WO2023079856A1 - Sputtering target member, sputtering target assembly, and film forming method - Google Patents

Sputtering target member, sputtering target assembly, and film forming method Download PDF

Info

Publication number
WO2023079856A1
WO2023079856A1 PCT/JP2022/035488 JP2022035488W WO2023079856A1 WO 2023079856 A1 WO2023079856 A1 WO 2023079856A1 JP 2022035488 W JP2022035488 W JP 2022035488W WO 2023079856 A1 WO2023079856 A1 WO 2023079856A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
mol
target member
magnetic recording
recording layer
Prior art date
Application number
PCT/JP2022/035488
Other languages
French (fr)
Japanese (ja)
Inventor
孝志 小庄
靖幸 岩淵
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to CN202280068236.1A priority Critical patent/CN118077006A/en
Priority to JP2023557651A priority patent/JP7412659B2/en
Publication of WO2023079856A1 publication Critical patent/WO2023079856A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Definitions

  • the present invention relates to a sputtering target member for a magnetic recording layer. In another embodiment, the invention relates to a sputtering target assembly comprising such a sputtering target member. In still another embodiment, the present invention relates to a film forming method using such a sputtering target member.
  • materials based on ferromagnetic metals Co, Fe, or Ni are used as materials for magnetic thin films responsible for recording.
  • non-magnetic particles such as oxide particles and carbon particles are dispersed in a Co—Pt-based ferromagnetic alloy containing Co as a main component.
  • Composite materials are often used.
  • the recording layer increases the recording amount per unit area by miniaturizing the granular structure in which magnetic particles are magnetically separated by non-magnetic particles.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-37730 describes a sputtering target in which a metal (a magnetic metal, a noble metal) constituting an L1 0 ordered alloy of FePt and carbon are mixed.
  • Patent Document 2 International Publication No. 2014/132746 discloses a FePt—C-based sputtering target containing Fe, Pt and C, containing 33 at% or more and 60 at% or less of Pt, and the balance being Fe and unavoidable
  • An FePt—C sputtering target characterized by having a structure in which C particles of primary particles containing unavoidable impurities are dispersed in an FePt alloy phase composed of impurities so as not to come into contact with each other is described. According to Patent Document 2, this FePt--C based sputtering target has few particles.
  • Patent Document 3 also describes that one or more nonmagnetic materials selected from the group consisting of carbon, oxides, nitrides, carbides and carbonitrides are contained in a total of 25 mol% or less, It is said that this ferromagnetic material sputtering target has a high leakage magnetic flux and can suppress the generation of particles during sputtering by adopting a method of coarsening the Co phase while refining the Co—Pt alloy phase. ing.
  • Patent Document 4 International Publication No. 2012/081340 proposes to add 10 wtppm or more of B (boron) to a sputtering target for a magnetic recording film, in addition to adding SiO 2 .
  • B boron
  • the substrate is sometimes preheated (eg, about 200°C) when forming the magnetic recording layer.
  • the main purpose is to improve the crystallinity of the magnetic grains, but as a secondary effect, the oxide grains may diffuse toward the magnetic grains, deteriorating the magnetic properties after film formation.
  • carbon it is conceivable to use carbon as a grain boundary material that is stable even at high temperatures.
  • simply adding carbon causes a sharp increase in particles and a large decrease in yield.
  • a sputtering target assembly comprising the magnetic recording layer sputtering target member according to any one of [1] to [6], and a backing tube or a backing plate joined to the sputtering target member.
  • a film forming method comprising sputtering the sputtering target member for a magnetic recording layer according to any one of [1] to [6].
  • carbide is stable even at high temperatures, it is possible to suppress the influence on the magnetic properties after film formation, and at the same time, it is possible to obtain a special effect of reducing particles during sputtering. .
  • the sputtering target member according to the present invention contains 10 to 70 mol% Co, 5 to 30 mol% Pt, 1.5 to 10 mol% carbide, and is composed of carbon, oxide, nitride and carbonitride. It contains 0 to 30 mol % in total of one or more selected non-magnetic materials.
  • This composition has a high proportion of carbide in the entire sputtering target member, which contributes to the suppression of particles during sputtering.
  • the Co concentration in the sputtering target member is preferably 10 to 70 mol %.
  • the concentration of Co may be appropriately adjusted according to the required magnetic properties of the magnetic recording layer, but it is typically 20 to 70 mol %, more typically 30 to 70 mol %. , and even more typically between 40 and 60 mol %.
  • the Co considered here is metallic Co that exists alone or forms an alloy with another metal such as Pt.
  • the concentration of Pt in the sputtering target member is preferably 5-30 mol %.
  • the concentration of Pt may be appropriately adjusted according to the required magnetic properties of the magnetic recording layer, typically 5 to 25 mol %, more typically 10 to 25 mol %. , and even more typically between 10 and 20 mol %.
  • the Pt considered here is a metal Pt that exists alone or forms an alloy with another metal such as Co.
  • the concentration of carbide in the sputtering target member is preferably 1.5-10 mol %.
  • the lower limit of the carbide concentration is 1.5 mol % or more, preferably 1.8 mol % or more, and more preferably 2.0 mol % or more.
  • the upper limit of the carbide concentration is 10 mol% or less, preferably 8.0 mol% or less, and more preferably 6.0 mol% or less. be.
  • the sputtering target member may contain one kind of carbide or two or more kinds thereof.
  • Carbides include, for example, carbides of one or more elements selected from B, Ca, Cr, Nb, Si, Ta, Ti, W and Zr, among them B 4 C and Cr 3 C. 2 and TiC are preferred, one or two selected from B 4 C and Cr 3 C 2 are more preferred, and B 4 C is even more preferred.
  • the sputtering target member contains one or more selected from B 4 C, Cr 3 C 2 and TiC in a total amount of 1.5 to 10 mol %, preferably 1.8 to 1.8 mol %. It contains 8.0 mol %, more preferably 2.0 to 6.0 mol %. In a more preferred embodiment, the sputtering target member contains 1.5 to 10 mol% in total of one or two selected from B 4 C and Cr 3 C 2 , preferably 1.8 to 8.0 mol%. contain, more preferably 2.0 to 6.0 mol %. In an even more preferred embodiment, the sputtering target member contains 1.5 to 10 mol% of B 4 C, preferably 1.8 to 8.0 mol%, more preferably 2.0 to 6.0 mol%. contains.
  • a non-magnetic material other than carbide may be added to the sputtering target member from the viewpoint of adjusting the magnetic properties of the magnetic recording layer.
  • one or more nonmagnetic materials selected from carbon, oxides, nitrides and carbonitrides can be contained in a total of 0 to 30 mol%, preferably 0 to 25 mol%. more preferably 0 to 20 mol %.
  • oxides include Al, B, Ba, Be, Ca, Ce, Co, Cr, Dy, Er, Eu, Ga, Gd, Ho, Li, Mg, Mn, Nb, Nd, Pr, Sc, Si , Sm, Sr, Ta, Tb, Ti, V, Y, Zn and Zr.
  • oxides of one or more elements selected from B, Co, Cr, Si and Ti are preferred.
  • oxides of one or more elements selected from Al, B, Ca, Nb, Si, Ta, Ti and Zr are preferred.
  • nitrides include nitrides of one or more elements selected from Al, B, Ca, Nb, Si, Ta, Ti and Zr.
  • carbonitrides include carbonitrides of one or more elements selected from Ti, Cr, V and Zr.
  • the molar ratio of carbide to the total of carbon and carbide in the sputtering target member is preferably 0.25 or more, and preferably 0.4 or more. is more preferably 0.6 or more, even more preferably 0.8 or more, and most preferably 1.0.
  • the sputtering target contains, as a third element, one or more metal elements selected from Cr, Ru, B, Ti, Si and Mn in total of 30 mol% or less, for example 0.01 to 20 mol%, typically may contain 0.05 to 10 mol %. These are metals added as necessary to improve the properties of the magnetic recording layer. The blending ratio can be variously adjusted within the above range, and all of them can maintain effective properties as a magnetic recording layer.
  • B is also treated as a metal. If the third element is present as a carbide, oxide, nitride, or carbonitride instead of a single metal or alloy, they are not the third element defined here but the non-magnetic material described above. handle.
  • the sputtering target member according to the present invention preferably has a relative density of 90% or more, more preferably 95% or more. Relative densities can be, for example, between 90% and 100%. As a result, a uniform thin film can be produced with little occurrence of abnormal discharge (arcing) during film formation.
  • the relative density is a value obtained by dividing the actually measured density of the sputtering target member by the calculated density (also referred to as theoretical density). The actual density is measured by the Archimedes method.
  • the calculated density is the density when it is assumed that the components of the raw material powder of the target member are mixed without diffusing or reacting with each other, and is calculated by the following equation.
  • the sputtering target member may be bonded to a base material such as a backing plate or a backing tube and attached to the sputtering apparatus as a sputtering target assembly.
  • the sputtering target member may be directly mounted on the sputtering apparatus as a sputtering target without using the base material.
  • the sputtering target member according to the present invention can be produced by, for example, the following method using a powder sintering method.
  • raw material powder is prepared according to the composition of the target sputtering target member.
  • the raw material powder for example, in addition to Co powder, Pt powder and carbide powder, powder of one or more non-magnetic materials selected from carbon powder, oxide powder, nitride powder and carbonitride powder. is mentioned.
  • one or more metal powders selected from Cr, Ru, B, Ti, Si and Mn may be prepared.
  • the purity of the raw material powder is preferably 90 mol% or higher, more preferably 95 mol% or higher, and even more preferably 99.9 mol% or higher.
  • the raw powder is free of ingredients other than indicated ingredients and unavoidable impurities.
  • the upper limit of the median diameter (D50) of the raw material powder is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, even more preferably 50 ⁇ m or less, and 10 ⁇ m in order to achieve a uniform structure. It is even more preferred that:
  • the lower limit of the median diameter of the raw material powder is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, and more preferably 0.5 ⁇ m or more for the reason of preventing oxidation of the raw material powder. Even more preferred.
  • the median diameter can be adjusted by pulverization or sieving.
  • the prepared raw material powders are weighed so as to have a desired composition, and pulverized and mixed by a known technique such as a ball mill to obtain a mixed powder.
  • a known technique such as a ball mill to obtain a mixed powder.
  • Inert gases include Ar and N 2 gases.
  • the upper limit of the median diameter (D50) of the mixed powder is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less in order to achieve a uniform structure.
  • the lower limit of the median diameter of the mixed powder is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, and further preferably 0.5 ⁇ m or more for the reason of preventing oxidation of the mixed powder. more preferred.
  • the median diameter of each raw material powder and mixed powder means the particle diameter (D50) at 50% of the volume-based integrated value in the particle size distribution determined by the laser diffraction/scattering method.
  • D50 particle diameter
  • a model LA-920 particle size distribution analyzer manufactured by Horiba, Ltd. was used, and the powder was dispersed in an ethanol solvent and measured.
  • the value of metallic cobalt was used as the refractive index.
  • the mixed powder thus obtained is molded and sintered in a vacuum atmosphere or an inert gas atmosphere by a hot press method.
  • various pressure sintering methods such as plasma discharge sintering can be used.
  • hot isostatic pressing (HIP) is effective in increasing the density of the sintered body. It is preferable from the viewpoint of improving the density.
  • the upper limit of the holding temperature during sintering depends on the composition of the target, it is preferably 1500° C. or less, more preferably 1400° C. or less, more preferably 1200° C., in order to prevent coarsening of the crystal grains. It is even more preferable to:
  • the lower limit of the holding temperature during sintering is preferably 600° C. or higher, more preferably 650° C. or higher, and even more preferably 700° C. or higher in order to avoid a decrease in the density of the sintered body. preferable.
  • the lower limit of the press pressure during sintering is preferably 10 MPa or higher, more preferably 15 MPa or higher, and even more preferably 20 MPa or higher, in order to promote sintering.
  • the upper limit of the press pressure during sintering is preferably 70 MPa or less, more preferably 50 MPa or less, and even more preferably 40 MPa or less, in consideration of the strength of the die.
  • the lower limit of the sintering time is preferably 0.1 hours or more, more preferably 0.2 hours or more, and even more preferably 0.5 hours or more in order to improve the density of the sintered body.
  • the upper limit of the sintering time is preferably 10 hours or less, more preferably 5 hours or less, and even more preferably 2 hours or less in order to prevent coarsening of crystal grains.
  • a sputtering target member according to one embodiment of the present invention can be produced by molding the obtained sintered body into a desired shape using a lathe or the like.
  • the shape of the target is not particularly limited, but examples thereof include a flat plate shape (including a disk shape and a rectangular plate shape) and a cylindrical shape.
  • the sputtering target member according to the present invention is particularly useful as a sputtering target member used for forming a magnetic recording layer having a granular structure.
  • the present invention provides a film formation method including a step of sputtering using the above sputtering target member. Sputtering conditions can be set as appropriate.
  • each of the above raw material powders was pulverized while being mixed using a ball mill with zirconia balls as a pulverizing medium so that the molar ratios described in the raw material composition column of Table 1 were obtained according to the test number.
  • the median diameter (D50) of the obtained mixed powder was about 0.5 to 5.0 ⁇ m.
  • the obtained mixed powder was filled in a carbon mold and sintered by hot pressing in a vacuum atmosphere and hot isostatic pressing (HIP) in an Ar atmosphere. Hot pressing was carried out at a holding temperature of 800 to 1100° C. and a pressing pressure of 20 to 30 MPa for 1 to 2 hours. Hot isostatic pressing (HIP) after hot pressing was performed for densification. Thereafter, the sintered compact after HIP was ground using a general-purpose lathe and a surface grinder to obtain a disk-shaped sputtering target member having a diameter of 180 mm and a thickness of 5 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

Provided is a sputtering target member which is for a magnetic recording layer and can suppress the generation of particles. This sputtering target member for a magnetic recording layer contains 10-70 mol% of Co, 5-30 mol% of Pt, 1.5-10 mol% of carbide, and 0-30 mol% in total of one or two more non-magnetic materials selected from among carbon, oxide, nitride, and carbonitride.

Description

スパッタリングターゲット部材、スパッタリングターゲット組立品、及び成膜方法Sputtering target member, sputtering target assembly, and film forming method
 本発明は一実施形態において、磁気記録層用スパッタリングターゲット部材に関する。本発明は別の一実施形態において、そのようなスパッタリングターゲット部材を備えたスパッタリングターゲット組立品に関する。本発明は更に別の一実施形態において、そのようなスパッタリングターゲット部材を用いた成膜方法に関する。 In one embodiment, the present invention relates to a sputtering target member for a magnetic recording layer. In another embodiment, the invention relates to a sputtering target assembly comprising such a sputtering target member. In still another embodiment, the present invention relates to a film forming method using such a sputtering target member.
 ハードディスクドライブに代表される磁気記録の分野では、記録を担う磁性薄膜の材料として、強磁性金属であるCo、Fe又はNiをベースとした材料が用いられている。例えば、近年実用化された垂直磁気記録方式を採用するハードディスクの記録層には、Coを主成分とするCo-Pt系の強磁性合金に酸化物粒子及び炭素粒子等の非磁性粒子を分散させた複合材料が多く用いられている。記録層は、非磁性粒子によって磁性粒子が磁気的に分離されるグラニュラー構造を微細化することで、単位面積当たりの記録量が増加する。 In the field of magnetic recording typified by hard disk drives, materials based on ferromagnetic metals Co, Fe, or Ni are used as materials for magnetic thin films responsible for recording. For example, in the recording layer of a hard disk that employs a perpendicular magnetic recording system that has been put into practical use in recent years, non-magnetic particles such as oxide particles and carbon particles are dispersed in a Co—Pt-based ferromagnetic alloy containing Co as a main component. Composite materials are often used. The recording layer increases the recording amount per unit area by miniaturizing the granular structure in which magnetic particles are magnetically separated by non-magnetic particles.
 磁性薄膜は、生産性の高さから、上記材料を成分とするスパッタリングターゲットをマグネトロンスパッタ装置でスパッタして作製されることが多い。そのため、種々の観点から磁性薄膜形成用のスパッタリングターゲットの技術開発が従来なされてきた。 Due to its high productivity, magnetic thin films are often produced by sputtering a sputtering target containing the above materials with a magnetron sputtering apparatus. Therefore, from various viewpoints, the technical development of the sputtering target for forming the magnetic thin film has hitherto been made.
 特許文献1(特開2013-37730号公報)には、FePtのL10型規則合金を構成する金属(磁性金属、貴金属)及び炭素を混合したスパッタリングターゲットが記載されている。
 当該文献には、磁気記録媒体のヘッドスペーシングの拡大を抑制し、記録密度を向上させることを可能にするために、
(1)非磁性基板上に、規則合金の結晶粒子および炭素からなる粒界層を含む磁気記録層と、前記磁気記録層上に存在し、炭素からなる保護層前駆体とを形成する工程と、
(2)前記保護層前駆体に、炭化水素系ガスに対するプラズマ放電により生成した炭化水素系イオンを照射して、保護層前駆体を保護層に変化させる工程と
を含み、前記炭化水素系イオンは前記保護層前駆体に到達する際に300eV以上のエネルギーを有することを特徴とする垂直磁気記録媒体の製造方法が記載されている。
Patent Document 1 (Japanese Patent Application Laid-Open No. 2013-37730) describes a sputtering target in which a metal (a magnetic metal, a noble metal) constituting an L1 0 ordered alloy of FePt and carbon are mixed.
In the document, in order to suppress the expansion of the head spacing of the magnetic recording medium and improve the recording density,
(1) forming a magnetic recording layer containing crystal grains of an ordered alloy and a grain boundary layer made of carbon on a non-magnetic substrate, and a protective layer precursor made of carbon and present on the magnetic recording layer; ,
(2) irradiating the protective layer precursor with hydrocarbon-based ions generated by plasma discharge of a hydrocarbon-based gas to convert the protective layer precursor into a protective layer, wherein the hydrocarbon-based ions are A method for manufacturing a perpendicular magnetic recording medium is described, wherein the energy reaching the protective layer precursor has an energy of 300 eV or more.
 特許文献2(国際公開第2014/132746号)には、Fe、PtおよびCを含有するFePt-C系スパッタリングターゲットであって、Ptを33at%以上60at%以下含有して残部がFeおよび不可避的不純物からなるFePt系合金相中に、不可避的不純物を含む1次粒子のC同士がお互いに接触しないように分散した構造を有することを特徴とするFePt-C系スパッタリングターゲットが記載されている。特許文献2によれば、このFePt-C系スパッタリングターゲットはパーティクルが少ないとされている。 Patent Document 2 (International Publication No. 2014/132746) discloses a FePt—C-based sputtering target containing Fe, Pt and C, containing 33 at% or more and 60 at% or less of Pt, and the balance being Fe and unavoidable An FePt—C sputtering target characterized by having a structure in which C particles of primary particles containing unavoidable impurities are dispersed in an FePt alloy phase composed of impurities so as not to come into contact with each other is described. According to Patent Document 2, this FePt--C based sputtering target has few particles.
 特許文献3(特開2018-172770号公報)には、Co:Pt=X:100-X(59≦X<100)のモル比で、金属Co及び金属Ptを合計で70mol%以上含有し、金属Crを0mol%以上20mol%以下含有する強磁性材スパッタリングターゲットであって、金属Coを90mol%以上含有し、平均粒径が30~300μmのCo粒子相と、モル比でCo:Pt=Y:100-Y(20≦Y≦60.5)となる条件で、金属Co及び金属Ptを合計で70mol%以上含有する平均粒径が7μm以下のCo-Pt合金粒子相を有する強磁性材スパッタリングターゲットが記載されている。特許文献3には、炭素、酸化物、窒化物、炭化物及び炭窒化物よりなる群から選択される一種又は二種以上の非磁性材料を合計で25mol%以下含有することも記載されており、この強磁性材スパッタリングターゲットは、Co-Pt合金相を微細化しつつ、Co相を粗大化するという手法を採用したことで、漏洩磁束が高く、スパッタリング時におけるパーティクルの発生も抑制可能であるとされている。 Patent Document 3 (Japanese Patent Application Laid-Open No. 2018-172770) describes that the molar ratio of Co:Pt=X:100-X (59≦X<100) contains 70 mol% or more of metal Co and metal Pt in total, A ferromagnetic material sputtering target containing 0 mol% or more and 20 mol% or less of metal Cr, containing 90 mol% or more of metal Co and a Co particle phase having an average particle size of 30 to 300 μm, and a Co:Pt=Y molar ratio : Ferromagnetic material sputtering having a Co—Pt alloy grain phase with an average grain size of 7 μm or less containing a total of 70 mol % or more of metallic Co and metallic Pt under conditions of 100−Y (20≦Y≦60.5) Target is listed. Patent Document 3 also describes that one or more nonmagnetic materials selected from the group consisting of carbon, oxides, nitrides, carbides and carbonitrides are contained in a total of 25 mol% or less, It is said that this ferromagnetic material sputtering target has a high leakage magnetic flux and can suppress the generation of particles during sputtering by adopting a method of coarsening the Co phase while refining the Co—Pt alloy phase. ing.
 特許文献4(国際公開第2012/081340号)には、磁気記録膜用スパッタリングターゲットにおいて、SiO2の添加に加え、10wtppm以上のB(ボロン)を添加する工夫を行うことが提案されている。スパッタリング時のパーティクル発生の原因となるクリストバライトの形成を抑制することにより、ターゲットのマイクロクラック及びスパッタリング中のパーティクル発生を抑制し、かつバーンイン時間の短縮化が可能であるとされている。 Patent Document 4 (International Publication No. 2012/081340) proposes to add 10 wtppm or more of B (boron) to a sputtering target for a magnetic recording film, in addition to adding SiO 2 . By suppressing the formation of cristobalite, which causes particle generation during sputtering, it is possible to suppress microcracks in the target and particle generation during sputtering, and to shorten the burn-in time.
特開2013-37730号公報JP 2013-37730 A 国際公開第2014/132746号WO2014/132746 特開2018-172770号公報JP 2018-172770 A 国際公開第2012/081340号WO2012/081340
 近年では、磁気記録層を成膜する際に基板を予め加熱しておくことがある(例:200℃程度)。主に磁性粒子の結晶性を向上させるのが目的であるが、副次的な影響で酸化物粒子が磁性粒子側に拡散してしまい、成膜後の磁気特性が下がってしまうおそれがある。このため、高温でも安定な粒界材料として、炭素を使用することが考えられる。しかしながら、単純に炭素を加えるとパーティクルが激増し、収率が大きく低下する。上述した先行技術文献に記載されている技術を採用することで、パーティクルを軽減するという方策もあり得るが、限界がある。そのため、これらとは異なるアプローチによりパーティクルを軽減できれば、技術の選択肢を増やしたり、更なる技術開発の可能性を広げたりするという観点から、有用であると考えられる。 In recent years, the substrate is sometimes preheated (eg, about 200°C) when forming the magnetic recording layer. The main purpose is to improve the crystallinity of the magnetic grains, but as a secondary effect, the oxide grains may diffuse toward the magnetic grains, deteriorating the magnetic properties after film formation. For this reason, it is conceivable to use carbon as a grain boundary material that is stable even at high temperatures. However, simply adding carbon causes a sharp increase in particles and a large decrease in yield. Although it is possible to reduce particles by adopting the techniques described in the prior art documents mentioned above, there are limitations. Therefore, if particles can be reduced by an approach different from these, it is considered useful from the viewpoint of increasing the options of technology and expanding the possibility of further technological development.
 そこで、本発明は一実施形態において、上記の先行技術とは別の観点からパーティクルの発生を抑制可能な、磁気記録層用スパッタリングターゲット部材を提供することを課題とする。本発明は別の一実施形態において、そのようなスパッタリングターゲット部材を備えたスパッタリングターゲット組立品を提供することを課題とする。本発明は更に別の一実施形態において、そのようなスパッタリングターゲット部材を用いた成膜方法を提供することを課題とする。 Therefore, in one embodiment, an object of the present invention is to provide a sputtering target member for a magnetic recording layer that is capable of suppressing the generation of particles from a different point of view from the above prior art. Another object of the present invention is to provide a sputtering target assembly comprising such a sputtering target member. Another object of the present invention is to provide a film formation method using such a sputtering target member.
 本発明者は上記課題を解決するために鋭意検討したところ、炭化物の比率を高めたCo-Pt系のスパッタリングターゲット部材を使用することがパーティクルの抑制に有効であることを見出した。本発明は上記知見に基づき完成したものであり、以下に例示される。 In order to solve the above problems, the inventors have made extensive studies and found that using a Co-Pt-based sputtering target member with an increased carbide ratio is effective in suppressing particles. The present invention has been completed based on the above findings, and is exemplified below.
[1]
 Coを10~70mol%、Ptを5~30mol%、炭化物を1.5~10mol%、且つ、炭素、酸化物、窒化物及び炭窒化物から選択される一種又は二種以上の非磁性材料を合計で0~30mol%含有する磁気記録層用スパッタリングターゲット部材。
[2]
 炭素と炭化物の合計に対する炭化物のモル比が0.25以上である[1]に記載の磁気記録層用スパッタリングターゲット部材。
[3]
 炭化物として、B4C、Cr32及びTiCから選択される一種又は二種以上を含有する[1]又は[2]に記載の磁気記録層用スパッタリングターゲット部材。
[4]
 B4C、Cr32及びTiCから選択される一種又は二種以上を合計で1.5~10mol%含有する[3]に記載の磁気記録層用スパッタリングターゲット部材。
[5]
 Cr、Ru、B、Ti、Si及びMnから選択される一種又は二種以上の金属元素を合計で30mol%以下含有する[1]~[4]の何れか一項に記載の磁気記録層用スパッタリングターゲット部材。
[6]
 相対密度が90%以上である[1]~[5]の何れか一項に記載の磁気記録層用スパッタリングターゲット部材。
[7]
 [1]~[6]の何れか一項に記載の磁気記録層用スパッタリングターゲット部材と、当該スパッタリングターゲット部材に接合されたバッキングチューブ又はバッキングプレートとを備えたスパッタリングターゲット組立品。
[8]
 [1]~[6]の何れか一項に記載の磁気記録層用スパッタリングターゲット部材をスパッタリングすることを含む成膜方法。
[1]
10 to 70 mol% Co, 5 to 30 mol% Pt, 1.5 to 10 mol% carbide, and one or more non-magnetic materials selected from carbon, oxide, nitride and carbonitride A sputtering target member for a magnetic recording layer containing 0 to 30 mol % in total.
[2]
The sputtering target member for a magnetic recording layer according to [1], wherein the molar ratio of carbide to the sum of carbon and carbide is 0.25 or more.
[3]
The sputtering target member for a magnetic recording layer according to [1] or [2], containing one or more selected from B 4 C, Cr 3 C 2 and TiC as the carbide.
[4]
The sputtering target member for a magnetic recording layer according to [3], containing 1.5 to 10 mol % in total of one or more selected from B 4 C, Cr 3 C 2 and TiC.
[5]
The magnetic recording layer according to any one of [1] to [4], containing a total of 30 mol% or less of one or more metal elements selected from Cr, Ru, B, Ti, Si and Mn. Sputtering target member.
[6]
The sputtering target member for a magnetic recording layer according to any one of [1] to [5], which has a relative density of 90% or more.
[7]
A sputtering target assembly comprising the magnetic recording layer sputtering target member according to any one of [1] to [6], and a backing tube or a backing plate joined to the sputtering target member.
[8]
A film forming method comprising sputtering the sputtering target member for a magnetic recording layer according to any one of [1] to [6].
 本発明の一実施形態によれば、炭化物は高温でも安定であるため、成膜後の磁気特性に対する影響を抑制可能でありながらも、スパッタ時のパーティクルが軽減されるという格別の効果が得られる。 According to one embodiment of the present invention, since carbide is stable even at high temperatures, it is possible to suppress the influence on the magnetic properties after film formation, and at the same time, it is possible to obtain a special effect of reducing particles during sputtering. .
(1.スパッタリングターゲット部材)
(1-1.組成)
 本発明に係るスパッタリングターゲット部材は一実施形態において、Coを10~70mol%、Ptを5~30mol%、炭化物を1.5~10mol%、且つ、炭素、酸化物、窒化物及び炭窒化物から選択される一種又は二種以上の非磁性材料を合計で0~30mol%含有する。当該組成は、スパッタリングターゲット部材全体に占める炭化物の比率が高く、これがスパッタ時のパーティクルの抑制に寄与する。
(1. Sputtering target member)
(1-1. Composition)
In one embodiment, the sputtering target member according to the present invention contains 10 to 70 mol% Co, 5 to 30 mol% Pt, 1.5 to 10 mol% carbide, and is composed of carbon, oxide, nitride and carbonitride. It contains 0 to 30 mol % in total of one or more selected non-magnetic materials. This composition has a high proportion of carbide in the entire sputtering target member, which contributes to the suppression of particles during sputtering.
 磁気記録層を形成するという観点から、上記スパッタリングターゲット部材におけるCoの濃度は10~70mol%とすることが好適である。Coの濃度は、要求される磁気記録層の磁気特性に応じて適宜調整すればよいが、典型的には20~70mol%とすることができ、より典型的には30~70mol%とすることができ、更により典型的には40~60mol%とすることができる。なお、ここで考慮されるCoは単体で存在しているか又はPt等の他の金属と合金を形成している金属Coである。 From the viewpoint of forming a magnetic recording layer, the Co concentration in the sputtering target member is preferably 10 to 70 mol %. The concentration of Co may be appropriately adjusted according to the required magnetic properties of the magnetic recording layer, but it is typically 20 to 70 mol %, more typically 30 to 70 mol %. , and even more typically between 40 and 60 mol %. It should be noted that the Co considered here is metallic Co that exists alone or forms an alloy with another metal such as Pt.
 磁気記録層を形成するという観点から、上記スパッタリングターゲット部材におけるPtの濃度は5~30mol%とすることが好適である。Ptの濃度は、要求される磁気記録層の磁気特性に応じて適宜調整すればよいが、典型的には5~25mol%とすることができ、より典型的には10~25mol%とすることができ、更により典型的には10~20mol%とすることができる。なお、ここで考慮されるPtは単体で存在しているか又はCo等の他の金属と合金を形成している金属Ptである。 From the viewpoint of forming a magnetic recording layer, the concentration of Pt in the sputtering target member is preferably 5-30 mol %. The concentration of Pt may be appropriately adjusted according to the required magnetic properties of the magnetic recording layer, typically 5 to 25 mol %, more typically 10 to 25 mol %. , and even more typically between 10 and 20 mol %. It should be noted that the Pt considered here is a metal Pt that exists alone or forms an alloy with another metal such as Co.
 上記スパッタリングターゲット部材における炭化物の濃度は1.5~10mol%とすることが好適である。スパッタ時のパーティクル抑制効果を高めるという観点から、炭化物の濃度の下限は1.5mol%以上であり、好ましくは1.8mol%以上であり、より好ましくは2.0mol%以上である。但し、炭化物の濃度は高すぎてもパーティクル抑制効果が低下するため、炭化物の濃度の上限は、10mol%以下であり、好ましくは8.0mol%以下であり、より好ましくは6.0mol%以下である。 The concentration of carbide in the sputtering target member is preferably 1.5-10 mol %. From the viewpoint of increasing the effect of suppressing particles during sputtering, the lower limit of the carbide concentration is 1.5 mol % or more, preferably 1.8 mol % or more, and more preferably 2.0 mol % or more. However, if the carbide concentration is too high, the particle suppression effect is reduced, so the upper limit of the carbide concentration is 10 mol% or less, preferably 8.0 mol% or less, and more preferably 6.0 mol% or less. be.
 上記スパッタリングターゲット部材は炭化物を一種含有してもよいし、二種以上含有してもよい。炭化物としては、例えば、B、Ca、Cr、Nb、Si、Ta、Ti、W及びZrから選択される元素の一種又は二種以上の炭化物が挙げられ、これらの中でもB4C、Cr32及びTiCから選択される一種又は二種以上が好ましく、B4C及びCr32から選択される一種又は二種がより好ましく、B4Cが更により好ましい。 The sputtering target member may contain one kind of carbide or two or more kinds thereof. Carbides include, for example, carbides of one or more elements selected from B, Ca, Cr, Nb, Si, Ta, Ti, W and Zr, among them B 4 C and Cr 3 C. 2 and TiC are preferred, one or two selected from B 4 C and Cr 3 C 2 are more preferred, and B 4 C is even more preferred.
 従って、上記スパッタリングターゲット部材は好適な実施形態において、B4C、Cr32及びTiCから選択される一種又は二種以上を合計で1.5~10mol%含有し、好ましくは1.8~8.0mol%含有し、より好ましくは2.0~6.0mol%含有する。
 上記スパッタリングターゲット部材はより好適な実施形態において、B4C及びCr32から選択される一種又は二種を合計で1.5~10mol%含有し、好ましくは1.8~8.0mol%含有し、より好ましくは2.0~6.0mol%含有する。
 上記スパッタリングターゲット部材は更により好適な実施形態において、B4Cを1.5~10mol%含有し、好ましくは1.8~8.0mol%含有し、より好ましくは2.0~6.0mol%含有する。
Therefore, in a preferred embodiment, the sputtering target member contains one or more selected from B 4 C, Cr 3 C 2 and TiC in a total amount of 1.5 to 10 mol %, preferably 1.8 to 1.8 mol %. It contains 8.0 mol %, more preferably 2.0 to 6.0 mol %.
In a more preferred embodiment, the sputtering target member contains 1.5 to 10 mol% in total of one or two selected from B 4 C and Cr 3 C 2 , preferably 1.8 to 8.0 mol%. contain, more preferably 2.0 to 6.0 mol %.
In an even more preferred embodiment, the sputtering target member contains 1.5 to 10 mol% of B 4 C, preferably 1.8 to 8.0 mol%, more preferably 2.0 to 6.0 mol%. contains.
 上記スパッタリングターゲット部材中には、磁気記録層の磁気特性を調節する観点から、炭化物以外の非磁性材料を添加してもよい。具体的には、炭素、酸化物、窒化物及び炭窒化物から選択される一種又は二種以上の非磁性材料を合計で0~30mol%含有することができ、好ましくは0~25mol%含有することができ、より好ましくは0~20mol%含有することができる。
 酸化物の例としては、Al、B、Ba、Be、Ca、Ce、Co、Cr、Dy、Er、Eu、Ga、Gd、Ho、Li、Mg、Mn、Nb、Nd、Pr、Sc、Si、Sm、Sr、Ta、Tb、Ti、V、Y、Zn及びZrから選択される元素の一種又は二種以上の酸化物が挙げられる。酸化物の中では、B、Co、Cr、Si及びTiから選択される元素の一種又は二種以上の酸化物が好ましい。
 窒化物の例としては、Al、B、Ca、Nb、Si、Ta、Ti及びZrから選択される元素の一種又は二種以上の窒化物が挙げられる。
 炭窒化物の例としては、Ti、Cr、V及びZrから選択される元素の一種又は二種以上の炭窒化物が挙げられる。
A non-magnetic material other than carbide may be added to the sputtering target member from the viewpoint of adjusting the magnetic properties of the magnetic recording layer. Specifically, one or more nonmagnetic materials selected from carbon, oxides, nitrides and carbonitrides can be contained in a total of 0 to 30 mol%, preferably 0 to 25 mol%. more preferably 0 to 20 mol %.
Examples of oxides include Al, B, Ba, Be, Ca, Ce, Co, Cr, Dy, Er, Eu, Ga, Gd, Ho, Li, Mg, Mn, Nb, Nd, Pr, Sc, Si , Sm, Sr, Ta, Tb, Ti, V, Y, Zn and Zr. Among the oxides, oxides of one or more elements selected from B, Co, Cr, Si and Ti are preferred.
Examples of nitrides include nitrides of one or more elements selected from Al, B, Ca, Nb, Si, Ta, Ti and Zr.
Examples of carbonitrides include carbonitrides of one or more elements selected from Ti, Cr, V and Zr.
 スパッタ時のパーティクルを効果的に抑制するという観点からは、上記スパッタリングターゲット部材中において、炭素と炭化物の合計に対する炭化物のモル比は0.25以上であることが好ましく、0.4以上であることがより好ましく、0.6以上であることが更により好ましく、0.8以上であることが更により好ましく、1.0であることが最も好ましい。 From the viewpoint of effectively suppressing particles during sputtering, the molar ratio of carbide to the total of carbon and carbide in the sputtering target member is preferably 0.25 or more, and preferably 0.4 or more. is more preferably 0.6 or more, even more preferably 0.8 or more, and most preferably 1.0.
 上記スパッタリングターゲットは、第三元素として、Cr、Ru、B、Ti、Si及びMnから選択される一種又は二種以上の金属元素を合計で30mol%以下、例えば0.01~20mol%、典型的には0.05~10mol%含有してもよい。これらは磁気記録層の特性を向上させるために、必要に応じて添加される金属である。配合割合は上記範囲内で様々に調整でき、いずれも有効な磁気記録層としての特性を維持することができる。なお、本発明においてはBも金属として取り扱う。上記第三元素が単体金属又は合金ではなく、炭化物、酸化物、窒化物、又は炭窒化物として存在している場合には、それらはここで規定する第三元素ではなく上述した非磁性材料として取り扱う。 The sputtering target contains, as a third element, one or more metal elements selected from Cr, Ru, B, Ti, Si and Mn in total of 30 mol% or less, for example 0.01 to 20 mol%, typically may contain 0.05 to 10 mol %. These are metals added as necessary to improve the properties of the magnetic recording layer. The blending ratio can be variously adjusted within the above range, and all of them can maintain effective properties as a magnetic recording layer. In the present invention, B is also treated as a metal. If the third element is present as a carbide, oxide, nitride, or carbonitride instead of a single metal or alloy, they are not the third element defined here but the non-magnetic material described above. handle.
(1-2.相対密度)
 本発明に係るスパッタリングターゲット部材は一実施形態において、相対密度が90%以上であることが好ましく、95%以上であることがより好ましい。相対密度は例えば90%~100%とすることができる。これにより、成膜時の異常放電(アーキング)の発生が少なく、均一な薄膜を作製することができる。本明細書において、相対密度は、スパッタリングターゲット部材の実測密度を計算密度(理論密度ともいう)で割り返して求めた値である。実測密度はアルキメデス法により測定される。計算密度は、ターゲット部材の原料粉末の構成成分が互いに拡散あるいは反応せずに混在していると仮定したときの密度であり、次式で計算される。
 式:計算密度=Σ(原料粉末の構成成分の分子量×原料粉末の構成成分のモル濃度)/Σ(原料粉末の構成成分の分子量×原料粉末の構成成分のモル濃度/原料粉末の構成成分の文献値密度)
 ここで、Σは、ターゲット部材の不純物以外の構成成分の全てについて、和をとることを意味する。
(1-2. Relative density)
In one embodiment, the sputtering target member according to the present invention preferably has a relative density of 90% or more, more preferably 95% or more. Relative densities can be, for example, between 90% and 100%. As a result, a uniform thin film can be produced with little occurrence of abnormal discharge (arcing) during film formation. In this specification, the relative density is a value obtained by dividing the actually measured density of the sputtering target member by the calculated density (also referred to as theoretical density). The actual density is measured by the Archimedes method. The calculated density is the density when it is assumed that the components of the raw material powder of the target member are mixed without diffusing or reacting with each other, and is calculated by the following equation.
Formula: Calculated density = Σ (molecular weight of constituents of raw powder × molar concentration of constituents of raw powder) / Σ (molecular weight of constituents of raw powder × molar concentration of constituents of raw powder / molar concentration of constituents of raw powder literature value density)
Here, Σ means taking the sum of all constituent components of the target member other than impurities.
 スパッタリングターゲット部材は、必要に応じて、バッキングプレート又はバッキングチューブのような基材と接合させて、スパッタリングターゲット組立品としてスパッタリング装置に装着してもよい。基材を使用せず、スパッタリングターゲット部材をそのままスパッタリングターゲットとしてスパッタリング装置に装着してもよい。 If necessary, the sputtering target member may be bonded to a base material such as a backing plate or a backing tube and attached to the sputtering apparatus as a sputtering target assembly. The sputtering target member may be directly mounted on the sputtering apparatus as a sputtering target without using the base material.
(2.製法)
 本発明に係るスパッタリングターゲット部材は、粉末焼結法を用いて、例えば、以下の方法によって作製することができる。
(2. Manufacturing method)
The sputtering target member according to the present invention can be produced by, for example, the following method using a powder sintering method.
 まず、目的とするスパッタリングターゲット部材の組成に応じた原料粉末を用意する。原料粉末としては、例えば、Co粉末、Pt粉末及び炭化物粉に加えて、炭素粉、酸化物粉、窒化物粉、及び炭窒化物粉から選択される一種又は二種以上の非磁性材料の粉末が挙げられる。更に、Cr、Ru、B、Ti、Si及びMnから選択される一種又は二種以上の金属粉末を用意してもよい。 First, raw material powder is prepared according to the composition of the target sputtering target member. As the raw material powder, for example, in addition to Co powder, Pt powder and carbide powder, powder of one or more non-magnetic materials selected from carbon powder, oxide powder, nitride powder and carbonitride powder. is mentioned. Furthermore, one or more metal powders selected from Cr, Ru, B, Ti, Si and Mn may be prepared.
 原料粉末の純度は好ましくは90mol%以上であり、より好ましくは95mol%以上であり、更により好ましくは99.9mol%以上である。典型的な実施形態において、原料粉末は表示成分及び不可避的不純物以外は含まない。 The purity of the raw material powder is preferably 90 mol% or higher, more preferably 95 mol% or higher, and even more preferably 99.9 mol% or higher. In a typical embodiment, the raw powder is free of ingredients other than indicated ingredients and unavoidable impurities.
 原料粉末のメジアン径(D50)の上限はそれぞれ、均一な組織を実現するために、200μm以下であることが好ましく、100μm以下であることがより好ましく、50μm以下であることが更により好ましく、10μm以下であることが更により好ましい。また、当該原料粉末のメジアン径の下限は、原料粉末の酸化防止の理由により、0.1μm以上であることが好ましく、0.3μm以上であることがより好ましく、0.5μm以上であることが更により好ましい。メジアン径は粉砕や篩別により調整可能である。 The upper limit of the median diameter (D50) of the raw material powder is preferably 200 μm or less, more preferably 100 μm or less, even more preferably 50 μm or less, and 10 μm in order to achieve a uniform structure. It is even more preferred that: In addition, the lower limit of the median diameter of the raw material powder is preferably 0.1 μm or more, more preferably 0.3 μm or more, and more preferably 0.5 μm or more for the reason of preventing oxidation of the raw material powder. Even more preferred. The median diameter can be adjusted by pulverization or sieving.
 次いで、用意した原料粉末を所望の組成となるように秤量し、ボールミル等の公知の手法を用いて粉砕を兼ねて混合し、混合粉末を得る。このとき、粉砕容器内に不活性ガスを封入して原料粉の酸化をできるかぎり抑制することが望ましい。不活性ガスとしては、Ar、N2ガスが挙げられる。 Next, the prepared raw material powders are weighed so as to have a desired composition, and pulverized and mixed by a known technique such as a ball mill to obtain a mixed powder. At this time, it is desirable to seal the pulverization container with an inert gas to suppress oxidation of the raw material powder as much as possible. Inert gases include Ar and N 2 gases.
 混合粉末のメジアン径(D50)の上限はそれぞれ、均一な組織を実現するために、20μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることが更により好ましい。また、混合粉末のメジアン径の下限は、混合粉末の酸化防止の理由により、0.1μm以上であることが好ましく、0.3μm以上であることがより好ましく、0.5μm以上であることが更により好ましい。 The upper limit of the median diameter (D50) of the mixed powder is preferably 20 µm or less, more preferably 10 µm or less, and even more preferably 5 µm or less in order to achieve a uniform structure. In addition, the lower limit of the median diameter of the mixed powder is preferably 0.1 μm or more, more preferably 0.3 μm or more, and further preferably 0.5 μm or more for the reason of preventing oxidation of the mixed powder. more preferred.
 本発明において、各原料粉末及び混合粉末のメジアン径は、レーザー回折・散乱法によって求めた粒度分布における体積基準での積算値50%での粒径(D50)を意味する。実施例においては、株式会社堀場製作所製の型式LA-920の粒度分布測定装置を使用し、粉末をエタノールの溶媒中に分散させて測定した。屈折率は金属コバルトの値を使用した。 In the present invention, the median diameter of each raw material powder and mixed powder means the particle diameter (D50) at 50% of the volume-based integrated value in the particle size distribution determined by the laser diffraction/scattering method. In the examples, a model LA-920 particle size distribution analyzer manufactured by Horiba, Ltd. was used, and the powder was dispersed in an ethanol solvent and measured. The value of metallic cobalt was used as the refractive index.
 このようにして得られた混合粉末をホットプレス法で真空雰囲気又は不活性ガス雰囲気下において成形・焼結する。また、前記ホットプレス法以外にも、プラズマ放電焼結法など様々な加圧焼結方法を使用することができる。特に、熱間静水圧加圧処理(HIP)は、焼結体の密度向上に有効であり、ホットプレス法と熱間静水圧加圧処理(HIP)をこの順に実施することが焼結体の密度向上の観点から好ましい。 The mixed powder thus obtained is molded and sintered in a vacuum atmosphere or an inert gas atmosphere by a hot press method. In addition to the hot press method, various pressure sintering methods such as plasma discharge sintering can be used. In particular, hot isostatic pressing (HIP) is effective in increasing the density of the sintered body. It is preferable from the viewpoint of improving the density.
 焼結時の保持温度の上限は、ターゲットの組成にもよるが、結晶粒の粗大化を防止するために、1500℃以下とすることが好ましく、1400℃以下とすることがより好ましく、1200℃以下とすることが更により好ましい。また、焼結時の保持温度の下限は、焼結体の密度低下を避けるために600℃以上とすることが好ましく、650℃以上とすることがより好ましく、700℃以上とすることが更により好ましい。 Although the upper limit of the holding temperature during sintering depends on the composition of the target, it is preferably 1500° C. or less, more preferably 1400° C. or less, more preferably 1200° C., in order to prevent coarsening of the crystal grains. It is even more preferable to: In addition, the lower limit of the holding temperature during sintering is preferably 600° C. or higher, more preferably 650° C. or higher, and even more preferably 700° C. or higher in order to avoid a decrease in the density of the sintered body. preferable.
 焼結時のプレス圧力の下限は、焼結を促進するために10MPa以上とすることが好ましく、15MPa以上とすることがより好ましく、20MPa以上とすることが更により好ましい。また、焼結時のプレス圧力の上限は、ダイスの強度を考慮し70MPa以下とすることが好ましく、50MPa以下とすることがより好ましく、40MPa以下とすることが更により好ましい。 The lower limit of the press pressure during sintering is preferably 10 MPa or higher, more preferably 15 MPa or higher, and even more preferably 20 MPa or higher, in order to promote sintering. The upper limit of the press pressure during sintering is preferably 70 MPa or less, more preferably 50 MPa or less, and even more preferably 40 MPa or less, in consideration of the strength of the die.
 焼結時間の下限は、焼結体の密度向上のために0.1時間以上とすることが好ましく、0.2時間以上とすることがより好ましく、0.5時間以上とすることが更により好ましい。また、焼結時間の上限は、結晶粒の粗大化を防止するために10時間以下とすることが好ましく、5時間以下とすることがより好ましく、2時間以下とすることが更により好ましい。 The lower limit of the sintering time is preferably 0.1 hours or more, more preferably 0.2 hours or more, and even more preferably 0.5 hours or more in order to improve the density of the sintered body. preferable. The upper limit of the sintering time is preferably 10 hours or less, more preferably 5 hours or less, and even more preferably 2 hours or less in order to prevent coarsening of crystal grains.
 得られた焼結体を、旋盤等を用いて所望の形状に成形加工することにより、本発明の一実施形態に係るスパッタリングターゲット部材を作製することができる。ターゲット形状には特に制限はないが、例えば平板状(円盤状や矩形板状を含む)及び円筒状が挙げられる。本発明に係るスパッタリングターゲット部材は一実施形態において、グラニュラー構造をもつ磁気記録層の成膜に使用するスパッタリングターゲット部材として特に有用である。 A sputtering target member according to one embodiment of the present invention can be produced by molding the obtained sintered body into a desired shape using a lathe or the like. The shape of the target is not particularly limited, but examples thereof include a flat plate shape (including a disk shape and a rectangular plate shape) and a cylindrical shape. In one embodiment, the sputtering target member according to the present invention is particularly useful as a sputtering target member used for forming a magnetic recording layer having a granular structure.
(3.成膜方法)
 本発明は一実施形態において、上記スパッタリングターゲット部材を用いてスパッタリングする工程を含む成膜方法を提供する。スパッタ条件は適宜設定することができる。
(3. Film formation method)
In one embodiment, the present invention provides a film formation method including a step of sputtering using the above sputtering target member. Sputtering conditions can be set as appropriate.
 以下に本発明の実施例を比較例と共に示すが、実施例及び比較例は本発明及びその利点をよりよく理解するために提供するものであり、本発明が限定されることを意図するものではない。 Examples of the present invention are presented below along with comparative examples, which are provided for a better understanding of the invention and its advantages, and are not intended to limit the invention. do not have.
(1.スパッタリングターゲット部材の作製)
 原料粉末として、以下の粉末を用意した。何れも99.9質量%以上の高純度品であり、表示成分及び不可避的不純物以外は含まない。これらの粉末のメジアン径は篩別して適宜調整した。
Co粉末:メジアン径(D50)=3.3μm
Pt粉末:メジアン径(D50)=21.8μm
Cr粉末:メジアン径(D50)=2.7μm
B粉末:メジアン径(D50)=3.9μm
C粉末:メジアン径(D50)=25.5μm
4C粉末:メジアン径(D50)=0.5μm
Cr32粉末:メジアン径(D50)=1.2μm
TiC粉末:メジアン径(D50)=5.1μm
23粉末:メジアン径(D50)=0.5μm
TiO2粉末:メジアン径(D50)=0.9μm
CoO粉末:メジアン径(D50)=2.1μm
(1. Preparation of sputtering target member)
The following powders were prepared as raw material powders. All of them are high-purity products of 99.9% by mass or more, and do not contain anything other than indicated components and unavoidable impurities. The median diameter of these powders was sieved and adjusted appropriately.
Co powder: median diameter (D50) = 3.3 μm
Pt powder: median diameter (D50) = 21.8 µm
Cr powder: median diameter (D50) = 2.7 μm
B powder: median diameter (D50) = 3.9 μm
C powder: median diameter (D50) = 25.5 μm
B 4 C powder: Median diameter (D50) = 0.5 μm
Cr 3 C 2 powder: median diameter (D50) = 1.2 µm
TiC powder: median diameter (D50) = 5.1 μm
B 2 O 3 powder: Median diameter (D50) = 0.5 μm
TiO2 powder: Median diameter (D50) = 0.9 µm
CoO powder: median diameter (D50) = 2.1 µm
 次に、上記の各原料粉末を試験番号に応じて表1の原料組成欄に記載のモル比となるように、粉砕媒体のジルコニアボールによりボールミルを用いて混合しながら粉砕した。得られた混合粉末のメジアン径(D50)はいずれも0.5~5.0μm程度であった。次いで、得られた混合粉末をカーボン製の型に充填し、真空雰囲気下でのホットプレス及びAr雰囲気下での熱間静水圧加圧処理(HIP)により焼結を行った。ホットプレスは保持温度800~1100℃、プレス圧力20~30MPaで1~2時間行った。ホットプレス後の熱間静水圧加圧処理(HIP)は高密度化のために行った。その後、HIP後の焼結体を、汎用旋盤および平面研削盤を用いて研削加工して直径が180mm、厚さが5mmの円盤状のスパッタリングターゲット部材を得た。 Next, each of the above raw material powders was pulverized while being mixed using a ball mill with zirconia balls as a pulverizing medium so that the molar ratios described in the raw material composition column of Table 1 were obtained according to the test number. The median diameter (D50) of the obtained mixed powder was about 0.5 to 5.0 μm. Next, the obtained mixed powder was filled in a carbon mold and sintered by hot pressing in a vacuum atmosphere and hot isostatic pressing (HIP) in an Ar atmosphere. Hot pressing was carried out at a holding temperature of 800 to 1100° C. and a pressing pressure of 20 to 30 MPa for 1 to 2 hours. Hot isostatic pressing (HIP) after hot pressing was performed for densification. Thereafter, the sintered compact after HIP was ground using a general-purpose lathe and a surface grinder to obtain a disk-shaped sputtering target member having a diameter of 180 mm and a thickness of 5 mm.
(2.相対密度)
 上記手順により得られた各スパッタリングターゲット部材について、先述した方法(相対密度=実測密度/理論密度×100%)に従って、相対密度を測定した。結果を表1に示す。
(2. Relative density)
The relative density of each sputtering target member obtained by the above procedure was measured according to the method described above (relative density=measured density/theoretical density×100%). Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(3.パーティクル数)
 上記手順により得られた各スパッタリングターゲット部材をマグネトロンスパッタ装置(株式会社キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、合計2時間のプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒子径が0.07μm以上のパーティクルの個数を表面異物検査装置(KLA-Tencor社製Candela CS920)で測定した。結果を表2に示す。
(3. Number of particles)
Each sputtering target member obtained by the above procedure was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva Co., Ltd.), and sputtering was performed. Sputtering conditions were an input power of 1 kW and an Ar gas pressure of 1.7 Pa. After performing pre-sputtering for a total of 2 hours, a film was formed on a silicon substrate having a diameter of 4 inches for 20 seconds. Then, the number of particles having a particle diameter of 0.07 μm or more adhering to the substrate was measured by a surface contaminant inspection device (Candela CS920 manufactured by KLA-Tencor). Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 炭素及び炭化物以外の組成が同じ実施例1、実施例2及び比較例1を比較すると、これらはC源のモル濃度が2mol%であり共通する。しかしながら、C源として炭素のみを使用した比較例1に比べ、C源として炭化物のみを使用した実施例1及び実施例2の方がパーティクル数が少なかった。実施例1と実施例2を比較すると、炭化物としてB4Cを使用することでパーティクル数が激減することが分かる。 Comparing Example 1, Example 2, and Comparative Example 1, which have the same composition other than carbon and carbide, they have a common C source molar concentration of 2 mol %. However, the number of particles was smaller in Examples 1 and 2, in which only carbide was used as the C source, than in Comparative Example 1, in which only carbon was used as the C source. Comparing Example 1 and Example 2, it can be seen that the number of particles is drastically reduced by using B 4 C as the carbide.
 炭素及び炭化物以外の組成が同じ実施例3、実施例4、比較例2及び比較例3を比較すると、これらはC源のモル濃度が5mol%であり共通する。しかしながら、C源として炭素のみを使用した比較例3に比べ、C源として炭化物を使用した比較例2、実施例3及び実施例4の方がパーティクル数が少なかった。比較例2、実施例3及び実施例4を比較すると、炭化物の含有割合が大きくなるにつれてパーティクル数が減少することが分かる。また、炭化物濃度が1.5mol%未満の比較例2に対して、炭化物濃度が1.5mol%以上の実施例3及び実施例4のパーティクル数の減少量が顕著である。 Comparing Example 3, Example 4, Comparative Example 2, and Comparative Example 3, which have the same composition other than carbon and carbide, these have a common C source molar concentration of 5 mol%. However, compared to Comparative Example 3, in which only carbon was used as the C source, Comparative Example 2, Example 3, and Example 4, in which carbide was used as the C source, had fewer particles. Comparing Comparative Example 2, Example 3 and Example 4, it can be seen that the number of particles decreases as the carbide content increases. In addition, compared to Comparative Example 2, in which the carbide concentration is less than 1.5 mol %, Examples 3 and 4, in which the carbide concentration is 1.5 mol % or more, show a remarkable decrease in the number of particles.

Claims (8)

  1.  Coを10~70mol%、Ptを5~30mol%、炭化物を1.5~10mol%、且つ、炭素、酸化物、窒化物及び炭窒化物から選択される一種又は二種以上の非磁性材料を合計で0~30mol%含有する磁気記録層用スパッタリングターゲット部材。 10 to 70 mol% Co, 5 to 30 mol% Pt, 1.5 to 10 mol% carbide, and one or more non-magnetic materials selected from carbon, oxide, nitride and carbonitride A sputtering target member for a magnetic recording layer containing 0 to 30 mol % in total.
  2.  炭素と炭化物の合計に対する炭化物のモル比が0.25以上である請求項1に記載の磁気記録層用スパッタリングターゲット部材。 The sputtering target member for a magnetic recording layer according to claim 1, wherein the molar ratio of carbide to the sum of carbon and carbide is 0.25 or more.
  3.  炭化物として、B4C、Cr32及びTiCから選択される一種又は二種以上を含有する請求項1又は2に記載の磁気記録層用スパッタリングターゲット部材。 3. The sputtering target member for a magnetic recording layer according to claim 1, wherein the carbide is one or more selected from B4C , Cr3C2 and TiC.
  4.  B4C、Cr32及びTiCから選択される一種又は二種以上を合計で1.5~10mol%含有する請求項3に記載の磁気記録層用スパッタリングターゲット部材。 4. The sputtering target member for a magnetic recording layer according to claim 3, containing 1.5 to 10 mol % in total of one or more selected from B 4 C, Cr 3 C 2 and TiC.
  5.  Cr、Ru、B、Ti、Si及びMnから選択される一種又は二種以上の金属元素を合計で30mol%以下含有する請求項1~4の何れか一項に記載の磁気記録層用スパッタリングターゲット部材。 The sputtering target for a magnetic recording layer according to any one of claims 1 to 4, containing a total of 30 mol% or less of one or more metal elements selected from Cr, Ru, B, Ti, Si and Mn. Element.
  6.  相対密度が90%以上である請求項1~5の何れか一項に記載の磁気記録層用スパッタリングターゲット部材。 The sputtering target member for a magnetic recording layer according to any one of claims 1 to 5, which has a relative density of 90% or more.
  7.  請求項1~6の何れか一項に記載の磁気記録層用スパッタリングターゲット部材と、当該スパッタリングターゲット部材に接合されたバッキングチューブ又はバッキングプレートとを備えたスパッタリングターゲット組立品。 A sputtering target assembly comprising the magnetic recording layer sputtering target member according to any one of claims 1 to 6, and a backing tube or backing plate joined to the sputtering target member.
  8.  請求項1~6の何れか一項に記載の磁気記録層用スパッタリングターゲット部材をスパッタリングすることを含む成膜方法。 A film forming method comprising sputtering the sputtering target member for a magnetic recording layer according to any one of claims 1 to 6.
PCT/JP2022/035488 2021-11-05 2022-09-22 Sputtering target member, sputtering target assembly, and film forming method WO2023079856A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280068236.1A CN118077006A (en) 2021-11-05 2022-09-22 Sputtering target member, sputtering target assembly, and film forming method
JP2023557651A JP7412659B2 (en) 2021-11-05 2022-09-22 Sputtering target members, sputtering target assemblies, and film formation methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021181296 2021-11-05
JP2021-181296 2021-11-05

Publications (1)

Publication Number Publication Date
WO2023079856A1 true WO2023079856A1 (en) 2023-05-11

Family

ID=86241307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035488 WO2023079856A1 (en) 2021-11-05 2022-09-22 Sputtering target member, sputtering target assembly, and film forming method

Country Status (4)

Country Link
JP (1) JP7412659B2 (en)
CN (1) CN118077006A (en)
TW (1) TW202325873A (en)
WO (1) WO2023079856A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110033A1 (en) * 2009-03-27 2010-09-30 日鉱金属株式会社 Ferromagnetic-material sputtering target of nonmagnetic-material particle dispersion type
JP2018172770A (en) * 2017-03-31 2018-11-08 Jx金属株式会社 Sputtering target of ferromagnetic material
WO2019220675A1 (en) * 2018-05-14 2019-11-21 Jx金属株式会社 Sputtering target and method for manufacturing sputtering target
WO2021014760A1 (en) * 2019-07-23 2021-01-28 Jx金属株式会社 Sputtering target member for non-magnetic layer formation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110033A1 (en) * 2009-03-27 2010-09-30 日鉱金属株式会社 Ferromagnetic-material sputtering target of nonmagnetic-material particle dispersion type
JP2018172770A (en) * 2017-03-31 2018-11-08 Jx金属株式会社 Sputtering target of ferromagnetic material
WO2019220675A1 (en) * 2018-05-14 2019-11-21 Jx金属株式会社 Sputtering target and method for manufacturing sputtering target
WO2021014760A1 (en) * 2019-07-23 2021-01-28 Jx金属株式会社 Sputtering target member for non-magnetic layer formation

Also Published As

Publication number Publication date
JPWO2023079856A1 (en) 2023-05-11
CN118077006A (en) 2024-05-24
TW202325873A (en) 2023-07-01
JP7412659B2 (en) 2024-01-12

Similar Documents

Publication Publication Date Title
US9034155B2 (en) Inorganic-particle-dispersed sputtering target
TWI583812B (en) Non - magnetic material dispersion type Fe - Pt sputtering target
JP5705993B2 (en) Fe-Pt-Ag-C based sputtering target in which C particles are dispersed and method for producing the same
JP5394576B2 (en) Ferromagnetic sputtering target
WO2012133166A1 (en) Sputtering target for magnetic recording film
US20130220804A1 (en) Ferromagnetic Material Sputtering Target
JP6692724B2 (en) Non-magnetic material dispersed Fe-Pt based sputtering target
SG189832A1 (en) Ferromagnetic material sputtering target
US20130206592A1 (en) Ferromagnetic Sputtering Target
JP5960287B2 (en) Sintered sputtering target
TWI608113B (en) Sputtering target
JP7412659B2 (en) Sputtering target members, sputtering target assemblies, and film formation methods
CN111183244B (en) Ferromagnetic material sputtering target
JP6728094B2 (en) Ferromagnetic material sputtering target
TWI668311B (en) Sputtering target
JP2005097657A (en) Sputtering target for forming magnetic layer having reduced production of particle
TWI680198B (en) Ferromagnetic material sputtering target, manufacturing method thereof, and magnetic recording film manufacturing method
JP2022166726A (en) Sputtering target member, sputtering target assembly, and film deposition method
WO2023079857A1 (en) Fe-Pt-C-BASED SPUTTERING TARGET MEMBER, SPUTTERING TARGET ASSEMBLY, METHOD FOR FORMING FILM, AND METHOD FOR PRODUCING SPUTTERING TARGET MEMBER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889680

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023557651

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE