JP2002212698A - Galvannealed steel sheet having excellent powdering resistance and low temperature chipping resistance - Google Patents

Galvannealed steel sheet having excellent powdering resistance and low temperature chipping resistance

Info

Publication number
JP2002212698A
JP2002212698A JP2001003361A JP2001003361A JP2002212698A JP 2002212698 A JP2002212698 A JP 2002212698A JP 2001003361 A JP2001003361 A JP 2001003361A JP 2001003361 A JP2001003361 A JP 2001003361A JP 2002212698 A JP2002212698 A JP 2002212698A
Authority
JP
Japan
Prior art keywords
steel sheet
plating
resistance
amount
temperature chipping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001003361A
Other languages
Japanese (ja)
Other versions
JP3744356B2 (en
Inventor
Nobue Fujibayashi
亘江 藤林
Kazuaki Kyono
一章 京野
Chiaki Kato
千昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001003361A priority Critical patent/JP3744356B2/en
Publication of JP2002212698A publication Critical patent/JP2002212698A/en
Application granted granted Critical
Publication of JP3744356B2 publication Critical patent/JP3744356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a galvannealed steel sheet which exhibits excellent powdering resistance when it is subjected to press processing and has excellent low temperature chipping resistance after being coated. SOLUTION: Iron content in the plated film is <=13 mass %, and when an average value of Vickers hardnesses at ten positions of the surface of the steel sheet after removing plating is defined as Hav., the maximum value of the Vickers hardnesses is defined as Hmax., and the minimum value of the Vickers hardnesses is defined as Hmin., the value of (Hmax.-Hmin.)/Hav. is adjusted to be <0.3. Further, the ratio of the particle diameter in the rolling direction to the particle diameter in the direction perpendicular to the rolling direction of each crystalline particle on the uppermost surface of the steel sheet is controlled to be within a prescribed range, and the iron content and/or the aluminum content in the plated film are also each controlled to be within a prescribed range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車用防錆表面
処理鋼板として用いられる鋼板であり、特に耐パウダリ
ング性および耐低温チッピング性に優れた合金化溶融亜
鉛めっき鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel sheet used as a rust-proof surface-treated steel sheet for automobiles, and more particularly to a galvannealed steel sheet having excellent powdering resistance and low-temperature chipping resistance.

【0002】[0002]

【従来の技術】合金化溶融亜鉛めっき鋼板 (以下、GA
鋼板と略記)は安価で防食性に優れるため自動車用鋼板
として広く用いられている。しかし、GA鋼板は地鉄
(Fe) とZnを加熱合金化することによりZn−Fe合金層を
形成させるため、鋼板とめっき層の界面に硬くてもろい
Γ層が生成する。そのため、プレス加工による鋼板の変
形や金型との接触によって、めっき層がパウダリングと
呼ばれる、およそ100 μm以下のめっきの粉となり、剥
がれ落ちるという欠陥が発生しやすい。このパウダリン
グは、GA鋼板のめっき層が圧縮応力を受けることによ
り発生しやすいことが知られて (「プレス成形難易ハン
ドブック」第2版、第5章参照) いる。また、この耐パ
ウダリング性の評価方法として、ドロービード試験、曲
げ戻し試験、カップ絞り試験などにより行われることが
検討されている。
2. Description of the Related Art Galvannealed steel sheets (hereinafter GA)
Steel plates are abundant and widely used as automotive steel plates because of their low cost and excellent corrosion protection. However, GA steel sheet is
Since a Zn-Fe alloy layer is formed by heat alloying (Fe) and Zn, a hard and brittle layer is generated at the interface between the steel sheet and the plating layer. Therefore, the deformation of the steel sheet due to the press working or the contact with the metal mold causes the plating layer to become a powder of plating of about 100 μm or less, which is called powdering, and a defect of peeling off easily occurs. It is known that this powdering is likely to occur when the plating layer of the GA steel sheet is subjected to compressive stress (see “Press Forming Difficulty Handbook”, 2nd edition, Chapter 5). Further, as an evaluation method of the powdering resistance, it is studied to perform a draw bead test, a bending back test, a cup drawing test, and the like.

【0003】ところで、耐パウダリング性を改善するた
めの方法がこれまでにも幾つか提案されている。例え
ば、鋼中Si量やP量を規定する方法 (特開平6−41707
号公報、特開平 9−291349号公報) 、合金化時の昇温速
度・冷却速度を規定する方法 (特開平 2−170959号公
報) などである。しかし、高強度化に用いられるSiやP
の添加量を規制することは、GA鋼板の強度や伸び、r
値といった材質上の制約を招くこととなるので、目標と
する材質を満たして耐パウダリング性も良好な鋼板を得
るのは困難となる。また、合金化時の昇温や冷却速度を
規制するには、設備の増強などが必要であり、コストア
ップを招くこととなる。
By the way, several methods for improving powdering resistance have been proposed. For example, a method of defining the amount of Si and the amount of P in steel (JP-A-6-41707)
Japanese Patent Application Laid-Open No. 9-291349), and a method of defining a heating rate and a cooling rate during alloying (Japanese Patent Application Laid-Open No. 2-170959). However, Si and P used for high strength
Restricting the amount of addition of the steel is the strength and elongation of the GA steel sheet, r
Therefore, it is difficult to obtain a steel sheet that satisfies the target material and has good powdering resistance. Further, in order to regulate the temperature rise and the cooling rate during alloying, it is necessary to enhance the equipment and the like, which leads to an increase in cost.

【0004】一方、チッピングとは、自動車用外板など
に使用された塗装後のGA鋼板が、小石などの飛散衝突
により、めっき層界面から剥離する現象を言い、とくに
低温で発生しやすく、これを低温チッピングと称する。
低温チッピングも、パウダリングと同様に、界面の密着
性が関与し、硬くてもろいΓ相が生成すると耐低温チッ
ピング性は劣化すると言われている。これまでに提案さ
れているGA鋼板の耐低温チッピング性の改善方法とし
ては、鋼中SiおよびP量を規定する方法 (特開平9-2913
49号公報) 、GA鋼板の上層に第2層としてFe合金めっ
き皮膜を有する方法 (特開平 5−339751号公報) 、めっ
き前の母板表面を研削しさらに合金化時の昇温速度を規
定する方法 (特開平 6−57391 号公報) などがある。
[0004] On the other hand, chipping refers to a phenomenon in which a painted GA steel sheet used for an automobile outer panel or the like peels off from an interface of a plating layer due to collision of scattering of pebbles or the like. Is referred to as low temperature chipping.
It is said that low-temperature chipping also involves interface adhesion, similar to powdering, and that the formation of a hard and brittle Γ phase deteriorates low-temperature chipping resistance. As a method for improving the low-temperature chipping resistance of GA steel sheets which has been proposed so far, a method of defining the amounts of Si and P in steel (Japanese Patent Laid-Open No.
No. 49), a method of having a Fe alloy plating film as a second layer on the GA steel sheet (Japanese Patent Application Laid-Open No. 5-339751), grinding the base plate surface before plating, and further defining the rate of temperature rise during alloying (JP-A-6-57391).

【0005】しかし、高強度化に用いられるSiやPの添
加量を規制することは、鋼板の強度や伸び、r値といっ
た材質を制約することになり、目標とする材質で耐低温
チッピング性の良好なものを得るのは困難となる。ま
た、合金化時の昇温速度,冷却速度を規制する方法、G
Aの上層にめっきを施す方法、母板を研削する方法は、
設備の増強などを必要とし、また、工程の煩雑化を招
き、コストアップとなる。
However, restricting the amount of Si or P used for increasing the strength imposes restrictions on the strength, elongation, and r-value of the steel sheet. It is difficult to get good ones. In addition, a method of regulating the rate of temperature rise and cooling during alloying,
The method of plating the upper layer of A and the method of grinding the mother plate
This requires an increase in equipment and the like, and also complicates the process, resulting in an increase in cost.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来技術が
抱えていた上記の問題、とりわけ強化元素の鋼中添加量
の規制による材質の制約、工程の煩雑化等によるVコス
トの上昇を招くことなく、合金化溶融亜鉛めっき鋼板の
プレス加工時における耐パウダリング性および塗装後の
耐低温チッピング性を良好にすることを目的とするもの
である。
SUMMARY OF THE INVENTION The present invention causes the above problems of the prior art, in particular, the restriction of the material due to the regulation of the amount of reinforcing element added to the steel, and the increase in the V cost due to complicated processes. It is an object of the present invention to improve the powdering resistance and the low-temperature chipping resistance after coating of an alloyed hot-dip galvanized steel sheet without pressing.

【0007】[0007]

【課題を解決するための手段】本発明の要旨構成は以下
のとおりである。すなわち、 (1) めっき中の鉄含有率が13質量%以下であって、め
っき除去後の鋼板表面ビッカース硬度の10点平均をHa
v. 、最大値をHmax.、最小値をHmin.とした時 (Hma
x.−Hmin.) /Hav. <0.3 であることを特徴とする耐
パウダリング性および耐低温チッピング性に優れた合金
化溶融亜鉛めっき鋼板。 (2) めっき除去後の鋼板最表面結晶粒の圧延方向と圧
延方向に直角な方向の粒径比が3.0 以下であることを特
徴とする上記 (1)に記載の合金化溶融亜鉛めっき鋼板。 (3) めっき中の鉄含有率が8〜13質量%であり、めっ
き中Al量が次式: めっき中Al量(g/m) −0.0012×めっき中Zn量(g/
m) ≧0.06 を満足する上記 (1)または (2)に記載の合金化溶融亜鉛
めっき鋼板。
The gist of the present invention is as follows. That is, (1) The iron content in the plating is 13% by mass or less, and the 10-point average of the Vickers hardness of the steel sheet surface after the plating is removed is Ha.
v. When the maximum value is Hmax. and the minimum value is Hmin. (Hma
x.-Hmin.) / Hav. <0.3, an alloyed hot-dip galvanized steel sheet having excellent powdering resistance and low-temperature chipping resistance. (2) The galvannealed steel sheet according to the above (1), wherein the ratio of the grain diameter in the direction perpendicular to the rolling direction of the outermost crystal grains of the steel sheet after plating is 3.0 or less. (3) The iron content in the plating is 8 to 13% by mass, and the Al content in the plating is the following formula: Al content in the plating (g / m 2 )-0.0012 × Zn content in the plating (g /
m 2 ) The galvannealed steel sheet according to the above (1) or (2), which satisfies ≧ 0.06.

【0008】[0008]

【発明の実施の形態】発明者らは、プレス加工のシミュ
レーションとして、曲げ戻し、金型との接触および摺
動、鋼板の縮みおよび伸び変形を兼ね備えたカップ絞り
成形試験により耐パウダリング性を調査した。また、耐
低温チッピング性は塗装後−20℃で小石を飛散させて調
査した。この方法により、種々の条件で作成したGA鋼
板および塗装後GA鋼板を詳細に調査した結果、めっき
特性に加えて、めっき除去後の鋼板表面性状が耐パウダ
リング性、耐低温チッピング性に大きな影響を及ぼして
いることがわかった。すなわち、鋼板の縮み変形を伴う
めっきの剥離 (パウダリング) や鋼板への衝撃によるめ
っきの剥離 (チッピング) は、めっき層の鉄含有率やΓ
相厚さ、鋼板の性質のうち、特にめっき層直下の鋼板最
表面の硬度の均一性に影響をうけることがわかった。以
下、このことについて詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION As a simulation of press working, the inventors investigated powdering resistance by a cup drawing test which combines bending return, contact and sliding with a mold, and shrinkage and elongation deformation of a steel plate. did. The low-temperature chipping resistance was investigated by scattering pebbles at -20 ° C after coating. By this method, the GA steel sheet prepared under various conditions and the GA steel sheet after painting were investigated in detail. In addition to the plating properties, the surface properties of the steel sheet after plating removal had a great effect on powdering resistance and low-temperature chipping resistance. It was found that it was exerting. That is, the peeling of the plating (powdering) accompanied by the shrinkage deformation of the steel sheet and the peeling of the plating (chipping) due to the impact on the steel sheet are caused by the iron content of the plating layer and the
It was found that among the phase thickness and the properties of the steel sheet, the uniformity of the hardness was particularly affected on the outermost surface of the steel sheet immediately below the plating layer. Hereinafter, this will be described in detail.

【0009】プレス成形などにより、GA鋼板が圧縮や
引張り変形を受けたとき、めっき層は殆ど変形しえない
ため、めっき層の表面から鋼板界面につながる亀裂 (ク
ラック) が入り、めっき層と鋼板の界面より剥離する。
その時、めっき層下の鋼板は延性があるため、ある程度
は変形に追従するが、変形が大きい場合には鋼板表層の
粒界にもクラックが発生する。発明者らは、この現象を
詳細に調査した結果、鋼板によってクラックの大きさ、
深さおよび密度が異なること、めっき層の剥離にはこの
鋼板表層の粒界クラックが関与していることがわかっ
た。そして、鋼板表面に少ないけれども大きなクラック
が発生している場合には、その大きなクラックが起点と
なりめっき層が剥離し、一方、鋼板表面のクラックの数
は多くても小さい場合には、めっきの剥離がおこりにく
いこともわかった。
[0009] When the GA steel sheet is subjected to compression or tensile deformation by press forming or the like, the plating layer can hardly be deformed. Therefore, a crack (crack) is formed from the surface of the plating layer to the steel sheet interface. From the interface of
At this time, since the steel sheet under the plating layer has ductility, the steel sheet follows the deformation to some extent, but if the deformation is large, cracks also occur at the grain boundaries of the steel sheet surface layer. The inventors have investigated this phenomenon in detail, and as a result, the size of the crack by the steel plate,
It was found that the difference in depth and density and the separation of the plating layer involved grain boundary cracks in the surface layer of the steel sheet. When a small but large crack is generated on the surface of the steel sheet, the large crack is a starting point, and the plating layer is peeled off. It was also found that it was difficult to occur.

【0010】次に、この鋼板表層の粒界クラックの大き
さ、深さおよび密度がいかなる要因により影響を受ける
かについて、種々異なる特性の鋼板を用いて調査した。
その結果、めっき除去後の鋼板表層の硬度のばらつきが
上記特性に関与していることを見いだした。以降は、硬
度のばらつきはビッカース硬度の最大値と最小値の差で
表わす。鋼板表層の硬度差が大きい場合には、鋼板表面
のクラックは数は少ないものの大きく深いクラックが発
生し、一方、比較的硬度差が小さい場合には、数は多い
が小さく浅いクラックが発生する。このような現象が現
れた理由は、鋼板の表層部が変形を受けたときに、表面
の硬度差が大きいと局所的に不均一変形をしやすくなる
と考えられる。つまり、軟質部分では変形しやすく硬質
部分では変形しにくいために、軟質部と硬質部の境界近
傍の粒界で大きな深いクラックが発生すると考えられ
る。硬度のばらつきが少ない場合には、どの結晶粒も同
様の変形をするためクラックは小さく浅い。
Next, the influence of the size, depth, and density of grain boundary cracks on the surface layer of the steel sheet was examined using steel sheets having various characteristics.
As a result, it was found that the variation in the hardness of the surface layer of the steel sheet after the removal of the plating contributed to the above characteristics. Hereinafter, the variation in hardness is represented by the difference between the maximum value and the minimum value of Vickers hardness. When the hardness difference between the surface layers of the steel sheet is large, the number of cracks on the surface of the steel sheet is small but large and deep cracks are generated. On the other hand, when the hardness difference is relatively small, the number is large but small and shallow cracks are generated. It is considered that the reason why such a phenomenon appears is that when the surface layer portion of the steel sheet is deformed, if the hardness difference of the surface is large, local uneven deformation is likely to occur. In other words, it is considered that a large deep crack is generated at a grain boundary near a boundary between the soft part and the hard part because the soft part is easily deformed and the hard part is hardly deformed. When the variation in hardness is small, cracks are small and shallow because every crystal grain undergoes the same deformation.

【0011】発明者らが調査した結果によると、表面の
硬度差が大きいGA鋼板では、クラックは100〜30
0μm長さ、深さ約10μmにも達するが、硬度差が小
さいGA鋼板では、クラックは数10μm長さ、深さ2
μm程度に止まっている。そこで、種々のGA鋼板をさ
らに詳細に調査した結果、めっき除去後の鋼板表面ビッ
カース硬度の10点平均をHav. 、最大値をHmax.、最
小値をHmin.としたときに、 (Hmax.−Hmin.) /Ha
v. <0.3 の範囲に制御すれば、GA鋼板表層のクラッ
クは小さく、耐パウダリング性は良好になることがわか
った。
According to the results of the investigations by the inventors, in the GA steel sheet having a large surface hardness difference, cracks are 100 to 30%.
In the GA steel sheet having a length of 0 μm and a depth of about 10 μm, but having a small difference in hardness, cracks are several tens μm in length and 2 in depth.
It stops at about μm. Therefore, as a result of investigating various GA steel sheets in more detail, assuming that the average of 10 points of the Vickers hardness of the steel sheet surface after plating removal is Hav., The maximum value is Hmax., And the minimum value is Hmin. Hmin.) / Ha
v. It was found that cracks in the surface layer of the GA steel sheet were small and the powdering resistance was good when the control was performed within the range of <0.3.

【0012】さらに、このように硬度のばらつきを少な
くした鋼板では、塗装後の耐低温チッピング性も良好で
あることがわかった。そのメカニズムは、以下のように
考える。低温チッピングは、小石などが塗装表面に衝突
した時の衝撃がめっきと鋼板の界面にまで達し、めっき
が界面より剥離することにより発生する。鋼板表層の硬
度差が大きいときには、硬質部と軟質部が局所的に存在
するので、外部から加えられた衝撃は、軟質部では吸収
されやすくても、硬質部に沿っては伝播しやすくなるた
め、めっきが剥離しやすくなると考えられる。
Further, it has been found that the steel sheet having the reduced hardness variation has good low-temperature chipping resistance after coating. The mechanism is considered as follows. Low-temperature chipping occurs when the impact of pebbles or the like colliding with the painted surface reaches the interface between the plating and the steel sheet, and the plating peels off from the interface. When the difference in hardness of the steel sheet surface layer is large, the hard part and the soft part exist locally, so the impact applied from the outside is easy to be absorbed in the soft part, but it is easy to propagate along the hard part. It is considered that the plating is easily peeled off.

【0013】また、耐パウダリング性、耐低温チッピン
グ性は鋼板表面の結晶粒の形にも影響を受け、めっき除
去後の鋼板最表面結晶粒の圧延方向と圧延方向に直角な
方向の粒径比を3.0 以下とすることが望ましい。より好
ましくは 2.0以下である。冷延後の再結晶焼鈍において
最表層の結晶粒が方向に関係なく均一に再結晶および粒
成長すれば、結晶粒は比較的円形に近く、圧延方向と圧
延方向に直角な方向の粒径比は1に近くなる。これに対
し、鋼板表層の析出物が多いなどの原因により、再結晶
と粒成長が不均一になると、冷延状態で圧延方向に伸展
した組織の形状が残存し、粒径比は大きくなる。こうし
て形成した鋼板表層の結晶粒の粒径比が小さく均一に再
結晶している場合には、耐パウダリング性、耐低温チッ
ピング性はより一層良好となる。これに対して、結晶粒
の粒径比が3.0 以上と不均一になった場合には、変形や
衝撃が鋼板の加わったときに、局所的に変形量の多いと
ころや衝撃を伝播しやすい部分が存在することとなり、
めっきが剥離しやすくなる。
The powdering resistance and low-temperature chipping resistance are also affected by the shape of the crystal grains on the steel sheet surface, and the grain diameter in the direction perpendicular to the rolling direction of the outermost surface crystal grains after the plating is removed. It is desirable that the ratio be 3.0 or less. It is more preferably 2.0 or less. In the recrystallization annealing after cold rolling, if the crystal grains in the outermost layer recrystallize and grow uniformly regardless of the direction, the crystal grains are relatively circular, and the grain ratio in the rolling direction and the direction perpendicular to the rolling direction. Becomes closer to 1. On the other hand, when recrystallization and grain growth become non-uniform due to factors such as a large amount of precipitates on the surface layer of the steel sheet, the structure of the structure extending in the rolling direction in the cold-rolled state remains and the grain size ratio increases. When the grain size ratio of the crystal grains in the surface layer of the steel sheet thus formed is small and recrystallized uniformly, the powdering resistance and the low-temperature chipping resistance are further improved. On the other hand, when the grain size ratio of the crystal grains becomes non-uniform, such as 3.0 or more, when deformation or impact is applied to the steel sheet, a part with a large amount of deformation or a part where the impact is likely to propagate Will exist,
Plating becomes easy to peel off.

【0014】めっき層中の鉄含有率については、13質量
%以下であることが好ましい。鉄含有率が13質量%を超
えると、めっき層中に硬いΓ相が多くなりやすく、めっ
き自体が破壊されやすくなり、耐パウダリング性、耐低
温チッピング性に劣るようになる。さらに、めっき層中
の鉄含有率が8〜13質量%であって、めっき中Al量が次
式:めっき中Al量(g/m)−0.0012×めっき中Zn量(g
/m) ≧0.06を満足すると、耐パウダリング性、耐低
温チッピング性ともに一層良好になる。めっき中の鉄含
有率が8質量%未満では、軟質なη相が残存するため、
耐パウダリング性、耐低温チッピング性は問題にならな
い。このため、めっき中の鉄含有率が8〜13質量%の範
囲で、上記対策による耐パウダリング性、耐低温チッピ
ング性の向上が顕著である。
[0014] The iron content in the plating layer is preferably 13% by mass or less. If the iron content exceeds 13% by mass, the hard layer tends to increase in the plating layer, the plating itself is easily broken, and the powdering resistance and the low-temperature chipping resistance are inferior. Further, the iron content in the plating layer is 8 to 13% by mass, and the amount of Al in the plating is as follows: Al amount in plating (g / m 2 ) −0.0012 × Zn amount in plating (g
/ M 2 ) ≧ 0.06, both the powdering resistance and the low-temperature chipping resistance are further improved. If the iron content in the plating is less than 8% by mass, a soft η phase remains,
Powdering resistance and low temperature chipping resistance do not matter. Therefore, when the iron content in the plating is in the range of 8 to 13% by mass, the improvement of the powdering resistance and the low-temperature chipping resistance by the above measures is remarkable.

【0015】また、めっき中のAl量は、合金化の均一性
およびΓ相の生成量に影響を及ぼす。Al量が少ないと合
金化は均一におこるために、めっきと鋼板の界面が平滑
になり、めっきと鋼板の密着性は弱まる。反対にAl量が
多いと、結晶粒界での合金化が抑制されるといった不均
一な合金化を生じて、めっきと鋼板との界面が凹凸にな
るので、アンカー効果により、めっきと鋼板の界面強
度、密着性は向上する。また、めっき中にAlが存在する
と、熱力学上Γ相の安定領域が変化するため、硬くても
ろいΓ相は生成しにくくなる。以上のようなAlの効果
は、めっき層中のAl量とめっき中Zn量との関係で、めっ
き中Al量(g/m) −0.0012×めっき中Zn量(g/m) ≧
0.06、の範囲に制御することにより発揮される。
The amount of Al during plating affects the uniformity of alloying and the amount of Γ phase generated. When the amount of Al is small, alloying occurs uniformly, so that the interface between the plating and the steel sheet becomes smooth, and the adhesion between the plating and the steel sheet is weakened. Conversely, if the amount of Al is large, non-uniform alloying occurs such that alloying at the grain boundaries is suppressed, and the interface between the plating and the steel sheet becomes uneven. Strength and adhesion are improved. Further, if Al is present in the plating, the stable region of the Γ phase changes thermodynamically, so that a hard and brittle Γ phase is hardly generated. The effect of Al as described above is based on the relationship between the amount of Al in the plating layer and the amount of Zn in the plating. The amount of Al in the plating (g / m 2 ) −0.0012 × the amount of Zn in the plating (g / m 2 ) ≧
It is exhibited by controlling to the range of 0.06.

【0016】以下、上述した鋼板表面の硬度と結晶粒径
の測定方法について述べる。硬度測定のためのめっきの
除去方法としては、 JIS H 0401 に定められるSb添加
塩酸水溶液、インヒビター添加塩酸水溶液、アルカ
リ溶液、が使用可能である。このような酸やアルカリに
よるめっき除去では、溶解反応が終了した段階で鋼板を
取り出せばよい。電解によるめっき除去方法では、の
電解液を用いて鉄電位になるまで溶解すればよい。具体
的な液の混合方法を以下に示す。 SbCl32g、塩酸 (密度1.18g/cm以上) 1Lの原液 5ml 塩酸 (密度1.18g/cm以上) 100 ml ビット710 N (朝日化学工業 (株)) 5 ml 10%塩酸水溶液 1 L 20%NaOH水溶液 80 ml 10%トリエタノールアミン水溶液 40 ml 35% HO 7 ml HO 75 ml NaCl 200 g ZnSO 100 g HO 1 L
Hereinafter, a method for measuring the hardness and the crystal grain size of the steel sheet surface described above will be described. As the plating removal method for measuring the hardness, an Sb-added hydrochloric acid aqueous solution, an inhibitor-added hydrochloric acid aqueous solution, or an alkali solution specified in JIS H 0401 can be used. In such plating removal with an acid or alkali, the steel sheet may be taken out at the stage when the dissolution reaction is completed. In the plating removal method by electrolysis, it is only necessary to dissolve until the iron potential is reached using an electrolytic solution. The specific method of mixing the liquid is described below. SbCl 3 32 g, hydrochloric acid (density 1.18 g / cm 3 or more) 1 L stock solution 5 ml hydrochloric acid (density 1.18 g / cm 3 or more) 100 ml bit 710 N (Asahi Chemical Industry Co., Ltd.) 5 ml 10% hydrochloric acid aqueous solution 1 L 20 % NaOH aqueous solution 80 ml 10% aqueous triethanolamine 40 ml 35% H 2 O 2 7 ml H 2 O 75 ml NaCl 200 g ZnSO 4 100 g H 2 O 1 L

【0017】めっきを溶解除去した鋼板表面のビッカー
ス硬さは、圧痕の深さを結晶粒径の1/5以下とするた
め、0.049 N〜0.98N程度の荷重で測定するのが望まし
い。また、ビッカース硬さの測定点の数は10点とすれば
よい。このように、荷重を通常の鋼板の硬度測定よりも
小さくすることにより、鋼板表面のみの結晶粒の硬度を
測ることが可能になる。なお、ビッカース硬さの測定間
隔を、圧痕の大きさ (対角線長さ) の5倍以上10倍以下
として測定するのは、圧痕周囲の硬度変化によって、後
の圧痕が影響を受けないようにするためである。図1は
本発明で採用したビッカース硬さの測定方法を模式的に
示したものである。また、めっき除去後の鋼板表面の結
晶粒の観察方法は、硬度測定と同様にめっきを除去した
鋼板の表面を、ダイヤモンドペーストを塗布したバフに
て約1μm厚を研磨し、ナイタールによりエッチングし
て光学顕微鏡にて観察を行う。圧延方向と圧延方向に直
角な方向の粒径比は、圧延方向および圧延方向に垂直な
方向において250 μm長さに存在する結晶粒の個数を数
え、それぞれの粒径とし、その比から求められる。通常
3視野で求めた粒径比を平均するのがよい。
The Vickers hardness of the surface of the steel sheet from which the plating has been dissolved and removed is preferably measured with a load of about 0.049 N to 0.98 N in order to reduce the depth of the indentation to 1/5 or less of the crystal grain size. The number of Vickers hardness measurement points may be ten. Thus, by setting the load smaller than the hardness measurement of a normal steel plate, it becomes possible to measure the hardness of the crystal grains only on the steel plate surface. The measurement interval of Vickers hardness is set to 5 times or more and 10 times or less of the size (diagonal length) of the indentation so that the subsequent indentation is not affected by the change in hardness around the indentation. That's why. FIG. 1 schematically shows a method for measuring Vickers hardness employed in the present invention. In addition, the method of observing the crystal grains on the surface of the steel sheet after plating is removed is as follows: the surface of the steel sheet from which plating has been removed is polished to a thickness of about 1 μm with a buff coated with a diamond paste, and etched with nital. Observe with an optical microscope. The grain size ratio between the rolling direction and the direction perpendicular to the rolling direction is determined by counting the number of crystal grains existing at a length of 250 μm in the rolling direction and the direction perpendicular to the rolling direction, and defining the respective grain sizes as the respective grain sizes. . Normally, it is preferable to average the particle size ratios determined in three visual fields.

【0018】鋼板表面硬度には、例えば、スラブ再加熱
の温度と時間が関与する。温度が高く長時間の加熱で
は、スラブ表層が局所的に窒化されたり酸化されて、表
層に析出物、酸化物が多く存在するようになる。これら
が多く存在した部分では、熱延・冷延後再結晶焼鈍時に
転位 (歪) の消滅が遅くなり、結果的に硬い部分とな
る。一方、析出物、酸化物が少ない部分では柔らかいた
め、硬度の差が発生する。またその時、再結晶が十分に
進まず冷延組織の形態が残存すると、粒径比が大きくな
る。これらを制御する方法としては、鋼中にSbを添加し
ても良い。めっき層中のAl量は、めっき浴中のAl濃度と
めっき時間に大きく影響を受ける。そのため、めっき中
Al−0.0012×Zn≧ 0.06 を満たすためには、浴中Al濃度
を0.132 質量%以上、めっき時間を 0.5秒以上とすれば
良い。
For example, the temperature and time of slab reheating are related to the surface hardness of the steel sheet. When the temperature is high and heating is performed for a long time, the surface layer of the slab is locally nitrided or oxidized, and a large amount of precipitates and oxides are present in the surface layer. In a portion where many of these exist, dissipation (strain) disappears slowly during recrystallization annealing after hot rolling and cold rolling, resulting in a hard portion. On the other hand, a portion where the amount of precipitates and oxides is small is soft, so that a difference in hardness occurs. At this time, if the recrystallization does not proceed sufficiently and the form of the cold-rolled structure remains, the particle size ratio increases. As a method for controlling these, Sb may be added to steel. The amount of Al in the plating layer is greatly affected by the Al concentration in the plating bath and the plating time. Therefore, during plating
In order to satisfy Al−0.0012 × Zn ≧ 0.06, the Al concentration in the bath should be 0.132% by mass or more, and the plating time should be 0.5 seconds or more.

【0019】[0019]

【実施例】表1に示す成分の供試鋼を転炉にて溶製し、
連鋳にて厚さ250 mmのスラブとした。スラブ再加熱温度
を、表2に示すように変更して、仕上げ温度(FDT)
900℃にて4mmまで熱間圧延し、巻取温度(CT)
500℃で熱延コイルに巻き取った。ついで、酸洗ライ
ンにて主として鉄の酸化膜を溶解除去し、冷間圧延を行
い板厚を 0.7mmとした。これを連続溶融亜鉛めっきラ
イン(CGL)にて、露点−30℃、焼鈍温度800℃
で再結晶焼鈍した後、溶融亜鉛めっきし、さらに加熱合
金化処理によりZn−Fe合金層を形成した。
EXAMPLE A test steel having the components shown in Table 1 was melted in a converter,
The slab was 250 mm thick by continuous casting. The slab reheating temperature was changed as shown in Table 2 and the finishing temperature (FDT) was changed.
Hot rolling to 900mm at 4mm, winding temperature (CT)
It was wound up at 500 ° C. on a hot-rolled coil. Next, the iron oxide film was mainly dissolved and removed in the pickling line, and cold rolling was performed to reduce the thickness to 0.7 mm. This was subjected to a continuous hot-dip galvanizing line (CGL) at a dew point of -30 ° C and an annealing temperature of 800 ° C.
And then hot-dip galvanized, and a heat-alloying treatment to form a Zn-Fe alloy layer.

【0020】[0020]

【表1】 [Table 1]

【0021】得られたGA鋼板について、ビッカース硬
度、結晶粒径を測定するとともに、耐パウダリング性お
よび耐低温チッピング性を評価した。それぞれの測定、
評価方法は以下のとおりである。 ・鋼板表面のビッカース硬度:Sb添加塩酸水溶液にてめ
っき層を溶解除去した後、板表面の硬度を測定した。図
1に示すような、圧延方向に20μm、圧延方向に垂直
な方向に20μmピッチとする位置で、荷重を0.147 N
(15gf)として測定した。 ・鋼板表面の結晶粒径比:Sb添加塩酸水溶液でめっき層
を溶解除去した鋼板をダイヤモンドペーストを塗布した
バフにて1μm厚だけ研磨した後、ナイタール (硝酸−
エタノール溶液)にてエッチングし、光学顕微鏡観察に
より各方向の径を測定して比を求めた。 ・耐パウダリング性:70mmφのブランクを33mm
φのポンチを用い、しわ押さえ圧4900N (500 kgf)で円
筒絞りを行い、高さ25mmのカップとした。カップ外
側一周分の剥離量として、金型と接触するショルダー部
より開放部にかけて幅20mmのテープを貼り付けては
がし、付着分について蛍光X線によりZnカウント数を
測定し、次の基準で3段階評価した。 ・耐低温チッピング性:GA鋼板に2g/mの化成処
理をした後、自動車用のカチオン電着塗装 (20μm)
、中塗り (35μm) 、上塗り (35μm) を行い、
170℃×20分の焼付け処理を行った。これらの薬液
は全て日本ペイント (株) 製のものを用いた。この塗装
したGA鋼板を30分以上、−25℃以下で保った後、
グラベロ試験機にて−20℃とし、0.3 〜0.5 g/個の
御影石を15個、エアー圧196kPa (2kg/cm
)にて1個づつ飛散させ、鋼板に衝突させた。試験後
常温に戻した後、ガムテープを張り付けてはがし、付着
分について画像処理を行うことにより剥離面積率を求め
た。
With respect to the obtained GA steel sheet, Vickers hardness and crystal grain size were measured, and powdering resistance and low-temperature chipping resistance were evaluated. Each measurement,
The evaluation method is as follows. -Vickers hardness of the steel sheet surface: After dissolving and removing the plating layer with an aqueous solution of Sb-added hydrochloric acid, the hardness of the steel sheet surface was measured. As shown in FIG. 1, at a position having a pitch of 20 μm in the rolling direction and a pitch of 20 μm in a direction perpendicular to the rolling direction, a load of 0.147 N
(15 gf).・ Grain size ratio of the steel sheet surface: The steel sheet from which the plating layer has been dissolved and removed with an aqueous solution of Sb-added hydrochloric acid is polished to a thickness of 1 μm with a buff coated with diamond paste, and then nital (nitric acid-nitric acid).
(Ethanol solution), and the diameter was measured in each direction by optical microscope observation to determine the ratio. -Powdering resistance: 70mmφ blank is 33mm
Using a φ punch, a cylinder was drawn with a wrinkle pressing pressure of 4900 N (500 kgf) to obtain a cup having a height of 25 mm. As a peeling amount for one round of the outside of the cup, a tape of 20 mm width was attached and peeled from the shoulder part in contact with the mold to the opening part, and the Zn count number was measured by X-ray fluorescence with respect to the adhered part. evaluated. -Low temperature chipping resistance: After applying a chemical treatment of 2 g / m2 to GA steel sheet, cationic electrodeposition coating for automobiles (20 µm)
, Middle coat (35μm), top coat (35μm)
A baking treatment was performed at 170 ° C. for 20 minutes. These chemicals were all manufactured by Nippon Paint Co., Ltd. After keeping this painted GA steel plate at -25 ° C or lower for 30 minutes or more,
The temperature was set to −20 ° C. with a gravelo tester, 15 granites of 0.3 to 0.5 g / piece, and air pressure of 196 kPa (2 kg / cm
In 2 ), they were scattered one by one and collided with the steel plate. After the temperature was returned to room temperature after the test, a gum tape was stuck and peeled off, and image processing was performed on the adhered portion to determine a peeling area ratio.

【0022】[0022]

【表2】 [Table 2]

【0023】表2から、本発明例はすべて、耐パウダリ
ング性および耐低温チッピング性がに優れていることが
わかる。しかも、本発明例は、Si:0.5 質量%、Mn:0.
5 質量%の鋼組成においても、スラブ加熱温度等を適宜
選択することで耐パウダリング性および耐低温チッピン
グ性を達成するので、従来技術では問題であった強化元
素の鋼中添加量の規制による材質の制約、工程の煩雑化
等によるコストの上昇が解消できる。
Table 2 shows that all of the examples of the present invention have excellent powdering resistance and low-temperature chipping resistance. Moreover, in the present invention example, Si: 0.5% by mass, Mn: 0.
Even in a steel composition of 5 mass%, powdering resistance and low-temperature chipping resistance can be achieved by appropriately selecting the slab heating temperature and the like. An increase in cost due to material restrictions, complicated processes, and the like can be eliminated.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
強化元素の鋼中添加量の規制による材質の制約、工程の
煩雑化等によるコストの上昇を招くことなく、耐パウダ
リング性および耐低温チッピング性に優れた合金化溶融
亜鉛めっき鋼板を提供することが可能となる。したがっ
て、本発明は、プレス成形工程での歩留りの向上や寒冷
地での自動車の耐久性の向上に寄与することが期待され
る。
As described above, according to the present invention,
To provide an alloyed hot-dip galvanized steel sheet having excellent powdering resistance and low-temperature chipping resistance without increasing the cost due to restrictions on the material due to the regulation of the amount of the reinforcing element added to the steel and complicated processes. Becomes possible. Therefore, the present invention is expected to contribute to the improvement of the yield in the press forming process and the improvement of the durability of the automobile in cold regions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼板表面のビッカース硬度の測定方法を示す模
式図である。
FIG. 1 is a schematic diagram showing a method for measuring Vickers hardness of a steel sheet surface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 千昭 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K027 AA02 AA22 AB01 AB07 AB28 AB42 AC73 AE03 AE11 AE27 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Chiaki Kato 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. AE27

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 めっき中の鉄含有率が13質量%以下であ
って、めっき除去後の鋼板表面ビッカース硬度の10点平
均をHav. 、最大値をHmax.、最小値をHmin.とした時
(Hmax.−Hmin.) /Hav. の値を0.30未満とすること
を特徴とする耐パウダリング性および耐低温チッピング
性に優れた合金化溶融亜鉛めっき鋼板。
When the iron content in plating is 13% by mass or less, the average of 10 points of the Vickers hardness of the steel sheet surface after removing the plating is Hav., The maximum value is Hmax., And the minimum value is Hmin.
(Hmax.-Hmin.) / Hav. An alloyed hot-dip galvanized steel sheet having excellent powdering resistance and low-temperature chipping resistance, characterized by having a value of less than 0.30.
【請求項2】 めっき除去後の鋼板最表面結晶粒の圧延
方向と圧延方向に直角な方向の粒径比が3.0 以下である
ことを特徴とする請求項1に記載の合金化溶融亜鉛めっ
き鋼板。
2. The galvannealed steel sheet according to claim 1, wherein the ratio of the grain diameter in the direction perpendicular to the rolling direction to the rolling direction of the outermost crystal grains of the steel sheet after plating is 3.0 or less. .
【請求項3】 めっき中の鉄含有率が8〜13質量%であ
り、めっき中Al量が次式: めっき中Al量(g/m) −0.0012×めっき中Zn量(g/
m) ≧0.06 を満足する、請求項1または2に記載の合金化溶融亜鉛
めっき鋼板。
3. The iron content in the plating is 8 to 13 mass%, and the amount of Al in the plating is as follows: Al amount in the plating (g / m 2 ) −0.0012 × Zn amount in the plating (g / m 2 )
3. The galvannealed steel sheet according to claim 1 or 2, which satisfies m 2 ) ≧ 0.06.
JP2001003361A 2001-01-11 2001-01-11 Alloyed hot-dip galvanized steel sheet with excellent powdering resistance and low-temperature chipping resistance Expired - Fee Related JP3744356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001003361A JP3744356B2 (en) 2001-01-11 2001-01-11 Alloyed hot-dip galvanized steel sheet with excellent powdering resistance and low-temperature chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001003361A JP3744356B2 (en) 2001-01-11 2001-01-11 Alloyed hot-dip galvanized steel sheet with excellent powdering resistance and low-temperature chipping resistance

Publications (2)

Publication Number Publication Date
JP2002212698A true JP2002212698A (en) 2002-07-31
JP3744356B2 JP3744356B2 (en) 2006-02-08

Family

ID=18871715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001003361A Expired - Fee Related JP3744356B2 (en) 2001-01-11 2001-01-11 Alloyed hot-dip galvanized steel sheet with excellent powdering resistance and low-temperature chipping resistance

Country Status (1)

Country Link
JP (1) JP3744356B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156729A (en) * 2006-12-26 2008-07-10 Nisshin Steel Co Ltd Zn-Al-BASED PLATING-COATED STEEL SHEET EXCELLENT IN UNBENDING RESISTANCE, AND ITS PRODUCTION METHOD
JP2014201818A (en) * 2013-04-09 2014-10-27 新日鐵住金株式会社 Powdering resistance evaluation method of plated steel sheet
CN112501529A (en) * 2020-10-20 2021-03-16 邯郸钢铁集团有限责任公司 Method for accurately controlling aluminum content of hot-dip galvanized pot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263054A (en) * 1991-01-09 1992-09-18 Sumitomo Metal Ind Ltd Molten galvanized steel sheet for alloying
JPH059694A (en) * 1991-02-21 1993-01-19 Sumitomo Metal Ind Ltd Galvannealed steel sheet
JPH07228944A (en) * 1993-12-20 1995-08-29 Nkk Corp Galvannealed steel sheet and its production
JPH08277457A (en) * 1995-02-09 1996-10-22 Nippon Steel Corp Galvannealed steel sheet having excellent appearance
JPH11269625A (en) * 1998-03-25 1999-10-05 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263054A (en) * 1991-01-09 1992-09-18 Sumitomo Metal Ind Ltd Molten galvanized steel sheet for alloying
JPH059694A (en) * 1991-02-21 1993-01-19 Sumitomo Metal Ind Ltd Galvannealed steel sheet
JPH07228944A (en) * 1993-12-20 1995-08-29 Nkk Corp Galvannealed steel sheet and its production
JPH08277457A (en) * 1995-02-09 1996-10-22 Nippon Steel Corp Galvannealed steel sheet having excellent appearance
JPH11269625A (en) * 1998-03-25 1999-10-05 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156729A (en) * 2006-12-26 2008-07-10 Nisshin Steel Co Ltd Zn-Al-BASED PLATING-COATED STEEL SHEET EXCELLENT IN UNBENDING RESISTANCE, AND ITS PRODUCTION METHOD
JP2014201818A (en) * 2013-04-09 2014-10-27 新日鐵住金株式会社 Powdering resistance evaluation method of plated steel sheet
CN112501529A (en) * 2020-10-20 2021-03-16 邯郸钢铁集团有限责任公司 Method for accurately controlling aluminum content of hot-dip galvanized pot
CN112501529B (en) * 2020-10-20 2023-03-28 邯郸钢铁集团有限责任公司 Method for accurately controlling aluminum content of hot-dip galvanized pot

Also Published As

Publication number Publication date
JP3744356B2 (en) 2006-02-08

Similar Documents

Publication Publication Date Title
KR102115278B1 (en) High-strength hot-dip galvanized steel sheet with excellent impact resistance and peeling resistance
EP1504134B1 (en) High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
TWI511875B (en) Molten galvanized steel sheet
KR101679159B1 (en) Hot-dip galvanized steel sheet
US10927441B2 (en) High-strength galvanized hot-rolled steel sheet and method for manufacturing same
KR20150093227A (en) Hot-dip-galvanized steel sheet
JP4889212B2 (en) High-strength galvannealed steel sheet and method for producing the same
JP5907324B1 (en) High strength hot dip galvanized steel sheet
US9963771B2 (en) High-strength galvanized steel sheet
JP2002212698A (en) Galvannealed steel sheet having excellent powdering resistance and low temperature chipping resistance
JP2009228104A (en) Hot-dip galvannealed steel sheet having excellent surface appearance and manufacturing method therefor
JPH11140587A (en) Galvannealed steel sheet excellent in plating adhesion
JP2002317258A (en) Hot dip aluminum plated steel sheet having excellent corrosion resistance after working and production method therefor
JP3367466B2 (en) Galvannealed steel sheet
JP3599716B2 (en) Hot-dip Al-Zn-based alloy-coated steel sheet excellent in surface appearance and bending workability and method for producing the same
JPH11269625A (en) Hot dip galvannealed steel sheet and its production
WO1998030729A1 (en) Hot dip galvanized steel sheet reduced in defects derived from failed plating and excellent in contact plating adhesion and process for producing the same
TWI592501B (en) High-strength hot-dip galvanized steel sheet with excellent impact-resistant peelability and machined part corrosion resistance
JP6037056B2 (en) Hot-dip galvanized steel sheet
JP7265217B2 (en) Galvanized steel sheet for hot stamping
JP6848939B2 (en) Hot-dip galvanized steel sheet manufacturing method and hot-dip galvanized hot-dip steel sheet, and hot-dip galvanized steel sheet manufacturing method and hot-dip galvanized steel sheet
JPH11217660A (en) Hot dip galvannealed steel sheet and its production
JP2008156729A (en) Zn-Al-BASED PLATING-COATED STEEL SHEET EXCELLENT IN UNBENDING RESISTANCE, AND ITS PRODUCTION METHOD
JP2002249862A (en) Surface treated steel sheet having excellent workability nd corrosion resistance in worked part, and production method therefor
JP2001262302A (en) Method for producing galvanized steel sheet and galvannealed steel sheet excellent in hot dip metal coated property

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3744356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees