、また一般に上記の記録層は、スパ
ッタリング装置として、例えば直流マグネトロンスパッ
タリング装置を用い、まず、内部を循環する冷却水によ
って冷却された例えば無酸素銅製バッキングプレートに
上記のターゲット材をハンダ付けなどにて取り付け、装
置内を真空排気装置にて排気した後、Arガスを導入し
て所定のスッパッタガス圧に保持し、この状態で直流電
源によってターゲット材にスッパタ電力を印加して、前
記ターゲット材と対向し、かつ所定の間隔を設けて平行
配置した、例えばポリカーボネイトの基板との間にグロ
ー放電を発生させ、このグロー放電を形成するプラズマ
中のArイオンを前記ターゲット材の表面に衝突させて
スパッタし、スパッタ粒子を前記基板表面に蒸着するこ
とにより形成されている。
Further, generally, the recording layer is formed by, for example, using a direct current magnetron sputtering apparatus as a sputtering apparatus, and first soldering the target material to, for example, an oxygen-free copper backing plate cooled by cooling water circulating inside. After the inside of the apparatus is evacuated by a vacuum exhaust device, Ar gas is introduced and maintained at a predetermined sputter gas pressure, and in this state, sputter power is applied to the target material by a DC power supply, and the target A glow discharge is generated between the substrate and a substrate made of, for example, polycarbonate, which is disposed in parallel with a predetermined distance therebetween, and causes Ar ions in plasma forming the glow discharge to collide with the surface of the target material. Formed by depositing sputtered particles on the surface of the substrate. There.

【0006】[0006]

【発明が解決しようとする課題】一方、近年の上記の光
磁気ディスクなど光磁気記録媒体の生産性向上に対する
要求は強く、これに伴い、構成層の成膜速度も高速化の
傾向にある。しかし高速成膜を行うためにはターゲット
材と基板間に発生するグロー放電のプラズマ密度を高く
する必要があり、このためには前記ターゲット材に印加
されるスパッタ電力を高くすることが不可欠となるが、
上記の従来ターゲット材においては、これに高いスパッ
タ電力を印加すると、割損が発生し易くなることから、
さらに一段の高速成膜を満足に行うことができないのが
現状である。
On the other hand, there is a strong demand for improvement in productivity of magneto-optical recording media such as the above-mentioned magneto-optical disk in recent years, and accordingly, the film forming speed of constituent layers tends to be increased. However, in order to perform high-speed film formation, it is necessary to increase the plasma density of glow discharge generated between the target material and the substrate, and for this purpose, it is essential to increase the sputtering power applied to the target material. But,
In the above-mentioned conventional target material, if a high sputtering power is applied thereto, the breakage is likely to occur.
At present, it is impossible to perform one-step high-speed film formation satisfactorily.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者らは、
上述の観点から、上記の従来ターゲット材に着目し、こ
れの耐割損性向上を図るべく研究を行った結果、(a)
上記の従来ターゲット材の構成成分である希土類金属
を、Tb、Gd、およびDyに特定すると共に、同じく
遷移金属をFe、Feが主体でCo含有、およびFeが
主体でCoとCr含有に特定した上で、(b)上記
(a)のターゲット材に対して、これの製造工程におけ
るホットプレス処理またはHIP処理の加熱温度からの
冷却(通常炉冷)過程、あるいは別設の加熱炉で、真
空、あるいは不活性ガス雰囲気中、750〜950℃の
温度に20〜50時間保持後炉冷の条件、熱処理を施す
と、(c)上記(b)の熱処理後のターゲット材は、走
査型電子顕微鏡による組織観察で、上記の希土類金属を
R、遷移金属をTで表わした場合に、いずれも原子比
で、組成式:RT3を満足する金属間化合物の分散相
と、上記分散相相互間に介在し、組成式:R623を満
足する金属間化合物の連続相(スケルトン組織相)から
なり、かつ上記分散相には微細にして組成式:R217
を満足する金属間化合物と同じく微細にして組成式:R
623を満足する金属間化合物が分散分布した組織をも
つようになり、(d)上記(c)の組織を有するターゲ
ット材は、スパッタリングに際して、これに印加される
スパッタ電力に対して高い強靭性を示し、したがってこ
れに高いスパッタ電力を印加してもすぐれた耐割損性を
示すことから、上記の従来ターゲット材による成膜速度
に比して一段と速い速度での成膜を可能にするという研
究結果を得たのである。
Means for Solving the Problems Accordingly, the present inventors have:
From the above point of view, we focused on the above-mentioned conventional target materials and conducted research to improve their breakage resistance.
In addition to specifying the rare earth metals which are the constituent components of the above-mentioned conventional target materials to Tb, Gd, and Dy, the transition metals were also specified to be Fe, mainly containing Co, and Fe mainly containing Co and Cr. Above, (b) the target material of (a) is subjected to a vacuum (normal furnace cooling) process from a heating temperature of a hot pressing process or a HIP process in a manufacturing process of the target material, or a separate heating furnace. Alternatively, if the heat treatment is performed under the condition of furnace cooling after holding at a temperature of 750 to 950 ° C. for 20 to 50 hours in an inert gas atmosphere, (c) the target material after the heat treatment of the above (b) becomes a scanning electron microscope. When the above-mentioned rare earth metal is represented by R and the transition metal is represented by T, the disperse phase of the intermetallic compound which satisfies the composition formula: RT 3 in both atomic ratios and the disperse phase Intervening Formula: continuous phase of an intermetallic compound which satisfies the R 6 T 23 consists (skeleton tissue phase), and in the dispersed phase in the fine composition formula: R 2 T 17
As fine as the intermetallic compound satisfying the formula: R
Intermetallic compound which satisfies the 6 T 23 becomes to have a dispersed distribution organization, target material having a tissue (d) above (c), upon sputtering, a high robust to sputter power applied thereto It exhibits excellent breakage resistance even when a high sputtering power is applied to it, so that it is possible to form a film at a much higher rate than the above-mentioned conventional target material. That's the research result.

【0008】この発明は、上記の研究結果に基づいてな
されたものであって、(a)Tb、Gd、およびDyの
うちの1種または2種以上からなる希土類金属:41〜
49質量%、を含有し、残りがFe、Feが主体でCo
含有、およびFeが主体でCoとCr含有のうちのいず
れかからなる遷移金属と不可避不純物からなる組成、
(b)走査型電子顕微鏡による組織観察で、上記希土類
金属をR、上記遷移金属をTで表わした場合に、いずれ
も原子比で、組成式:RT3を満足する金属間化合物を
主体とする分散相と、上記分散相相互間に介在し、組成
式:R623を満足する金属間化合物を主体とする連続
相(スケルトン組織相)からなり、かつ上記分散相には
微細にして組成式:R217を満足する金属間化合物と
同じく微細にして組成式:R623を満足する金属間化
合物が分散分布した組織、以上(a)および(b)の組
成と組織を有し、かつ90%以上の理論密度比を有する
加圧焼結体で構成してなる、高スパッタ電力ですぐれた
耐割損性を発揮するターゲット材に特徴を有するもので
ある。
The present invention has been made on the basis of the above research results, and (a) rare earth metals consisting of one or more of Tb, Gd and Dy: 41 to 41
49% by mass, with the balance being Fe, mainly Fe, and Co
Content, and a composition consisting of a transition metal composed of any one of Co and Cr containing Fe as a main component and unavoidable impurities,
(B) When the rare earth metal is represented by R and the transition metal is represented by T in the structure observation by a scanning electron microscope, an intermetallic compound which satisfies the composition formula: RT 3 in an atomic ratio is mainly used. It is composed of a dispersed phase and a continuous phase (skeleton structure phase) mainly composed of an intermetallic compound satisfying the composition formula: R 6 T 23 , interposed between the dispersed phases, and is finely divided into the dispersed phase. A structure in which the intermetallic compound satisfying the formula: R 6 T 23 is dispersed and distributed as in the case of the intermetallic compound satisfying the formula: R 2 T 17 , and has the composition and structure described in (a) and (b) above. Further, the present invention is characterized in that the target material is made of a pressurized sintered body having a theoretical density ratio of 90% or more and exhibits excellent cracking resistance with high sputtering power.

【0009】なお、この発明のターゲット材を構成する
加圧焼結体の希土類金属の含有量が41〜49質量%と
定められているのは以下に示す理由によるものである。
すなわち、一般にターゲット材の表面をスパッタするこ
とにより基板の表面に蒸着形成される記録層は、特性上
所定の飽和磁化と保磁力を具備する必要があり、この特
性を具備するものとして希土類金属と遷移金属からなる
記録層が用いられている。この場合希土類金属の含有割
合が41質量%未満(相対的に遷移金属の含有割合が増
加する)でも、また49質量%を越え(反対に遷移金属
の含有割合が減少する)ても、記録層の具備する飽和磁
化が大きくなる一方、保磁力が低下するようになって、
小さな記録磁区を安定的に保持することができなくなる
ことから、遷移金属に対する希土類金属の含有量が41
〜49質量%と定められているものであり、したがって
スパッタリング法では、実質的にターゲット材の組成と
ほぼ同じ組成の記録層が形成されることから、ターゲッ
ト材における希土類金属の含有量も41〜49質量%と
定められているのである。また、同じくターゲット材を
構成する加圧焼結体の理論密度比を90%以上としたの
は、その理論密度比が90%未満になると、これの表面
に印加されるスパッタ電力を高くしても成膜速度に顕著
な向上効果現れないという理由からであり、望ましくは
98%以上の理論密度比を持つようにするのが良い。
The reason why the content of the rare earth metal in the pressure sintered body constituting the target material of the present invention is set to 41 to 49% by mass is as follows.
That is, the recording layer generally formed by vapor deposition on the surface of the substrate by sputtering the surface of the target material needs to have predetermined saturation magnetization and coercive force in terms of characteristics. A recording layer made of a transition metal is used. In this case, even if the content of the rare earth metal is less than 41% by mass (the content of the transition metal relatively increases) or exceeds 49% by mass (the content of the transition metal decreases conversely), While the saturation magnetization provided by increases, the coercive force decreases,
Since the small recording magnetic domain cannot be stably held, the content of the rare earth metal relative to the transition metal is 41%.
Therefore, the sputtering method forms a recording layer having substantially the same composition as that of the target material. Therefore, the content of the rare earth metal in the target material is also 41 to 41% by mass. It is set at 49% by mass. The reason why the theoretical density ratio of the pressed sintered body constituting the target material is set to 90% or more is that when the theoretical density ratio becomes less than 90%, the sputtering power applied to the surface of the target sintered material is increased. This is because no significant improvement in the film formation rate is exhibited, and it is preferable to have a theoretical density ratio of 98% or more.

【0010】[0010]

【発明の実施の態様】つぎに、この発明のターゲット材
を実施例により具体的に説明する。通常の高周波真空溶
解炉を用い、炉内を1×10−2Pa以下の真空に保持
しながら、それぞれ表1に示される成分組成の合金溶湯
を調製し、この溶湯をArガスアトマイズにより粉化
し、篩分することにより同じく表1に示される平均粒径
をもった原料粉末A〜Zをそれぞれ製造した。
Next, the target material of the present invention will be specifically described with reference to examples. Using a normal high-frequency vacuum melting furnace, while maintaining the inside of the furnace at a vacuum of 1 × 10 −2 Pa or less, alloy melts having the component compositions shown in Table 1 were prepared, and the melts were powdered by Ar gas atomization and sieved. As a result, raw material powders A to Z having the average particle diameters shown in Table 1 were produced.

【0011】ついで、この結果得られた原料粉末A〜Z
のうちの1種、あるいは2種または3種を選び、焼結炉
として、ホットプレス装置(HP)を用いる場合には黒
鉛型に、また熱間静水圧焼結装置(HIP)を用いる場
合には軟鋼カプセルに充填した状態でそれぞれ装入し、
この装入に際して、2種または3種の原料粉末を組み合
わせて用いる場合には、いずれかの原料粉末が中心部に
円形に位置し、残りの原料粉末がこれの外周部にリング
状に位置するように同心的に装入し、ホットプレス装置
(HP)では、加熱温度(焼結温度)を液相出現温度以
下30〜100℃の範囲内の所定の温度とし(この場
合、2種または3種の原料粉末装入では、中心円形部を
占める原料粉末の液相出現温度を基準とする。これは以
下のHIPでも同じ)、圧力を10〜40MPaの範囲
内の所定の圧力として、1〜3時間の範囲内の所定の時
間保持の条件で処理し、またHIPでは、加熱温度(焼
結温度)を液相出現温度以下30〜100℃の範囲内の
所定の温度とし、圧力を80〜100MPaの範囲内の
所定の圧力として、1〜3時間の範囲内の所定の時間保
持の条件で処理して燒結し、さらに前記焼結炉での加熱
温度からの冷却過程、あるいは別設の通常の加熱炉で、
それぞれArガス雰囲気中、800〜950℃の範囲内
の所定温度に25〜40時間の範囲内の所定時間保持後
炉冷の条件で熱処理を施すことにより、表2に示される
通りの単一相(中心円形部、中間リング部、および外側
リング部が同じ原料粉末記号となる)、同心2相(中心
円形部と外側リング部からなる)、または同心3相(中
心円形部と中間リング部と外側リング部からなる)で構
成され、同じく表2に示される理論密度比(中心部測
定)を有する加圧焼結体からなり、かつ直径:127m
m×厚さ:12mmの寸法をもった本発明ターゲット材
1〜18をそれぞれ製造した。上記の本発明ターゲット
材1〜18について、それぞれの任意断面を、同心2相
および同心3相の場合には構成相毎に、走査型電子顕微
鏡を用いて組織観察したところ、いずれも組成式:RT
3を満足する金属間化合物を主体とする分散相と、前記
分散相相互間に介在し、組成式:R623を満足する金
属間化合物を主体とする連続相(スケルトン組織相)か
らなり、かつ上記分散相には微細にして組成式:R2
17を満足する金属間化合物と同じく微細にして組成式:
623を満足する金属間化合物が分散分布した組織を
示した。
Then, the resulting raw material powders A to Z
One, or two or three, is selected as a sintering furnace, using a graphite mold when using a hot press apparatus (HP), and using a hot isostatic sintering apparatus (HIP). Are charged in the state of being filled in mild steel capsules, respectively.
When two or three types of raw material powders are used in combination at the time of this charging, one of the raw material powders is located in a circular shape at the center, and the remaining raw material powders are located in a ring shape on the outer peripheral portion thereof. In the hot press apparatus (HP), the heating temperature (sintering temperature) is set to a predetermined temperature in the range of 30 to 100 ° C. below the liquid phase appearance temperature (in this case, two kinds or three kinds). In the case of charging the raw material powder, the liquid phase appearance temperature of the raw material powder occupying the central circular portion is set as a reference. This is the same in the following HIP), and the pressure is set to a predetermined pressure in the range of 10 to 40 MPa. In the HIP, the heating temperature (sintering temperature) is set to a predetermined temperature within a range of 30 to 100 ° C. or lower than the liquid phase appearance temperature, and the pressure is set to 80 to 100 ° C. As a predetermined pressure in the range of 100 MPa, Was treated with a predetermined time retained condition within the range of 3 hours to sinter, further cooling process from the heating temperature in the sintering furnace or in a conventional furnace separately provided,
A single phase as shown in Table 2 is obtained by holding in an Ar gas atmosphere at a predetermined temperature in a range of 800 to 950 ° C. for a predetermined time in a range of 25 to 40 hours and then performing a heat treatment under furnace cooling conditions. (The center circular portion, the intermediate ring portion, and the outer ring portion have the same raw material powder symbol), two concentric phases (consisting of the central circular portion and the outer ring portion), or three concentric phases (the central circular portion, the intermediate ring portion, and the like). (Consisting of an outer ring portion), a pressed sintered body having the same theoretical density ratio (center measurement) as shown in Table 2, and having a diameter of 127 m.
Each of the target materials 1 to 18 of the present invention having a dimension of mx thickness: 12 mm was manufactured. For the above-mentioned target materials 1 to 18 of the present invention, the respective arbitrary cross sections were observed for the structure of each constitutive phase in the case of concentric two-phase and concentric three-phase using a scanning electron microscope. RT
A dispersed phase mainly composed of an intermetallic compound that satisfies 3 and a continuous phase (skeleton structure phase) that is interposed between the dispersed phases and mainly composed of an intermetallic compound that satisfies the composition formula: R 6 T 23. And the dispersion phase is finely divided into the composition formula: R 2 T
Finely divided like the intermetallic compound satisfying 17 , the composition formula:
A structure in which an intermetallic compound satisfying R 6 T 23 was dispersed and distributed was shown.

【0012】また、比較の目的で、表3に示される通り
加圧焼結体に対する熱処理を行わない以外は同一の条件
で比較ターゲット材1〜12をそれぞれ製造した。
For comparison purposes, comparative target materials 1 to 12 were produced under the same conditions except that the heat treatment was not performed on the pressure-sintered body as shown in Table 3.

【0013】ついで、上記の本発明ターゲット材1〜1
8および比較ターゲット材1〜12のそれぞれを、無酸
素銅製の水冷バッキングプレートにハンダ付けして、通
常の直流マグネトロンスパッタリング装置に装着し、ま
ず装置内を真空排気装置にて1×10−2Pa以下の真
空雰囲気とした後、Arガスを導入して装置内雰囲気を
0.7Paのスパッタガス圧とした状態で、まず直流電
源によってターゲット材に1KW(平均電力密度:7.
9w/cm2)のスパッタ電力を印加して、前記ターゲ
ット材と対向し、かつ5cmの間隔を設けて平行配置し
た直径:6.5cm×厚さ:0.5mmのガラス基板と
前記ターゲット材間にグロー放電を発生させ、前記グロ
ー放電を形成するプラズマ中のArイオンを前記ターゲ
ット材の表面に衝突させて前記ターゲット材をスパッタ
し、スパッタ粒子を前記基板表面に蒸着する記録層形成
を開始し、引き続いてそれぞれの付加電力に5分間保持
しながら電力を0.5KWづつ段階的に上げていき、タ
ーゲット材に割れが発生した時点のスパッタ電力(以
下、割れ発生臨界スパッタ電力と云う)を測定した。こ
れらの測定結果をそれぞれ表2、3に示した。なお、上
記の同心2相および同心3相構造の本発明ターゲット材
13〜18を用いて上記基板表面に蒸着形成された記録
層について、これを構成する希土類金属の層中の濃度分
布を調査したところ、中心、この中心から半径:15m
mの位置、および同中心から半径:30mmの位置にお
ける含有量がほぼ同一で、バラツキのきわめて小さいも
のであった。
Next, the target materials 1 to 1 of the present invention described above are used.
8 and each of the comparative target materials 1 to 12 were soldered to a water-cooled backing plate made of oxygen-free copper, and mounted on a normal DC magnetron sputtering apparatus. After a vacuum atmosphere of 1 .mu.m, an Ar gas was introduced to set the atmosphere in the apparatus to a sputtering gas pressure of 0.7 Pa, and then a direct current power supply was applied to the target material at 1 KW (average power density: 7.0).
A sputter power of 9 w / cm 2 ) is applied to the target material so that the glass substrate and the target material have a diameter of 6.5 cm × a thickness of 0.5 mm and are arranged in parallel with a spacing of 5 cm. A glow discharge is generated, Ar ions in the plasma forming the glow discharge collide with the surface of the target material to sputter the target material, and a recording layer is formed to deposit sputtered particles on the substrate surface. Then, while maintaining the respective additional powers for 5 minutes, the power is increased stepwise by 0.5 KW, and the sputter power at the time when the target material is cracked (hereinafter referred to as critical cracking spatter power) is measured. did. These measurement results are shown in Tables 2 and 3, respectively. The concentration distribution in the rare earth metal layer constituting the recording layer formed by vapor deposition on the substrate surface using the target materials 13 to 18 of the present invention having the concentric two-phase structure and the concentric three-phase structure was examined. However, center, radius: 15m from this center
The content at the position of m and the position of a radius of 30 mm from the center were almost the same, and the dispersion was extremely small.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【発明の効果】表2,3に示される結果から、本発明タ
ーゲット材1〜18は、いずれも従来ターゲット材と同
等の組成および組織を有する比較ターゲット材1〜12
に比して、印加スパッタ電力に対する割れ抵抗が著しく
高く、したがって従来ターゲット材では割れ発生のため
に印加することが不可能であった高いスパッタ電力を印
加しても割れ発生が著しく抑制されることから、速い成
膜速度での記録層形成を可能とすることが明らかであ
る。上述のように、この発明のターゲット材は、スパッ
タリング装置での記録層形成を従来ターゲット材を用い
た場合に比して、一段と高速で行うことができ、生産性
の向上および低コスト化に大いに寄与するものである。
According to the results shown in Tables 2 and 3, the target materials 1 to 18 of the present invention are comparative target materials 1 to 12 each having the same composition and structure as the conventional target material.
The cracking resistance to the applied sputtering power is remarkably higher than that of the target material. Therefore, even if a high sputtering power is applied, which was impossible with the conventional target material due to the occurrence of cracking, the occurrence of cracking is significantly suppressed. Thus, it is clear that the recording layer can be formed at a high film forming rate. As described above, the target material of the present invention enables the recording layer to be formed by a sputtering apparatus at a much higher speed than in the case of using a conventional target material, and greatly improves productivity and reduces costs. It will contribute.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小見山 昌三 埼玉県大宮市北袋町1−297 三菱マテリ アル株式会社総合研究所内内 (72)発明者 高田 佳明 兵庫県三田市テクノパーク12−6 三菱マ テリアル株式会社三田工場内 (72)発明者 丹生田 浩志 兵庫県三田市テクノパーク12−6 三菱マ テリアル株式会社三田工場内 Fターム(参考) 4K018 AA27 BA18 DA11 EA02 EA13 EA14 KA29 4K029 BA21 BA24 BD12 CA05 DC04 DC09 5D075 FF04 GG03  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shozo Omiyama 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Inside Mitsubishi Materials Research Institute (72) Inventor Yoshiaki Takada 12-6 Techno Park, Mita City, Hyogo Prefecture Inside Terial Co., Ltd. Mita Plant (72) Inventor Hiroshi Nibuta 12-6 Techno Park, Mita City, Hyogo Prefecture Mitsubishi Materials Corporation Mita Plant F-term (reference) 4K018 AA27 BA18 DA11 EA02 EA13 EA14 KA29 4K029 BA21 BA24 BD12 CA05 DC04 DC09 5D075 FF04 GG03

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (a)Tb、Gd、およびDyのうちの
1種または2種以上からなる希土類金属:41〜49質
量%、を含有し、残りがFe、Feが主体でCo含有、
およびFeが主体でCoとCr含有のうちのいずれかか
らなる遷移金属と不可避不純物からなる組成、 (b)走査型電子顕微鏡による組織観察で、上記希土類
金属をR、上記遷移金属をTで表わした場合に、いずれ
も原子比で、 組成式:RT3を満足する金属間化合物を主体とする分
散相と、 上記分散相相互間に介在し、組成式:R623を満足す
る金属間化合物を主体とする連続相(スケルトン組織
相)からなり、かつ上記分散相には微細にして組成式:
217を満足する金属間化合物と同じく微細にして組
成式:R623を満足する金属間化合物が分散分布した
組織、以上(a)および(b)の組成と組織を有し、か
つ90%以上の理論密度比を有する加圧焼結体で構成し
たことを特徴とする高スパッタ電力ですぐれた耐割損性
を発揮する光磁気記録媒体の記録層形成用焼結スパッタ
リングターゲット材。
1. (a) a rare earth metal consisting of one or more of Tb, Gd, and Dy: 41 to 49% by mass, the balance being Fe, Fe being mainly contained and Co being contained,
And a composition consisting of a transition metal mainly composed of Fe and containing either Co or Cr and an unavoidable impurity. (B) Observation of the structure with a scanning electron microscope shows the rare earth metal as R and the transition metal as T. In this case, a dispersed phase mainly composed of an intermetallic compound satisfying the composition formula: RT 3 in atomic ratio, and a metal interposed between the dispersed phases and satisfying the composition formula: R 6 T 23 are obtained. It is composed of a continuous phase (skeleton structure phase) mainly composed of a compound, and the dispersed phase is finely divided into a composition formula:
A structure in which the intermetallic compound satisfying the composition formula: R 6 T 23 is dispersed and distributed as finely as the intermetallic compound satisfying R 2 T 17 , and has the composition and structure of (a) and (b) above, And a sintered sputtering target material for forming a recording layer of a magneto-optical recording medium exhibiting excellent breakage resistance with high sputter power, characterized by comprising a pressed sintered body having a theoretical density ratio of 90% or more. .
JP2000374543A 1999-12-08 2000-12-08 Sintered sputtering target material for forming recording layer of magneto-optical recording medium exhibiting excellent cracking resistance under high sputtering power Withdrawn JP2002212716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000374543A JP2002212716A (en) 1999-12-08 2000-12-08 Sintered sputtering target material for forming recording layer of magneto-optical recording medium exhibiting excellent cracking resistance under high sputtering power

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP34886099 1999-12-08
JP2000352042 2000-11-20
JP11-348860 2000-11-20
JP2000-352042 2000-11-20
JP2000374543A JP2002212716A (en) 1999-12-08 2000-12-08 Sintered sputtering target material for forming recording layer of magneto-optical recording medium exhibiting excellent cracking resistance under high sputtering power

Publications (1)

Publication Number Publication Date
JP2002212716A true JP2002212716A (en) 2002-07-31

Family

ID=27341296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000374543A Withdrawn JP2002212716A (en) 1999-12-08 2000-12-08 Sintered sputtering target material for forming recording layer of magneto-optical recording medium exhibiting excellent cracking resistance under high sputtering power

Country Status (1)

Country Link
JP (1) JP2002212716A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012591A1 (en) * 2003-08-05 2005-02-10 Nikko Materials Co., Ltd. Sputtering target and method for production thereof
JP2007155969A (en) * 2005-12-02 2007-06-21 Seiko Epson Corp Image display apparatus
US8663439B2 (en) 2004-11-15 2014-03-04 Jx Nippon Mining & Metals Corporation Sputtering target for producing metallic glass membrane and manufacturing method thereof
KR101727705B1 (en) 2015-09-04 2017-05-02 한국생산기술연구원 Method for Manufacturing Fe-Gd Mother Alloy for Producing Neutron Absorbing Alloy and Fe-Gd Mother Alloy
KR101776644B1 (en) 2016-08-29 2017-09-11 한국생산기술연구원 Ni-Gd master alloy for alloy having excellent neutron absorption ability

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012591A1 (en) * 2003-08-05 2005-02-10 Nikko Materials Co., Ltd. Sputtering target and method for production thereof
KR100749658B1 (en) * 2003-08-05 2007-08-14 닛코킨조쿠 가부시키가이샤 Sputtering target and method for production thereof
KR100812943B1 (en) * 2003-08-05 2008-03-11 닛코킨조쿠 가부시키가이샤 Sputtering target and method for production thereof
CN100457963C (en) * 2003-08-05 2009-02-04 日矿金属株式会社 Sputtering target and method for production thereof
US8430978B2 (en) 2003-08-05 2013-04-30 Jx Nippon Mining & Metals Corporation Sputtering target and method for production thereof
US8663439B2 (en) 2004-11-15 2014-03-04 Jx Nippon Mining & Metals Corporation Sputtering target for producing metallic glass membrane and manufacturing method thereof
JP2007155969A (en) * 2005-12-02 2007-06-21 Seiko Epson Corp Image display apparatus
JP4497087B2 (en) * 2005-12-02 2010-07-07 セイコーエプソン株式会社 Image display device
KR101727705B1 (en) 2015-09-04 2017-05-02 한국생산기술연구원 Method for Manufacturing Fe-Gd Mother Alloy for Producing Neutron Absorbing Alloy and Fe-Gd Mother Alloy
KR101776644B1 (en) 2016-08-29 2017-09-11 한국생산기술연구원 Ni-Gd master alloy for alloy having excellent neutron absorption ability

Similar Documents

Publication Publication Date Title
US6071323A (en) Alloy target, its fabrication, and regeneration processes
US4620872A (en) Composite target material and process for producing the same
US4814053A (en) Sputtering target and method of preparing same
JPH0768612B2 (en) Alloy powder for rare earth metal-iron group metal target, rare earth metal-iron group metal target, and methods for producing the same
JP3816595B2 (en) Manufacturing method of sputtering target
KR0129795B1 (en) Target for magneto optical recording media & method for production the same
WO2016129449A1 (en) Cr-Ti ALLOY SPUTTERING TARGET MATERIAL AND METHOD FOR PRODUCING SAME
JPWO2004001092A1 (en) AlRu sputtering target and manufacturing method thereof
US4941920A (en) Sintered target member and method of producing same
JP2002212716A (en) Sintered sputtering target material for forming recording layer of magneto-optical recording medium exhibiting excellent cracking resistance under high sputtering power
JP3170412B2 (en) Sputtering target member for forming non-magnetic underlayer of metal thin film type magnetic recording medium
JPS60230903A (en) Production of alloy target
JPH0549730B2 (en)
JP2000309865A (en) Ni-P ALLOY SPUTTERING TARGET AND ITS MANUFACTURE
EP0640964A1 (en) Target for magneto-optical recording medium and process for production therefof
JPH0119448B2 (en)
JPH0610122A (en) Target material for magnetic thin film and its manufacture, fe-m-c soft magnetic film and its manufacture, magnetic head using the film and magnetic recording and reproducing device
JP2002115050A (en) Sintered sputtering target material
JP2894695B2 (en) Rare earth metal-iron group metal target and method for producing the same
US5710384A (en) Magneto-optical recording medium target and manufacture method of same
JP2001226764A (en) Sintered compact for sputtering target material, its manufacturing method, and sputtering target
JP2006307345A (en) Sputtering target
JP2000038660A (en) CoPt SPUTTERING TARGET, ITS PRODUCTION AND CoPt-MAGNETIC RECORDING MEDIUM
WO2023079856A1 (en) Sputtering target member, sputtering target assembly, and film forming method
JP2023148386A (en) FeCo-BASED ALLOY FOR SOFT MAGNETIC LAYER OF MAGNETIC RECORDING MEDIUM

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304