WO1998030729A1 - Hot dip galvanized steel sheet reduced in defects derived from failed plating and excellent in contact plating adhesion and process for producing the same - Google Patents

Hot dip galvanized steel sheet reduced in defects derived from failed plating and excellent in contact plating adhesion and process for producing the same Download PDF

Info

Publication number
WO1998030729A1
WO1998030729A1 PCT/JP1997/000045 JP9700045W WO9830729A1 WO 1998030729 A1 WO1998030729 A1 WO 1998030729A1 JP 9700045 W JP9700045 W JP 9700045W WO 9830729 A1 WO9830729 A1 WO 9830729A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
hot
plating
dip galvanized
galvanized steel
Prior art date
Application number
PCT/JP1997/000045
Other languages
French (fr)
Japanese (ja)
Inventor
Nobue Fujibayashi
Kazuaki Kyono
Motonori Miyaoka
Nobuo Totsuka
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to EP97900126A priority Critical patent/EP0900857B1/en
Priority to DE69728389T priority patent/DE69728389T2/en
Priority to CA002215110A priority patent/CA2215110C/en
Priority to KR1019970706334A priority patent/KR100325755B1/en
Priority to PCT/JP1997/000045 priority patent/WO1998030729A1/en
Priority to US08/913,314 priority patent/US6030714A/en
Publication of WO1998030729A1 publication Critical patent/WO1998030729A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling

Definitions

  • the present invention relates to a hot-dip galvanized steel sheet having few non-plating defects and excellent adhesion and a method for producing the same.
  • Hot-dip zinc-coated steel sheets are mainly used for automobile bodies because they are inexpensive and have excellent corrosion resistance.However, in addition to corrosion resistance due to plating, the adhesion of plating during press working is required as the performance of steel sheets for automobile bodies. Have been. If the adhesion of the plating deteriorates, the plating layer peels off in powder or lump form, causing mold seizure, deteriorating the corrosion resistance of the peeled part, and causing scratches due to the peeled plating pieces. Was.
  • Japanese Patent Application Laid-Open No. 61-269691 discloses that Fe and Zn are applied at a high temperature of 700 to 850 ° C after hot-dip galvanizing. Need to be alloyed. However, alloying at high temperatures not only increases costs, but also increases the burden on equipment such as rolls.
  • steel contains at least one of Zr, La, Ce, Y, and Ca, and is cooled from recrystallization annealing to plating.
  • the speed is specified at 50 ° CZ seconds or more. Addition of Zr and the like to steel increased costs, and the productivity was poor because the speed of passing through had to be reduced due to the problem of cooling capacity.
  • the components of steel in 0, Al, and N are respectively 0.0045 wt% or less, and (25 XN wt%) to 0.15 wt%. , 0.03 It is specified as 0 wt% or less.
  • the content of Ti, Si, and P in steel is limited and the content of Si (wt%) + P (wt%) ⁇ Ti (wt%) is satisfied.
  • the regulation by the component does not always achieve the steel sheet performance such as the desired strength and drawability, and the adhesion from the specified component range may be reduced due to the deviation from the specified component range.
  • recrystallization annealing In applying such hot-dip galvanizing to a steel sheet, recrystallization annealing must be performed at a high temperature of about 700 to 900 ° C. in order to obtain excellent material properties.
  • CGL recrystallization annealing is performed in a nitrogen atmosphere in the presence of hydrogen (referred to as reduction annealing).
  • reduction annealing this atmosphere is a reducing atmosphere for Fe, it is not suitable for elements such as SiMn and P. It is an oxidizing atmosphere. Therefore, elements that are more easily oxidized than Fe (such as Si, Mn, and P) during the reduction annealing (called oxidizable elements) diffuse out and combine with oxygen on the steel sheet surface to form oxides ( This is called surface thickening).
  • Japanese Patent Publication No. Sho 61-93386 proposes a method of pre-plating Ni on the surface of a steel sheet prior to hot-dip galvanizing. ing.
  • S i 0.2 to 2 ⁇ Ow t%
  • Mn 0.5 to 2.0 w t%
  • C r 0.1 to 20 w t% when intended for the steel containing more than one kind
  • the adhesion amount is required to be subjected to 1 O gZm 2 or more N i plating had invited an increase in cost.
  • hot-dip galvanizing and the wettability of the steel sheet are improved, but defects caused by Si and Ni on the plating surface during the alloying process. There was a problem of frequent occurrence.
  • Japanese Patent Application Laid-Open No. 57-70268 proposes a method of pre-plating Fe on the surface of a steel sheet prior to hot-dip galvanizing. According to this method, it is possible to prevent non-plating defects of the Si-added steel by pre-plating, but this requires the application of Fe plating of 5 gZm 2 or more, which is extremely uneconomical. Was.
  • the Fe oxide film will be peeled off by a roll, etc., and instead the surface will thicken, impairing the plating property, and the peeled Fe oxide film will be scattered in the furnace. And adversely affect the operation.
  • hot-dip galvanizing of high-strength steel sheets a known proposal regarding the composition of the steel and the conditions of hot rolling (also abbreviated as hot rolling) is disclosed in Disclosure of methods for winding steel containing S i ⁇ 0.2 and Mn ⁇ 1.5 at a temperature of 650 ° C or higher, followed by pickling, cold rolling, annealing and hot-dip galvanizing According to Japanese Patent Application Laid-Open No. 6-179943, steel containing Si: 0 ⁇ 10 ⁇ to 1.5 wt% and Mn: l. It discloses a method of winding and pickling at a temperature of 80 or less, followed by cold rolling annealing and hot-dip galvanizing.
  • the present invention provides a hot-dip galvanized steel sheet having an oxide of an element that is more easily oxidized than iron, immediately below the plating layer.
  • the oxygen concentration in a range of 3 ⁇ m in the thickness direction from the surface layer of the base steel sheet below the plating layer is preferably 1 ppm or more, and more preferably 2 ppm.
  • 200200 ppm is preferred, and 3 to 100 ppm is more preferred.
  • these hot-dip galvanized steel sheets are further subjected to a heat-alloying treatment after being subjected to the zinc plating, whereby an excellent alloyed hot-dip galvanized steel sheet is provided.
  • the oxygen concentration in a range of 3 m from the surface layer of the base steel sheet below the plated layer in the thickness direction is preferably 1 ppm or more. Preferably, it is 2 to 200 ppm, more preferably 3 to 100 ppm.
  • any of the above-mentioned hot-dip galvanized steel sheets or alloyed hot-dip galvanized steel sheets at least one selected from the group consisting of Si, Mn and P is used as the steel sheet component. 0.00 1 ⁇ S i ⁇ 3.0w t% ⁇
  • the present invention also provides a method for producing a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet having few non-plating defects and excellent plating adhesion.
  • Process A When the hot-rolled steel strip is wound into a coil, the temperature of the steel strip
  • Process B Process of applying molten zinc plating
  • step B is provided after step A, and another processing step may be provided between step A and step B.
  • another processing step may be provided between step A and step B.
  • an acid pickling step, a degreasing step, a cold rolling step, an annealing step and the like are appropriately used.
  • the oxide formed in the step A is left in a pretreatment step performed after the step A and before an annealing furnace treatment immediately before the step B.
  • At least one slab to be subjected to the hot rolling is selected from the group consisting of Si, Mn and P as components.
  • the heat alloying treatment is performed.
  • This oxide is generated during hot rolling, and can be grown and formed particularly when the temperature during coil winding (abbreviated as CT) is high and the cooling rate is low thereafter.
  • CT temperature during coil winding
  • Fig. 1 shows the results of the analysis of the acid sardines found at the hot-rolled B temple using an electron probe microanalyzer (abbreviated as EPMA). Peaks are observed in Mn, P, A, and O, indicating that these oxides are formed.
  • the components in the steel are Mn: 0.1 wt%, P: 0.06 wt%, A1: 0.03 wt%, especially Mn, P, A 1 is not a steel sheet with a large amount.
  • the oxide immediately below the plating layer is the oxide immediately below the scale formed in the hot-rolling stage, and the subsequent treatment step such as pickling and plating. Are left even after passing through.
  • the mechanism by which oxides are formed immediately below the scale is that the oxygen in the scale layer mainly composed of iron oxide generated during hot rolling diffuses inside the steel after winding the steel strip, and then diffuses into the steel. To form an oxide of an easily oxidizable element. Therefore, it is formed even if the content of steel is very small.
  • an oxide of an element that is more easily oxidized than iron exists immediately below the molten zinc-based plating, but other oxides of an element that are less easily oxidized than iron oxide or iron Oxides may be included. In the present invention, it is more preferable that this oxide is formed at the crystal grain boundary of the hot-rolled sheet.
  • the present inventors have studied and prepared various steel sheets. As a result, as oxides, si—O system, Mn—O system, Al—O system, P—O system, and Fe—S including Fe i — O-based oxides are detected.
  • Fig. 2 shows a conventional steel sheet
  • Fig. 3 shows a Glow dis charge spectroscopy (abbreviated as GDS) in the depth direction from the surface layer of the unannealed sheet after cold rolling where oxides are observed to about 10 m. 2) shows the results of elemental analysis measurement by.
  • the peaks of Mn, Al, P, and O appearing at a depth of about 0.3 to 4 ⁇ t m from the surface layer in FIG. 3 correspond to oxides.
  • Fig. 4 shows the results of a conventional steel sheet
  • Fig. 5 shows the results of elemental analysis by GDS in the depth direction from the surface layer after cold rolling annealing to about 10 / im where oxides are observed.
  • a large amount of surface condensate generated by reduction annealing is observed, while in the steel sheet with oxide generated during hot rolling, as shown in Fig. 5, Production is suppressed and hardly observed.
  • the oxide present on the surface layer of the steel sheet immediately below the plating layer can be observed with an optical microscope by etching with 1% nital solution for several seconds to several tens of seconds. .
  • FIGS. 8 and 9 are cross-sectional optical micrographs of the alloyed hot-dip galvanized steel sheet at a magnification of 1000.
  • the black strips (indicated by-) observed immediately below the plating layer are oxides.
  • Oxide formation can also be confirmed by performing oxygen analysis in steel.
  • the method used is to remove the scale layer by pickling after hot-rolling, remove the scale layer of hot-dip galvanized steel sheet, or use a cold-rolled unannealed or annealed sheet. It is sufficient to compare the analysis value of oxygen in steel in the direction with the analysis value of oxygen in steel of a steel sheet from which the surface layer where oxide is formed is removed by grinding or the like. In the case of oxide-producing steel sheets, the total thickness direction analysis value is larger than the analysis value of the ground plate. Next, the mechanism by which non-plating defects and plating adhesion are improved by forming an oxide directly under the plating layer is discussed.
  • oxide is generated immediately below the scale by internal diffusion of oxygen at the time of coiling and after coiling, thereby making it easier to reduce oxidation in CGL. It was found that the surface concentration of the oxidizing element was suppressed.
  • plating is exfoliated mainly by compressive stress during press working.
  • the plating layer is forcibly dissolved to the iron potential by the galvanostatic method (4% methyl salicylate, 1% salicylic acid, 10% methanol solution of potassium iodide Z, 5 mA / cm 2 ).
  • the results are shown in Figs. 10 and 11 when the steel plate is exposed and the steel plate is exposed and observed by SEM. It can be seen that the roughness of the interface between the plating layer and the steel sheet is clearly greater than that of the conventional oxide-free steel sheet.
  • the technology disclosed in the present invention includes, as a component in steel, at least one component selected from the group consisting of Si, Mn, and P;
  • the lower limits of each element are as follows: Si: 0.001 wt%, Mn: 0.05 wt%, P: preferably 0.05 wt%.
  • the upper limit of each element is set as a preferable range from the viewpoint of saturation of the effect of strengthening and cost.
  • the technology disclosed by the present invention has a sufficient effect on both the non-plating defect and the plating adhesion if a small amount is observed by etching with 1% nital in the cross-section observation of the hot-dip galvanized steel sheet using an optical microscope. It has been seen. Also, in the oxygen analysis in steel,
  • the hot-rolling coiling temperature is not higher than 600 ° C, oxides will not be generated, and the cooling rate to 540 ° C after winding will be reduced.
  • the molten zinc-based plating of the present invention refers to molten zinc containing zinc as a whole, and may be galvanized or galvanized containing Si in zinc as well as the molten zinc plating. Further, Pb, Mg, Mn, etc. may be included. Therefore, the conditions of the zinc bath are not particularly limited.
  • An appropriate iron content in the bed is 8 to 13 wt ° / o.
  • the hot rolled sheet and the cold rolled sheet may be used as the original plate for plating.
  • FIG. 2 is a graph of a depth direction elemental analysis of a conventional cold-rolled unannealed sheet from the surface layer to about 10 ⁇ m by GDS.
  • FIG. 4 is a graph of a depth direction elemental analysis of about 10 ⁇ m from the surface layer by GDS after conventional cold rolling annealing.
  • FIG. 5 is a graph of the results of elemental analysis in the depth direction from the surface layer to about 10 ⁇ m by GDS after cold rolling annealing in the example.
  • FIG. 6 is a cross-sectional optical micrograph of the oxide immediately below the scale of the hot-rolled sheet of Example at a magnification of 1000 times.
  • FIG. 7 is a cross-sectional optical microscope photograph of a conventional hot-rolled sheet at a magnification of 100 ⁇ just below the scale.
  • FIG. 8 is a cross-sectional optical micrograph of the alloyed hot-dip galvanized steel sheet having an oxide of Example at a magnification of 1000 times.
  • FIG. 9 is a cross-sectional optical microscope photograph of a conventional oxide-free galvannealed steel sheet at a magnification of 1000 ⁇ .
  • FIG. 10 is a 3 ⁇ 1 photograph of a steel sheet in which a plating layer is melted in an example at a magnification of 150 ⁇ .
  • FIG. 11 This is an SEM photograph of a conventional steel sheet in which a plating layer is melted at a magnification of 1500.
  • Electrolytic degreasing Electrolysis for about 10 seconds in 3% NaOH aqueous solution at 60 ° C
  • Brush mouth Brush roll with abrasive grains
  • the hot-rolled sheet and the cold-rolled sheet were both annealed at 800-850 ° C and then hot-dipped at 470 ° C in CGL. In the case of heat alloying, alloying was continued at 480 to 530 ° C for 15 to 30 seconds.
  • the cross section of the hot-rolled sheet with scale was polished and observed with an optical microscope without etching to measure the penetration depth of the oxide.
  • An appropriate magnification of the optical microscope is 1,000 times.
  • the plated plate was visually observed and evaluated.
  • Table 3 shows the results for hot-dip galvanized steel sheets and Table 4 shows the results for galvannealed steel sheets.
  • Example 1 and Example 2 Example of hot-rolled and cold-rolled side without CGL plating Plating During plating Unplated paddle pad Comparative example Sample surface oxide deposited by pretreatment of oxides Iron content Oxide content Defects Test result Steel No.Presence or removal g / m 2 g / m 2 % PP m Rank Comparative example 1 1 No Yes 0.1 40 1 0.5.0 0 1 4 Example 1 2 Yes Yes 0.1 40 1 0.3 1 1 1 1
  • the technology disclosed in the present invention relates to a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet having few non-plating defects and excellent plating adhesion, and is suitable mainly for use in a steel sheet for an automobile body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A hot dip galvanized steel sheet for use as steel sheets for automobiles, an alloyed hot dip galvanized steel sheet, and a process for producing the same. The galvanized steel sheet is reduced in the defects derived from failed plating and excellent in contact plating adhesion, and is characterized by having oxides of elements, more oxidizable than iron just under the plating, the oxides being formed during hot rolling. According to the production process, the temperature of coiling at the time of hot rolling is 600 °C or above, the cooling is carried out at a low rate, and the oxides are left intact also in the subsequent steps.

Description

不めっき欠陥が少なくめっき密着性に優れた溶融亜鉛系めつき鋼板及びその 製造方法 技術分野  Hot-dip galvanized steel sheet with few non-plating defects and excellent plating adhesion, and its manufacturing method
本発明は不めっき欠陥が少なくめつき密着性に優れた溶融亜鉛系めつき鋼板 及びその製造方法に関する。  TECHNICAL FIELD The present invention relates to a hot-dip galvanized steel sheet having few non-plating defects and excellent adhesion and a method for producing the same.
明 背景技術 田  Akira Background technology
溶融亜鉛系めつき鋼板は、 安価で耐食性に優れているため主に自動車車体用 として用いられていが、 自動車車体用鋼板の性能としてはめつきによる耐食性 以外に、 プレス加工時のめっき密着性が要求されている。 めっき密着性が悪化 すると、 めっき層が粉状または塊状に剥離し、 型かじりの原因となったり、 剥 離部分の耐食性が劣化する、 また、 剥離しためっき片によりキズが生じるとい つた問題があった。  Hot-dip zinc-coated steel sheets are mainly used for automobile bodies because they are inexpensive and have excellent corrosion resistance.However, in addition to corrosion resistance due to plating, the adhesion of plating during press working is required as the performance of steel sheets for automobile bodies. Have been. If the adhesion of the plating deteriorates, the plating layer peels off in powder or lump form, causing mold seizure, deteriorating the corrosion resistance of the peeled part, and causing scratches due to the peeled plating pieces. Was.
めっき密着性を改善するための従来技術として、 特開昭 6 1 - 2 7 6 9 6 1 では溶融亜鉛めつきを施した後 7 0 0〜 8 5 0 °Cの高温で F e と Z nを合金化 することを必要としている。 しかし、 高温での合金化はコス トの上昇を伴うだ けでなく、 ロールなどの設備への負担が増加する。  As a conventional technique for improving the plating adhesion, Japanese Patent Application Laid-Open No. 61-269691 discloses that Fe and Zn are applied at a high temperature of 700 to 850 ° C after hot-dip galvanizing. Need to be alloyed. However, alloying at high temperatures not only increases costs, but also increases the burden on equipment such as rolls.
また、 特開平 3— 2 3 2 9 2 6では鋼中に Z r、 L a、 C e、 Y、 C aのう ち少なく とも 1種以上を含有し、 さらに再結晶焼鈍からめっきまでの冷却速度 を 5 0 °CZ秒以上に規定している。 鋼中に Z rなどを添加することでコストは 高くなり、 また、 冷却能力の問題から通板速度を遅くせざるを得ないため生産 性が悪かった。  In Japanese Patent Application Laid-Open No. Hei 3-232926, steel contains at least one of Zr, La, Ce, Y, and Ca, and is cooled from recrystallization annealing to plating. The speed is specified at 50 ° CZ seconds or more. Addition of Zr and the like to steel increased costs, and the productivity was poor because the speed of passing through had to be reduced due to the problem of cooling capacity.
また、 特開平 2— 1 6 3 3 5 6では特に 0、 A l 、 Nの鋼中成分をそれぞれ 0 . 0 0 4 5 w t %以下、 ( 2 5 X N w t %) 〜 0 . 1 5 w t %、 0 . 0 0 3 0 w t %以下と規定している。 また、 特開平 6— 8 1 1 0 1においては鋼中成 分の T i 、 S i 、 P量の制限および S i ( w t %) + P ( w t %) ≥ T i ( w t %) を満足しなければならない。 いずれにしても、 成分による規制では目的 の強度や絞り性などの鋼板性能が達成されるとは限らず、 また、 規定成分範囲 からのはずれによるめつき密着性が低下する恐れがある。 Further, in Japanese Patent Application Laid-Open No. 2-163630, particularly, the components of steel in 0, Al, and N are respectively 0.0045 wt% or less, and (25 XN wt%) to 0.15 wt%. , 0.03 It is specified as 0 wt% or less. Also, in Japanese Patent Application Laid-Open No. 6-81101, the content of Ti, Si, and P in steel is limited and the content of Si (wt%) + P (wt%) ≥ Ti (wt%) is satisfied. Must. In any case, the regulation by the component does not always achieve the steel sheet performance such as the desired strength and drawability, and the adhesion from the specified component range may be reduced due to the deviation from the specified component range.
特開平 4— 3 3 3 5 5 2では溶融亜鉛めつき前に N iプレめっきを行うこと によりめつき密着性を改善している。 しかし、 通常^ _連続溶融亜鉛めつきライ ン (C G Lと略す) にはそのような設備はなく、 設備の改善等に多大な投資が 必要になる。 一方、 近年の排ガス規制より、 自動車車体の軽量化が求められている。 自動 車車体の軽量化のための一つの方法として板厚を薄くするという方法がある。 この方法では安全確保のため板厚を薄く した分だけ、 板の強度を向上させる必 要がある。 そのため、 鋼中の S iや M n、 Pといった元素の含有量を増加させ て鋼板の強度化を図った高張力鋼板が開発された。 自動車用鋼板はブレス加工 が施されることから、 材質特性を良く した高 r値 (高ランクフォード値) の鋼 板が必要とされ、 とりわけ、 高張力鋼板においてはこれらの元素の添加は必須 となっている。  In Japanese Patent Laid-Open No. 4-333552, the plating adhesion is improved by performing Ni pre-plating before hot-dip galvanizing. However, there is no such facility in the ^ _ continuous molten zinc plating line (abbreviated as CGL), and a large investment is required for improving the facilities. On the other hand, recent emission regulations require lighter automobile bodies. One method for reducing the weight of an automobile body is to reduce the thickness. In this method, it is necessary to increase the strength of the board by the reduced thickness to ensure safety. For this reason, high-strength steel sheets have been developed that increase the content of elements such as Si, Mn, and P in steel to increase the strength of the steel sheets. Since automotive steel sheets are subjected to breath processing, high r-value (high Rankford value) steel sheets with improved material properties are required. In particular, the addition of these elements is essential for high-strength steel sheets. Has become.
このような鋼板に溶融亜鉛めつきを施すに際して、 優れた材質特性を得るた めには 7 0 0〜9 0 0 °C程度の高温で再結晶焼鈍を行う必要がある。 通常、 C G Lにおいては水素存在下窒素雰囲気中で再結晶焼鈍を行う (還元焼鈍と呼ぶ ) 、 この雰囲気は F eにとつては還元性雰囲気であるものの、 S i M n、 Pといった元素にとっては酸化性雰囲気である。 そのため、 還元焼鈍中に S i や M n、 Pといった F eよりも酸化され易い元素 (易酸化性元素と呼ぶ) が外 部拡散し、 鋼板表面で酸素と結合して酸化物を形成する (表面濃化と呼ぶ) 。 そして、 これらの酸化物は溶融亜鉛と鋼板との濡れ性を著しく阻害するため、 鋼板に亜鉛が付着しない不めっきと呼ばれる欠陥を生じる。 こう した問題点を克服する方法の一つとして、 特公昭 6 1— 9 3 8 6号公報 では、 溶融亜鉛めつき処理に先立って、 鋼板の表面に N iのプレめっきを施す 方法を提案している。 しかし、 この方法では、 S i : 0. 2〜2· Ow t %、 Mn : 0. 5〜2. 0w t %、 C r : 0. l〜20w t %のうち少なく とも S iと他の一種以上を含有する鋼を対象とする場合には、 付着量が 1 O gZm2 以上の N iめっきを施すことが必要となり、 コス トの上昇を招いていた。 しか も、 このような大量の N i めっきを施した場合には溶融亜鉛めつきと鋼板の濡 れ性は改善されるものの合金化処理過程でめっき表面の S i、 N i に起因する 欠陥が多発するという問題があった。 In applying such hot-dip galvanizing to a steel sheet, recrystallization annealing must be performed at a high temperature of about 700 to 900 ° C. in order to obtain excellent material properties. Usually, in CGL, recrystallization annealing is performed in a nitrogen atmosphere in the presence of hydrogen (referred to as reduction annealing). Although this atmosphere is a reducing atmosphere for Fe, it is not suitable for elements such as SiMn and P. It is an oxidizing atmosphere. Therefore, elements that are more easily oxidized than Fe (such as Si, Mn, and P) during the reduction annealing (called oxidizable elements) diffuse out and combine with oxygen on the steel sheet surface to form oxides ( This is called surface thickening). These oxides significantly impair the wettability between the molten zinc and the steel sheet, so that a defect called non-plating in which zinc does not adhere to the steel sheet occurs. As one method of overcoming these problems, Japanese Patent Publication No. Sho 61-93386 proposes a method of pre-plating Ni on the surface of a steel sheet prior to hot-dip galvanizing. ing. However, in this method, S i: 0.2 to 2 · Ow t%, Mn: 0.5 to 2.0 w t%, and C r: 0.1 to 20 w t% when intended for the steel containing more than one kind, the adhesion amount is required to be subjected to 1 O gZm 2 or more N i plating had invited an increase in cost. When such a large amount of Ni plating is applied, hot-dip galvanizing and the wettability of the steel sheet are improved, but defects caused by Si and Ni on the plating surface during the alloying process. There was a problem of frequent occurrence.
また、 例えば特開昭 5 7— 70 268号公報では、 溶融亜鉛めつきに先立つ て鋼板の表面に F eのプレめっきを施す方法を提案している。 この方法によれ ば、 プレめっきによって S i添加鋼の不めっき欠陥を防止することは可能であ るが、 そのためには 5 gZm2 以上の F eめっきを施す必要が生じ、 きわめて 不経済であった。 For example, Japanese Patent Application Laid-Open No. 57-70268 proposes a method of pre-plating Fe on the surface of a steel sheet prior to hot-dip galvanizing. According to this method, it is possible to prevent non-plating defects of the Si-added steel by pre-plating, but this requires the application of Fe plating of 5 gZm 2 or more, which is extremely uneconomical. Was.
さらに、 他の方法としては、 特開昭 5 5 - 1 2286 5号公報ゃ特開平 4— 2545 3 1号公報に開示の方法がある。 これらの方法は、 鋼板をあらかじめ 酸化してその表面に F e酸化膜を形成し、 その後還元焼鈍する方法である。 し かし、 これらの方法では、 還元焼鈍時に還元され過ぎてしまい、 S i などの合 金元素が表面濃化して酸化膜を形成し、 めっき性が不良になる問題があった。 この還元され過ぎを防ぐには、 多量の F e酸化物が必要である。 しかし、 F e 酸化膜が多過ぎると、 ロールなどによって F e酸化膜が剥離してしまうため、 かえって表面濃化が起こり、 めっき性が阻害されたり、 剥離した F e酸化膜が 炉内に散乱して操業に悪影響を及ぼすという問題があった。  Further, as another method, there is a method disclosed in Japanese Patent Application Laid-Open No. 55-122285 and Japanese Patent Application Laid-Open No. Hei 4-254531. In these methods, a steel sheet is oxidized in advance to form a Fe oxide film on its surface, and then subjected to reduction annealing. However, in these methods, there is a problem that the alloy element such as Si is excessively reduced during the reduction annealing, the surface is concentrated, and an oxide film is formed, resulting in poor plating properties. To prevent this over-reduction, a large amount of Fe oxide is required. However, if the amount of Fe oxide film is too large, the Fe oxide film will be peeled off by a roll, etc., and instead the surface will thicken, impairing the plating property, and the peeled Fe oxide film will be scattered in the furnace. And adversely affect the operation.
また、 高張力鋼板の溶融亜鉛めつきについて、 鋼中の成分組成や熱間圧延 ( 熱延とも略す) の条件に関しての既知提案について、 特開平 6— 1 58 1 72 号公報では、 w t %で S i ≤ 0. 2 , Mn≤ 1. 5含有する鋼を 6 5 0°C以上 の温度で巻き取り、 ついで酸洗、 冷延、 焼鈍、 溶融亜鉛めつきする方法を開示 しており、 特開平 6— 1 7 9 943号公報では S i : 0 · 1 0―〜 1 · 5 w t % 、 Mn : l . 00〜3. 5 w t %含有する鋼を 500°C以上 6 80 以下の温 度で巻き取り酸洗の後冷延焼鈍、 溶融亜鉛めつきする方法を開示している。 Regarding the hot-dip galvanizing of high-strength steel sheets, a known proposal regarding the composition of the steel and the conditions of hot rolling (also abbreviated as hot rolling) is disclosed in Disclosure of methods for winding steel containing S i ≤ 0.2 and Mn ≤ 1.5 at a temperature of 650 ° C or higher, followed by pickling, cold rolling, annealing and hot-dip galvanizing According to Japanese Patent Application Laid-Open No. 6-179943, steel containing Si: 0 · 10− to 1.5 wt% and Mn: l. It discloses a method of winding and pickling at a temperature of 80 or less, followed by cold rolling annealing and hot-dip galvanizing.
しかしながら、 これらの方法についても鋼中の成分組成や熱間圧延条件など の一連の工程について、 それらの処理条件を特定しているものの、 還元焼鈍時 の表面濃化皮膜を抑制し不めっき欠陥やめつき密着性を良好とするものではな レ、。 発明の開示  However, in these methods, although the processing conditions for a series of steps such as the composition of the components in the steel and the hot rolling conditions are specified, the surface thickened film during reduction annealing is suppressed to prevent non-plating defects. It does not provide good adhesion. Disclosure of the invention
発明者らは、 詳細な実験の結果、 溶融亜鉛系めつき鋼板のめっき層直下に易 酸化性元素の酸化物を有することによって、 不めっき欠陥及びめつき密着性が 飛躍的に改善されることを見いだした。  As a result of detailed experiments, the inventors found that non-plating defects and plating adhesion were dramatically improved by having an oxide of an easily oxidizable element directly under the coating layer of a hot-dip zinc-coated steel plate. Was found.
すなわち、 本願発明は、 鉄よりも酸化され易い元素の酸化物を、 めっき層直 下に有する溶融亜鉛系めつき鋼板を提供する。  That is, the present invention provides a hot-dip galvanized steel sheet having an oxide of an element that is more easily oxidized than iron, immediately below the plating layer.
また、 この溶融亜鉛系めつき鋼板は、 該めっき層下の基材鋼板の表層から板 厚方向で 3 μ mの範囲の酸素濃度が 1 p pm以上であることが好ましく、 より 好ましくは、 2〜200 p pmがよい、 さらに好ましくは 3〜: 1 00 p pmが よい。  Further, in the hot-dip galvanized steel sheet, the oxygen concentration in a range of 3 μm in the thickness direction from the surface layer of the base steel sheet below the plating layer is preferably 1 ppm or more, and more preferably 2 ppm. 200200 ppm is preferred, and 3 to 100 ppm is more preferred.
さらに、 これらの溶融めつき鋼板は、 該亜鉛めつきが施された後、 さらに加 熱合金化処理されていることが好ましく、 これにより優れた合金化溶融亜鉛系 めっき鋼板が提供される。 この合金化溶融亜鉛系めつき鋼板の場合も、 該めつ き層下の基材鋼板の表層から板厚方向で 3 mの範囲の酸素濃度が 1 p pm以 上であることが好ましく、 より好ましくは、 2〜200 p pmがよい、 さらに 好ましくは 3〜1 O O p p mがよい。  Further, it is preferable that these hot-dip galvanized steel sheets are further subjected to a heat-alloying treatment after being subjected to the zinc plating, whereby an excellent alloyed hot-dip galvanized steel sheet is provided. Also in the case of the alloyed molten zinc-based plated steel sheet, the oxygen concentration in a range of 3 m from the surface layer of the base steel sheet below the plated layer in the thickness direction is preferably 1 ppm or more. Preferably, it is 2 to 200 ppm, more preferably 3 to 100 ppm.
また、 上述のいずれの溶融亜鉛系めつき鋼板あるいは合金化された溶融亜鉛 系めつき鋼板も、 その該鋼板成分として S i、 Mnおよび Pからなる群から選 ばれる少なく とも 1種を、 0. 00 1≤ S i ≤ 3. 0w t % ― Further, in any of the above-mentioned hot-dip galvanized steel sheets or alloyed hot-dip galvanized steel sheets, at least one selected from the group consisting of Si, Mn and P is used as the steel sheet component. 0.00 1 ≤ S i ≤ 3.0w t% ―
0. 05≤Mn≤ 2. 0 w t %  0. 05≤Mn≤ 2.0 w t%
0. 00 5≤ P≤ 0. 2 w t %  0.005 ≤ P≤ 0.2 wt%
の範囲で含有することが好ましい。 It is preferable to contain in the range of.
さらに、 本願発明では、 上述の、 不めっき欠陥が少なくめっき密着性にすぐ れた溶融亜鉛系めっき鋼板あるいは合金化された溶融亜鉛系めっき鋼板の製造 方法も提供する。 すなわち  Further, the present invention also provides a method for producing a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet having few non-plating defects and excellent plating adhesion. Ie
工程 A :熱間圧延された鋼帯をコイル状に巻き取るに際し、 鋼帯の温度を  Process A: When the hot-rolled steel strip is wound into a coil, the temperature of the steel strip
600°C以上とし、 540°Cまでの平均冷却速度を (鋼帯巻き取り温度一 540) °· 9 ÷40 (°C /分) 以下としてスケール直下に鉄よりも酸化され易い元素の酸化物を 形成させる工程、 および Set to 600 ° C or higher, and the average cooling rate up to 540 ° C (steel strip winding temperature – 540) ° · 9 ÷ 40 (° C / min) or less, oxides of elements that are more easily oxidized than iron immediately below the scale Forming a, and
工程 B :溶融亜鉛系めつきを施す工程  Process B: Process of applying molten zinc plating
の工程順序を有する製造方法である。 なお、 この製造方法においては、 工程 A の後に工程 Bがあればよく、 工程 Aと工程 Bの間に他の処理工程があってもよ い。 通常、 このような中間処理としては、 酸洗工程、 脱脂工程、 冷間圧延工程 や焼鈍工程などが、 適宜に用いられる。 Is a manufacturing method having the following process sequence. In this manufacturing method, it is sufficient that step B is provided after step A, and another processing step may be provided between step A and step B. Usually, as such an intermediate treatment, an acid pickling step, a degreasing step, a cold rolling step, an annealing step and the like are appropriately used.
また、 本願製造方法では、 該工程 Aの後から該工程 B直前の焼鈍炉処理前ま でに行われる前処理工程において、 該工程 Aで形成させた該酸化物を残存させ ることが好ましい。  Further, in the manufacturing method of the present invention, it is preferable that the oxide formed in the step A is left in a pretreatment step performed after the step A and before an annealing furnace treatment immediately before the step B.
さらに、 これらの製造方法では、 該熱間圧延に供されるスラブが、 成分とし て S i、 Mnおよび Pからなる群から選ばれる少なく とも 1種を、  Further, in these production methods, at least one slab to be subjected to the hot rolling is selected from the group consisting of Si, Mn and P as components.
0. 00 1≤ S i ≤ 3. 0 w t %  0.001 ≤ S i ≤ 3.0 w t%
0. 05≤Mn≤ 2. 0 w t %  0. 05≤Mn≤ 2.0 w t%
0. 00 5≤ P≤ 0. 2w t %  0.005 ≤ P≤ 0.2 wt%
の範囲で含有しているもの用いるのが好ましい。 It is preferable to use those contained in the range of.
また、 上述のいずれの製造方法であっても、 該工程 Bの後に、 加熱合金化処 理することにより合金化された溶融亜鉛系めつき鋼板を製造することができる Further, in any of the above-described manufacturing methods, after the step B, the heat alloying treatment is performed. Can produce an alloyed hot-dip galvanized steel sheet
つぎに、 本発明におけるめっき層直下の易酸化性元素の酸化物について説明 する。 Next, the oxide of the easily oxidizable element immediately below the plating layer in the present invention will be described.
この酸化物は、 熱延時に生成するものであり、 特にコイル卷き取り時の温度 (C Tと略す) が高く、 その後の冷却速度が遅い場合に成長し形成させること ができる。  This oxide is generated during hot rolling, and can be grown and formed particularly when the temperature during coil winding (abbreviated as CT) is high and the cooling rate is low thereafter.
その熱延時に形成した酸化物は図 6に示すようにスケールの直下に観察され る。 一方、 図 7に示すように従来の熱延板にはスケールの直下に酸化物が全く みられなレヽ。 この熱延 B寺にみられる酸ィ匕物につレヽて Electron probe microanal yzer (E PMAと略す) で分析した結果を図 1に示す。 Mn、 P、 Aし Oに ピークがみられることから、 これらの酸化物が生成していることがわかる。 図 6や図 1に用いた鋼板は、 鋼中成分が Mn : 0. l w t %、 P : 0. 0 0 6 w t %, A 1 : 0. 0 3 w t %であり、 特に Mn、 P、 A 1が多量に存在する鋼 板ではない。  The oxide formed during the hot rolling is observed immediately below the scale as shown in Fig. 6. On the other hand, as shown in Figure 7, the conventional hot-rolled sheet shows no oxide immediately below the scale. Fig. 1 shows the results of the analysis of the acid sardines found at the hot-rolled B temple using an electron probe microanalyzer (abbreviated as EPMA). Peaks are observed in Mn, P, A, and O, indicating that these oxides are formed. In the steel sheets used in Fig. 6 and Fig. 1, the components in the steel are Mn: 0.1 wt%, P: 0.06 wt%, A1: 0.03 wt%, especially Mn, P, A 1 is not a steel sheet with a large amount.
本発明である溶融亜鉛めっき鋼板や合金化溶融亜鉛めっき鋼板におけるめつ き層直下の酸化物は、 熱延段階で形成したスケール直下の酸化物が、 酸洗 · め つきなどのその後の処理工程を経ても残存しているものである。  In the hot-dip galvanized steel sheet and the alloyed hot-dip galvanized steel sheet according to the present invention, the oxide immediately below the plating layer is the oxide immediately below the scale formed in the hot-rolling stage, and the subsequent treatment step such as pickling and plating. Are left even after passing through.
スケールの直下に酸化物が生成するメカニズムは、 熱延時に生成した酸化鉄 を主成分とするスケール層の酸素が、 鋼帯巻き取り時ゃ卷き取り後に鋼中へ内 部拡散し、 鋼中に易酸化性元素の酸化物を形成するものである。 そのため、 鋼 中成分が微量であっても生成する。  The mechanism by which oxides are formed immediately below the scale is that the oxygen in the scale layer mainly composed of iron oxide generated during hot rolling diffuses inside the steel after winding the steel strip, and then diffuses into the steel. To form an oxide of an easily oxidizable element. Therefore, it is formed even if the content of steel is very small.
なお、 本願発明では、 上述のように、 鉄よりも酸化され易い元素の酸化物が 溶融亜鉛系めつき直下に存在するが、 その他にも、 鉄の酸化物や鉄よりも酸化 されにくい元素の酸化物が含まれてもよい。 また、 本願発明では、 この酸化物 は熱延板の結晶粒界に形成させるのがより好ましい。 発明者らは種々の鋼板について検討及び調查を行った結果、 酸化物として s i — O系、 M n— O系、 A l — O系、 P—O系や、 F eを含む F e— S i — O 系の酸化物などを検出している。 In the present invention, as described above, an oxide of an element that is more easily oxidized than iron exists immediately below the molten zinc-based plating, but other oxides of an element that are less easily oxidized than iron oxide or iron Oxides may be included. In the present invention, it is more preferable that this oxide is formed at the crystal grain boundary of the hot-rolled sheet. The present inventors have studied and prepared various steel sheets. As a result, as oxides, si—O system, Mn—O system, Al—O system, P—O system, and Fe—S including Fe i — O-based oxides are detected.
図 2には従来の鋼板、 および図 3には酸化物が観察される冷延後未焼鈍板の 表層から 1 0 m程度までの深さ方向の範囲における Glow di s charge spectro scopy ( G D Sと略す) による元素分析測定結果を示す。 図 3の表層からの深 さ 0 . 3〜4 ^t m程度に見える M n、 A l、 P、 Oのピークが酸化物に相当す る。  Fig. 2 shows a conventional steel sheet, and Fig. 3 shows a Glow dis charge spectroscopy (abbreviated as GDS) in the depth direction from the surface layer of the unannealed sheet after cold rolling where oxides are observed to about 10 m. 2) shows the results of elemental analysis measurement by. The peaks of Mn, Al, P, and O appearing at a depth of about 0.3 to 4 ^ t m from the surface layer in FIG. 3 correspond to oxides.
図 4には従来の鋼板、 および図 5には酸化物が観察される冷延焼鈍後の表層 から 1 0 /i m程度までの深さ方向の範囲における G D Sによる元素分析測定結 果を示す。 図 4の従来の鋼板では還元焼鈍によつて生成した表面濃化物が多量 に観察されるのに対し、 図 5に示したように、 熱延時に生成した酸化物がある 鋼板では表面濃化物の生成は抑制され、 ほとんど観察されない。  Fig. 4 shows the results of a conventional steel sheet, and Fig. 5 shows the results of elemental analysis by GDS in the depth direction from the surface layer after cold rolling annealing to about 10 / im where oxides are observed. In the conventional steel sheet in Fig. 4, a large amount of surface condensate generated by reduction annealing is observed, while in the steel sheet with oxide generated during hot rolling, as shown in Fig. 5, Production is suppressed and hardly observed.
次に、 本発明におけるめっき層直下の鋼板表層 (基材鋼板の表層) に存在す る酸化物は、 1 %ナイタール液での数秒〜数十秒のエッチングにより光学顕微 鏡で観察が可能である。  Next, in the present invention, the oxide present on the surface layer of the steel sheet immediately below the plating layer (the surface layer of the base steel sheet) can be observed with an optical microscope by etching with 1% nital solution for several seconds to several tens of seconds. .
従来の酸化物の無い合金化溶融亜鉛めっき鋼板および本発明例である酸化物 を有する合金化溶融亜鉛めつき鋼板の観察例を図 8 (写真) 、 図 9 (写真) に 示した。 図 8、 9は合金化溶融亜鉛めつき鋼板の断面光学顕微鏡写真であり、 倍率 1 0 0 0倍のものである。 めっき層直下に観察される黒い帯状のもの (― 印で示した) が酸化物である。  Fig. 8 (Photo) and Fig. 9 (Photo) show observation examples of the conventional alloyed hot-dip galvanized steel sheet without oxides and the present invention, which is an alloyed hot-dip galvanized steel sheet having oxides. FIGS. 8 and 9 are cross-sectional optical micrographs of the alloyed hot-dip galvanized steel sheet at a magnification of 1000. The black strips (indicated by-) observed immediately below the plating layer are oxides.
また、 鋼中酸素分析を行うことによつても酸化物の生成が確認できる。 手法 としては、 熱延巻き取り後、 酸洗によりスケール層を除去した鋼板や、 溶融亜 鉛系めっき鋼板のめっき層のみを溶解した鋼板、 冷延未焼鈍または焼鈍板など を用い、 全板厚方向の鋼中酸素分析値と酸化物の形成している表層部を研削な どにより除去した鋼板の鋼中酸素分析値を比較すればよい。 酸化物を生成して いる鋼板は研削板の分析値に比ベ全板厚方向分析値が多くなつている。 つぎに、 このめつき層直下に酸化物を形成させることよって不めっき欠陥や めっき密着性が改善されるメカニズムについて考察を行う。 まず、 不めっき欠陥の改善についてであるが、 上述したように卷き取り時や 卷き取り後に酸素の内部拡散によりスケールの直下に酸化物を生成することに より、 C G Lにおける還元焼鈍時の易酸化性元素の表面濃化が抑制されること がわカゝつた。 Oxide formation can also be confirmed by performing oxygen analysis in steel. The method used is to remove the scale layer by pickling after hot-rolling, remove the scale layer of hot-dip galvanized steel sheet, or use a cold-rolled unannealed or annealed sheet. It is sufficient to compare the analysis value of oxygen in steel in the direction with the analysis value of oxygen in steel of a steel sheet from which the surface layer where oxide is formed is removed by grinding or the like. In the case of oxide-producing steel sheets, the total thickness direction analysis value is larger than the analysis value of the ground plate. Next, the mechanism by which non-plating defects and plating adhesion are improved by forming an oxide directly under the plating layer is discussed. First, as for the improvement of non-plating defects, as described above, oxide is generated immediately below the scale by internal diffusion of oxygen at the time of coiling and after coiling, thereby making it easier to reduce oxidation in CGL. It was found that the surface concentration of the oxidizing element was suppressed.
これは、 巻き取り時ゃ卷き取り後にすでに易酸化性元素が酸化物として析出 しているため表層の易酸化性元素が減少していること、 また、 易酸化性元素が バルタから鋼板表面へ移動 (外部拡散) するのを、 形成させた酸化物が阻害す ること、 また、 鋼板内部での酸化還元反応つまり巻き取り時や巻き取り後に生 成した F eを含む酸化物が還元焼鈍時には易酸化性元素の酸化物に変化するこ と、 によるものと推定される。  This is due to the fact that the oxidizable element has already been precipitated as an oxide after winding and the oxidizable element in the surface layer has been reduced, and that the oxidizable element has been transferred from Balta to the steel sheet surface. The movement (external diffusion) is hindered by the formed oxide, and the oxidation-reduction reaction inside the steel sheet, that is, the oxide containing Fe generated during winding or after rolling is reduced during reduction annealing. It is presumed to be due to the change to oxides of easily oxidizable elements.
そのため、 溶融亜鉛と鋼板の濡れ性を阻害する易酸化性元素の表面濃化物が 極端に減少し、 不めっき欠陥が飛躍的に改善されると思われる。 つぎに、 密着性について説明する。  As a result, it is thought that the concentration of easily oxidizable elements on the surface of the molten zinc that inhibits the wettability of the steel sheet is extremely reduced, and that non-plating defects are dramatically improved. Next, the adhesion will be described.
プレス加工時において、 主に圧縮応力を受けることによりめっきが剥離する ことが知られている。  It is known that plating is exfoliated mainly by compressive stress during press working.
本発明であるめつき層直下に酸化物を有する鋼板は、 従来の酸化物の存在し ない鋼板に比べ、 酸化物の結晶間に隙間があるため亜鉛が浸透しやすい。 その 結果、 めっき層と鋼板界面の凹凸が激しくなり、 めっき層が鋼板と強固に密着 することができる。 その結果、 本発明により開示する溶融亜鉛めつき鋼板およ び合金化溶融亜鉛めっき鋼板では、 プレス加工時におけるめっきの密着性は良 好となる。  In the steel sheet having an oxide immediately below the plating layer according to the present invention, zinc is easily permeated because there is a gap between oxide crystals as compared with a conventional steel sheet having no oxide. As a result, the unevenness of the interface between the plating layer and the steel sheet becomes severe, and the plating layer can firmly adhere to the steel sheet. As a result, in the hot-dip galvanized steel sheet and the galvannealed steel sheet disclosed by the present invention, the adhesion of the plating during the press working is excellent.
めっき層を定電流法 (4 %サリチル酸メチル、 1 %サリチル酸、 1 0 %ヨウ 化カリウム Zメタノール溶液、 5 m A/ c m 2 ) により鉄電位まで強制的に溶 解して鋼板を露出させて S E Mにより観察した結果を図 1 0、 1 1に示す。 従 来の酸化物の無い鋼板に比べ、 明らかにめっき層と鋼板界面の凹凸が激しくな つていることがわかる。 また、 本発明の開示した技術は、 鋼中成分として S i 、 M nおよび Pからな る群から選ばれる少なく とも 1種の成分を、 The plating layer is forcibly dissolved to the iron potential by the galvanostatic method (4% methyl salicylate, 1% salicylic acid, 10% methanol solution of potassium iodide Z, 5 mA / cm 2 ). The results are shown in Figs. 10 and 11 when the steel plate is exposed and the steel plate is exposed and observed by SEM. It can be seen that the roughness of the interface between the plating layer and the steel sheet is clearly greater than that of the conventional oxide-free steel sheet. In addition, the technology disclosed in the present invention includes, as a component in steel, at least one component selected from the group consisting of Si, Mn, and P;
0 . 0 0 1≤ S i ≤ 3 . 0 w t %  0. 0 0 1≤ S i ≤ 3.0 .0 w t%
0 . 0 5≤M n≤ 2 . 0 w t %  0 .0 5≤M n≤ 2.0 .0 w t%
0 . 0 0 5≤ P≤ 0 . 2 w t %  0. 0 0 5≤ P≤ 0 .2 w t%
の範囲で含有する鋼板において、 より優れた効果が観察される。 これらの元素 を含まない鋼板では不めっき欠陥やめつき密着性不良といった問題は生じにく いため、 各元素の下限は S i : 0 . 0 0 1 w t %、 M n : 0 . 0 5 w t %、 P : 0 . 0 0 5 w t %であることが好ましい。 一方、 各元素の上限は高強度化の 効果の飽和及びコスト面から好ましい範囲として定めた。 また、 本発明が開示した技術は、 光学顕微鏡による溶融亜鉛系めつき鋼板の 断面観察において 1 %ナイタールによるエッチングで少量でも観察されれば、 不めっき欠陥及びめつき密着性両方について十分な効果が見られている。 また、 鋼中酸素分析法では、 次式: More excellent effects are observed in steel sheets containing in the range of. Since problems such as non-plating defects and poor adhesion are unlikely to occur in steel sheets that do not contain these elements, the lower limits of each element are as follows: Si: 0.001 wt%, Mn: 0.05 wt%, P: preferably 0.05 wt%. On the other hand, the upper limit of each element is set as a preferable range from the viewpoint of saturation of the effect of strengthening and cost. In addition, the technology disclosed by the present invention has a sufficient effect on both the non-plating defect and the plating adhesion if a small amount is observed by etching with 1% nital in the cross-section observation of the hot-dip galvanized steel sheet using an optical microscope. It has been seen. Also, in the oxygen analysis in steel,
(塩酸 ·アンチモン法によりめつき剥離した鋼板の酸素分析値) 一 (塩酸 *ァ ンチモン法によりめっき剥離した後、 さらに表層部 3 μ ΐηを研磨によって除去 した鋼板の酸素分析値)  (Oxygen analysis value of steel sheet peeled off by antimony hydrochloride / antimony method) 1 (Oxygen analysis value of steel sheet after 3 μΐη of surface layer was removed by plating after hydrochloric acid * antimony method)
の値が 1 p p m以上で特に不めっき欠陥及びめつき密着性に十分な効果は見ら れている。 次に、 上記で説明しためっき鋼板を製造するための技術を開示する。 熱延巻 き取り時の温度が高くその後は徐冷であることが必要条件であるが、 以下に詳 細な説明をする。 ― A value of 1 ppm or more has been found to have a sufficient effect especially on non-plating defects and plating adhesion. Next, a technique for manufacturing the above-described plated steel sheet will be disclosed. It is a necessary condition that the temperature at the time of hot rolling is high and that it is gradually cooled thereafter. Give a detailed explanation. ―
熱延巻き取り温度は 6 0 0°C以上でなければ酸化物は生成せず、 また、 卷き 取り後 5 4 0°Cまでの冷却速度を  If the hot-rolling coiling temperature is not higher than 600 ° C, oxides will not be generated, and the cooling rate to 540 ° C after winding will be reduced.
(C T— 5 4 0) 0. 9 ÷ 4 0 (°CZ分) (CT- 5 4 0) 0. 9 ÷ 4 0 (° CZ min)
以下としなければならない。 5 4 0°C以下ではさらなる徐冷をしても酸化物は 形成しない。 Must be: At 540 ° C or lower, no oxide is formed even if the cooling is further performed.
さらに、 めっきを施すに際し、 通常スケール除去のための酸洗及び Zまたは 研磨を行い、 また、 C G L入り側においても電解脱脂や酸洗といった設備を備 え処理を行っている場合もあるが、 これらの処理を施した後に、 熱延工程の巻 き取り時ゃ卷き取り後に生成させた鋼板表層の酸化物は残存させなければなら なレ、。  In addition, when plating, pickling and Z or polishing are usually performed to remove scale, and facilities such as electrolytic degreasing and pickling are sometimes performed on the CGL entry side. After the heat treatment, during the winding in the hot rolling process, the oxides on the surface layer of the steel sheet generated after the winding must remain.
本発明の溶融亜鉛系めつきとは、 亜鉛を含む溶融亜鉛を総じて称するもので あり、 溶融亜鉛めつきはもとより、 亜鉛中に S i を含むガルファンやガルバリ ゥムでもかまわない。 また、 さらに P b、 M g、 Mnなどを含んでも良い。 し たがって、 同様に亜鉛浴条件についても特に限定するものではない。  The molten zinc-based plating of the present invention refers to molten zinc containing zinc as a whole, and may be galvanized or galvanized containing Si in zinc as well as the molten zinc plating. Further, Pb, Mg, Mn, etc. may be included. Therefore, the conditions of the zinc bath are not particularly limited.
その他のめっき層の条件については特に限定するものではないが、 耐食性な どの観点より亜鉛系めつきの付着量は 2 5〜9 0 g/m2 程度、 合金化溶融亜 鉛めつき鋼板についてのめっき層中の鉄含有率としては 8〜 1 3 w t °/oが適当 である。 Is not particularly limited for conditions other plating layer, coating weight of the zinc-based plated over any corrosion resistance aspect 2 5~9 0 g / m 2 approximately, plating of the alloying molten zinc plated steel sheet An appropriate iron content in the bed is 8 to 13 wt ° / o.
また、 めっき原板としては熱延板、 冷延板を問わない。 図面の簡単な説明  Also, the hot rolled sheet and the cold rolled sheet may be used as the original plate for plating. BRIEF DESCRIPTION OF THE FIGURES
[図 1 ] 熱延時に見られるスケール直下の酸化物の E PMA分析チヤ一トで める。  [Figure 1] EPMA analysis of oxides just below the scale observed during hot rolling.
[図 2] 従来の冷延後未焼鈍板の GD Sによる表層から 1 0 μ m程度までの深 さ方向元素分析結果のグラフである。  FIG. 2 is a graph of a depth direction elemental analysis of a conventional cold-rolled unannealed sheet from the surface layer to about 10 μm by GDS.
[図 3] 実施例の冷延後未焼鈍板の GD Sによる表層から 1 0 /i m程度までの 深さ方向元素分析結果のグラフである。 ― [Fig. 3] From the surface layer by GDS of the unannealed sheet after cold rolling in the example to the range of about 10 / im It is a graph of a depth direction elemental analysis result. ―
[図 4 ] 従来の冷延焼鈍後の G D Sによる表層から 1 0 μ m程度までの深さ方 向元素分析結果のグラフである。  FIG. 4 is a graph of a depth direction elemental analysis of about 10 μm from the surface layer by GDS after conventional cold rolling annealing.
[図 5 ] 実施例の冷延焼鈍後の G D Sによる表層から 1 0 μ m程度までの深さ 方向元素分析結果のグラフである。  FIG. 5 is a graph of the results of elemental analysis in the depth direction from the surface layer to about 10 μm by GDS after cold rolling annealing in the example.
[図 6 ] 実施例の熱延板のスケール直下の酸化物の倍率 1 0 0 0倍の断面光学 顕微鏡写真である。  FIG. 6 is a cross-sectional optical micrograph of the oxide immediately below the scale of the hot-rolled sheet of Example at a magnification of 1000 times.
[図 7 ] 従来の熱延板のスケール直下の倍率 1 0 0 0倍の断面光学顕微鏡写真 である。  FIG. 7 is a cross-sectional optical microscope photograph of a conventional hot-rolled sheet at a magnification of 100 × just below the scale.
[図 8 ] 実施例の酸化物のある合金化溶融亜鉛めつき鋼板の倍率 1 0 0 0倍の 断面光学顕微鏡写真である。  FIG. 8 is a cross-sectional optical micrograph of the alloyed hot-dip galvanized steel sheet having an oxide of Example at a magnification of 1000 times.
[図 9 ] 従来の酸化物のない合金化溶融亜鉛めつき鋼板の倍率 1 0 0 0倍の断 面光学顕微鏡写真である。  FIG. 9 is a cross-sectional optical microscope photograph of a conventional oxide-free galvannealed steel sheet at a magnification of 1000 ×.
[図 1 0 ] 実施例のめっき層を溶解した鋼板の倍率 1 5 0 0倍の3 £ 1写真で ある。  FIG. 10 is a 3 × 1 photograph of a steel sheet in which a plating layer is melted in an example at a magnification of 150 ×.
[図 1 1 ] 従来のめっき層を溶解した鋼板の倍率 1 5 0 0倍の S E M写真であ る。  [Fig. 11] This is an SEM photograph of a conventional steel sheet in which a plating layer is melted at a magnification of 1500.
[符号の説明] [Explanation of symbols]
1 鋼板素地 2 スケール 3 酸化物 4 めっき層 5 酸化 物 発明を実施するための最良の形態  1 Steel plate base 2 Scale 3 Oxide 4 Plating layer 5 Oxide Best mode for carrying out the invention
以下に本発明の一例を示す。  Hereinafter, an example of the present invention will be described.
表 1に示す供試材を転炉にて溶製した後、 連続铸造によりスラブとした。 こ のスラブをスラブ加熱温度 1 1 5 0〜 1 2 0 0 °C、 仕上げ温度 9 0 0〜 9 2 0 °C、 表 2に示すコイル巻き取り温度および冷却速度にて熱間圧延し 1 . 2〜3 . 5mm厚とした。 その後、 8 0°C、 5 %H C 1水溶液中で 5秒—から 1 5秒の 酸洗によりスケール層を除去した後、 直接 CGLを通板するものと、 0 · 7m m厚に冷間圧延したものとを作成した。 また、 CGL入り側において前処理に よって鋼板表層を除去した前処理方法としては必要に応じて以下の方法を組み 合わせた。 After smelting the test materials shown in Table 1 in a converter, they were made into slabs by continuous forming. This slab was hot-rolled at a slab heating temperature of 1150 to 1200 ° C, a finishing temperature of 900 to 900 ° C, a coil winding temperature and a cooling rate shown in Table 2. 2-3 .5 mm thick. After that, the scale layer is removed by pickling for 5 to 15 seconds in a 5% HC1 aqueous solution at 80 ° C for 5 seconds. Then, CGL is directly passed through the plate and cold-rolled to a thickness of 0.7 mm. And created. In addition, the following methods were combined as necessary as a pretreatment method in which the steel sheet surface layer was removed by pretreatment on the CGL entry side.
電解脱脂 : 60°C、 3 %N a OH水溶液中で約 1 0秒の電解  Electrolytic degreasing: Electrolysis for about 10 seconds in 3% NaOH aqueous solution at 60 ° C
酸洗: 6 0 °C、 5%HC 1水溶液中で約 3秒の酸洗  Pickling: Pickling in 60%, 5% HC1 aqueous solution for about 3 seconds
ブラシ口ール : 砥粒入りブラシロール  Brush mouth: Brush roll with abrasive grains
なお、 熱間圧延板、 冷間圧延板ともに CG Lにおいて、 8 00〜8 5 0°Cで 焼鈍を行った後 4 70°Cで溶融亜鉛めつきを行った。 また、 加熱合金化を行つ たものは、 引き続き 480〜5 30°Cで 1 5〜3 0秒の合金化処理を行った。  The hot-rolled sheet and the cold-rolled sheet were both annealed at 800-850 ° C and then hot-dipped at 470 ° C in CGL. In the case of heat alloying, alloying was continued at 480 to 530 ° C for 15 to 30 seconds.
〇酸化物評価方法 〇Oxide evaluation method
熱延板での酸化物観察方法:  Observation method of oxide on hot rolled sheet:
スケールつき熱延板の断面を研磨し、 ノーエッチングで光学顕微鏡にて観察 を行い、 酸化物の侵入深さを測定した。 光学顕微鏡の倍率は 1 000倍が適当 である。  The cross section of the hot-rolled sheet with scale was polished and observed with an optical microscope without etching to measure the penetration depth of the oxide. An appropriate magnification of the optical microscope is 1,000 times.
熱延板での酸化物量測定:  Measurement of oxide content in hot rolled sheet:
(酸洗によりスケールを除去した熱延板の全板厚方向の鋼中酸素分析値) 一 (スケール除去後酸化物侵入深さまで板厚方向の研削を行った鋼板の鋼中酸素 分析値) を求めた。  (Analytical value of oxygen in steel in the thickness direction of hot-rolled sheet from which scale has been removed by pickling) i (Analytical value of oxygen in steel of steel sheet that has been ground in the thickness direction to the depth of oxide penetration after scale removal) I asked.
めっき板での酸化物量測定:  Measurement of oxide content on plated plate:
下記の溶液にめつき溶解反応が終了するまで浸漬し、 酸化物に由来する鋼板 表層から板厚方向で 3 μ mの範囲の酸素濃度を式: (塩酸 ·アンチモン法によ りめつき剥離した鋼板の酸素分析値) 一 (塩酸 'アンチモン法によりめつき剥 離した後、 さらに表層部 3 μιηを研磨によって除去した鋼板の酸素分析値) より求めた。 %ナイタール液 1 vol %HN03 一エタノール溶液 塩酸 • S b 2 03 ( 20 g ) + 35 %HC 1 (1 1 ) Immerse in the following solution until the dissolution reaction is completed, and determine the oxygen concentration in the range of 3 μm in the thickness direction from the surface of the steel sheet derived from oxides by the formula: (Oxygen analysis value of steel sheet) It was obtained from (Oxygen analysis value of steel sheet in which 3 μιη of the surface layer was removed by polishing after peeling off by the antimony method using hydrochloric acid). % Nital solution 1 vol% HN0 3 one ethanol solution of hydrochloric acid • S b 2 0 3 (20 g) + 35% HC 1 (1 1)
〇不めっき欠陥評価方法 評 価 Non-plating defect evaluation method
めっき板を目視により観察評価した。  The plated plate was visually observed and evaluated.
不めっき欠陥 なし · · · ランク 1  No plating defect None · · · Rank 1
僅かにあり · · · 2  Slightly present · · · · 2
少量有り · · · 3  Small quantity · · · 3
有り . . . 4  Yes ... 4
〇めっき密着性評価試験 〇Plating adhesion evaluation test
溶融亜鉛めつき鋼板については、 1 /2インチ撃芯にてデュポン剥離試験を 行い、 目視により剥離の有無を確認した。  For the hot-dip galvanized steel sheet, a DuPont peel test was performed using a 1/2 inch hammer, and the presence or absence of peeling was visually confirmed.
剥離なし · · ·〇  No peeling
剥離有り · · · X 合金化溶融亜鉛めつき鋼板については 9 0度曲げ曲げ戻しを行い、 圧着側を テープ剥離して亜鉛の剥離量を蛍光 X線にて測定した。  Peeled · · · The X-alloyed hot-dip zinc-coated steel sheet was bent and bent 90 °, the tape was peeled off on the press-bonded side, and the amount of peeled zinc was measured by X-ray fluorescence.
カウント数が 500未満: ランク 1 (良)  Count less than 500: Rank 1 (good)
500以上 1 000未満: 2  500 or more and less than 1 000: 2
1 000以上 2000未満: 3  1 000 or more and less than 2000: 3
2000以上 3000未満: 4  2000 or more and less than 3000: 4
3000以上 : 5 とした。 溶融亜鉛めっき鋼板の結果を表 3に、 合金化溶融亜鉛めっきの結果を表 4 示す。 V I 3000 or more: 5 Table 3 shows the results for hot-dip galvanized steel sheets and Table 4 shows the results for galvannealed steel sheets. VI
Figure imgf000016_0001
m ^ ι拏
Figure imgf000016_0001
m ^ lara
S刚 0/ム 6Jf/I d 6 0£/86 OAX 表 2 巻き取り条件および熱延板の酸化物侵入深さおよび熱延板での酸化物量測定値 供試鋼 C T 540°Cまでの平均冷却 熱延板の酸化物 熱延板での酸化物量 供試鋼S 刚 0 / m 6Jf / I d 6 0 £ / 86 OAX Table 2 Winding conditions, oxide penetration depth of hot-rolled sheet and measured value of oxide amount in hot-rolled sheet Sample steel CT Average cooling up to 540 ° C Oxide of hot-rolled sheet oxide amount in hot-rolled sheet Test steel
。C 速度 °c/分 侵入深さ ^m 測定値 p p m 番号. C speed ° c / min Penetration depth ^ m Measured value p p m number
A 54 0 1. 0 0 0 1A 54 0 1.0.0 0 0 1
A 6 0 0 1. 0 1 1 2A 6 0 0 1. 0 1 1 2
A 60 0 1. 5 0 < 1 3A 60 0 1.5 0 <1 3
A 70 0 2. 0 7 5 4A 70 0 2.0 7 5 4
B 65 0 1. 5 8 8 5B 65 0 1.5 8 8 5
C 6 5 0 1. 5 6 7 6C 6 5 0 1.5 6 7 6
D 58 0 1. 0 0 0 7D 58 0 1.0.0 0 0 7
D 6 2 0 1. 2 < 1 < 1 8D 6 2 0 1.2 <1 <18
E 65 0 1. 2 5 5 9E 65 0 1.2 5 5 9
E 6 5 0 1. 6 < 1 1 1 0E 6 5 0 1.6 <1 1 1 0
E 65 0 1. 8 0 < 1 1 1E 65 0 1.8 0 <1 1 1
F 65 0 1. 0 1 0 1 1 1 2F 65 0 1.0 1 0 1 1 1 2
G 650 1. 0 1 2 1 5 1 3G 650 1.01 1 2 1 5 1 3
H 60 0 1. 8 0 0 1 4H 60 0 1.8 0 0 1 4
H 65 0 1. 0 1 2 1 8 1 5 H 65 0 1. 0 1 2 1 8 1 5
表 3 実施例及び比較例 (溶融亜鉛めつき鋼板) 実施例及び 表 2にお 熱延での 冷延の有無 C G L入り側 めっき めっき板の 不めっき デュポン 比較例 ける供試 酸化物の 前処理による表層 酸化物量 欠陥 Table 3 Examples and Comparative Examples (Steel sheets with hot-dip galvanized steel) Examples and Table 2 show the presence or absence of cold rolling by hot rolling. CGL side plating Unplated plated plate Dupont Comparative example Surface oxide content Defects
鋼番号 有無 除去量 g/m2 g/m2 p p m ランク 比較例 1 1 なし あり < 0. 1 40 0 2 X 実施例 1 2 あり あり < 0. 1 50 1 1 ΟSteel number Presence or absence Removal amount g / m 2 g / m 2 ppm Rank Comparative example 1 1 No Yes <0.140 0 2 X Example 1 2 Yes Yes <0.1.50 1 1 Ο
2 2 あり なし < 0. 1 50 1 1 〇2 2 Yes No <0.1.50 1 1 〇
3 4 あり あり 0. 5 70 5 1 〇 比較例 2 4 あり あり 8. 0 70 0 4 X 実施例 4 4 あり なし 0. 5 70 3 1 〇3 4 Yes Yes 0.5 70 5 1 比較 Comparative Example 2 4 Yes Yes 8.70 0 4 X Example 4 4 Yes No 0.5 70 3 1 〇
5 5 あり あり 0. 1 60 7 1 〇5 5 Yes Yes 0.1 0.1 60 7 1 〇
6 6 あり あり 3. 5 60 2 1 〇 ^^J 3 7 Ϊ 6 6 Yes Yes 3.5 5 60 2 1 〇 ^^ J 3 7 Ϊ
なし めり 0. 1 50 0 1 X 実施例 7 8 あり あり < 0. 1 90 < 1 1 〇 None 0.15 0 1 X Example 7 8 Yes Yes <0.190 <1 1 〇
8 9 あり あり 0. 5 50 5 1 〇8 9 Yes Yes 0,5 50 5 1 〇
9 1 0 あり あり 0. 3 40 1 1 〇 比較例 4 1 0 あり あり 1. 0 40 0 3 X 突施例 1 0 1 2 あり あり 0. 2 50 1 0 1 〇9 1 0 Yes Yes 0.3 4 1 1 〇 Comparative Example 4 1 0 Yes Yes 1. 0 40 0 3 X Protrusion 1 0 1 2 Yes Yes 0.2 50 1 0 1 〇
1 1 1 3 あり あり 0. 2 50 1 1 1 〇 比較例 5 14 なし あり 0. 2 50 0 4 X 実施例 1 2 1 5 あり あり 0. 2 50 1 6 1 〇 1 1 1 3 Yes Yes 0.2501 1 1 比較 Comparative Example 5 14 No Yes 0.2 50 0 4 X Example 1 2 1 5 Yes Yes 0.250 1 6 1
表 4 実施例及び比較例 (合金化溶融亚鉛めっき鋼板) Table 4 Examples and comparative examples (alloyed hot-dip galvanized steel sheet)
¾施例及び ¾ 2にお 熱延での 冷延の苻無 C G L入り側 めっき めっき中 めっき板の 不めっき パゥダリン 比較例 ける供試 酸化物の 前処理による表層 付着量 鉄含有率 酸化物量 欠陥 グ試験結果 鋼番号 有無 除去量 g/m2 g/m2 % P P m ランク 比較例 1 1 なし あり 0. 1 40 1 0. 5 0 1 4 実施例 1 2 あり あり 0. 1 40 1 0. 3 1 1 1Example 1 and Example 2 Example of hot-rolled and cold-rolled side without CGL plating Plating During plating Unplated paddle pad Comparative example Sample surface oxide deposited by pretreatment of oxides Iron content Oxide content Defects Test result Steel No.Presence or removal g / m 2 g / m 2 % PP m Rank Comparative example 1 1 No Yes 0.1 40 1 0.5.0 0 1 4 Example 1 2 Yes Yes 0.1 40 1 0.3 1 1 1
2 4 あり あり 0. 5 40 1 1. 4 3 1 12 4 Yes Yes 0.5 40 1 1.4 3 1 1
3 6 あり あり 0. 2 70 9. 6 6 1 23 6 Yes Yes 0.2 70 9.6 6 1 2
4 6 あり なし 0. 2 70 9. 1 5 1 24 6 Yes No 0.2 0.2 70 9. 1 5 1 2
5 6 あり あり < 0. 1 30 10. 1 7 1 1 比較例 2 7 なし なし 0. 1 60 1 1. 5 0 5 実施例 6 8 あり あり 0. 1 60 1 1. 0 < 1 1 25 6 Yes Yes <0.1 30 10.1 7 1 1 Comparative Example 2 7 No No 0.16 1 1.5 1 5 Example 6 8 Yes Yes 0.16 1 1.0 <1 1 2
7 1 0 あり なし < 0. 1 . 40 9. 9 1 17 1 0 Yes No <0.1.40 9.99 1 1
8 1 0 あり なし 1. 0 40 1 0. 8 < 1 2 比較例 3 1 0 あり なし 3. 0 40 9. 0 0 3 実施例 9 1 3 あり あり 0. 2 60 1 0. 1 1 4 28 1 0 Yes No 1.0 40 1 0.8. <1 2 Comparative Example 3 1 0 Yes No 3.0 40 9.00 0 3 Example 9 1 3 Yes Yes 0.2 60 1 0.1 1 4 2
1 0 1 3 あり あり 5. 0 60 1 0. 5 5 21 0 1 3 Yes Yes 5.60 10.5 0.55 2
1 1 1 3 あり あり 1 5. 0 60 9. 2 2 1 比較例 4 1 3 あり あり 25. 0 60 1 0. 5 0 41 1 1 3 Yes Yes 1 5.60 60 9.2 2 1 Comparative Example 4 1 3 Yes Yes 25.0 60 1 0.5.04
5 1 4 なし あり 1. 0 40 1 1. 8 0 5 実施例 1 2 1 5 あり あり 0. 2 30 1 1. 1 1 5 15 1 4 No Yes 1.0 40 1 1.80 5 Example 1 2 1 5 Yes Yes 0.2 30 1 1.1 1 5 1
1 3 1 5 あり あり 0. 2 60 10. 4 1 5 2 1 3 1 5 Yes Yes 0.2 60 10.4 1 5 2
産業上の利用可能性 ― Industrial applicability-
本発明の開示する技術は、 不めっき欠陥が少なくめっき密着性に優れた溶融 亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板についてであり、 主に自動車 車体用の鋼板に用いるのに適する。  The technology disclosed in the present invention relates to a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet having few non-plating defects and excellent plating adhesion, and is suitable mainly for use in a steel sheet for an automobile body.

Claims

請 求 の 範 囲 ― The scope of the claims -
1. 鉄よりも酸化され易い元素の酸化物を、 めっき層直下に有することを特徴 とする溶融亜鉛系めっき鋼板 1. Hot-dip galvanized steel sheet characterized by having an oxide of an element that is more easily oxidized than iron immediately below the plating layer
2. 前記請求項 1に記載のめっき鋼板であって、 該めっき層下の基材鋼板の表 層から板厚方向で 3 mの範囲の酸素濃度が 1 p pm以上であることを特徴と する溶融亜鉛系めっき鋼板 2. The plated steel sheet according to claim 1, wherein an oxygen concentration in a range of 3 m in a thickness direction from a surface layer of the base steel sheet below the plating layer is 1 ppm or more. Hot-dip galvanized steel sheet
3. 前記請求項 1に記載のめっき鋼板であって、 さらに加熱合金化処理されて いることを特徴とする合金化された溶融亜鉛系めつき鋼板 3. The galvanized steel sheet according to claim 1, further comprising a heat alloying treatment.
4. 前記請求項 3に記載のめっき鋼板であって、 該めっき層下の基材鋼板の表 層から板厚方向で 3 μΐηの範囲の酸素濃度が 1 p pm以上であることを特徴と する溶融亜鉛系めつき鋼板 4. The plated steel sheet according to claim 3, wherein the oxygen concentration in the range of 3 μΐη from the surface of the base steel sheet below the plating layer in the thickness direction is 1 ppm or more. Hot-dip galvanized steel sheet
5. 前記請求項 1〜4のいずれかに記載のめっき鋼板であって、 該鋼板成分と して S i、 Mnおよび Pからなる群から選ばれる少なく とも 1種を、 5. The plated steel sheet according to any one of claims 1 to 4, wherein at least one selected from the group consisting of Si, Mn, and P as the steel sheet component,
0. 00 1≤ S i ≤ 3. 0 w t %  0.001 ≤ S i ≤ 3.0 w t%
0. 05≤Mn≤ 2. 0 w t %  0. 05≤Mn≤ 2.0 w t%
0. 00 5≤ P≤ 0. 2 w t %  0.005 ≤ P≤ 0.2 wt%
の範囲で含有することを特徴とする溶融亜鉛系めつき鋼板 Hot-dip galvanized steel sheet characterized by containing in the range of
6. 工程 A :熱間圧延された鋼帯をコイル状に巻き取るに際し、 鋼帯の温度を 6. Process A: When the hot-rolled steel strip is wound into a coil, the temperature of the
600°C以上とし、 540°Cまでの平均冷却速度を (鋼帯巻き取り温度一 540) °· 9 ÷40 (°CZ分) 以下としてスケール直下に鉄よりも酸化され易い元素の酸化物を 形成させる工程、 および 600 ° C or higher, and the average cooling rate up to 540 ° C (steel strip winding temperature-540) ° · 9 ÷ 40 (° CZ min.) Forming, and
工程 B :溶融亜鉛系めつきを施す工程  Process B: Process of applying molten zinc plating
の工程順序を有することを特徴とする溶融亜鉛系めつき鋼板の製造方法 For producing a hot-dip galvanized steel sheet characterized by having the following process sequence:
7. 前記請求項 6に記載の製造方法であって、 該工程 Aの後から該工程 B直前 の焼鈍炉処理前までに行われる前処理工程において、 該工程 Aで形成させた該 酸化物を残存させることを特徴とする溶融亜鉛系めっき鋼板の製造方法 7. The manufacturing method according to claim 6, wherein in the pretreatment step performed after the step A and before the annealing furnace treatment immediately before the step B, the oxide formed in the step A is Method for producing hot-dip galvanized steel sheet characterized by remaining
8. 前記請求項 6〜 7のいずれかに記載の製造方法であって、 該熱間圧延に供 されるスラブが、 成分として S i、 Mnおよび Pからなる群から選ばれる少な く とも 1種を、 8. The method according to any one of claims 6 to 7, wherein the slab to be subjected to the hot rolling is at least one selected from the group consisting of Si, Mn, and P as a component. To
0. 00 1≤ S i ≤ 3. 0 w t %  0.001 ≤ S i ≤ 3.0 w t%
0. 05≤Mn≤ 2. 0 w t %  0. 05≤Mn≤ 2.0 w t%
0. 00 5≤ P≤ 0. 2 w t %  0.005 ≤ P≤ 0.2 wt%
の範囲で含有することを特徴とする溶融亜鉛系めつき鋼板の製造方法 Method for producing a hot-dip galvanized steel sheet characterized by containing in the range of
9. 前記請求項 6〜 7のいずれかに記載の製造方法であって、 該工程 Bの後に 、 加熱合金化処理することを特徴とする合金化された溶融亜鉛系めつき鋼板の 製造方法 9. The manufacturing method according to any one of claims 6 to 7, wherein after the step B, a heat-alloying treatment is performed.
1 0. 前記請求項 9に記載の製造方法であって、 該熱間圧延に供されるスラブ が、 成分として S i、 Mnおよび Pからなる群から選ばれる少なく とも 1種を 10. The production method according to claim 9, wherein the slab subjected to the hot rolling is at least one selected from the group consisting of Si, Mn, and P as a component.
0. 00 1≤ S i ≤ 3. 0 w t % 0.001 ≤ S i ≤ 3.0 w t%
0. 05≤Mn≤ 2. 0 w t %  0. 05≤Mn≤ 2.0 w t%
0. 00 5≤ P≤ 0. 2 w t %  0.005 ≤ P≤ 0.2 wt%
の範囲で含有することを特徴とする溶融亜鉛系めつき鋼板の製造方法 Method for producing a hot-dip galvanized steel sheet characterized by containing in the range of
PCT/JP1997/000045 1995-07-13 1997-01-13 Hot dip galvanized steel sheet reduced in defects derived from failed plating and excellent in contact plating adhesion and process for producing the same WO1998030729A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP97900126A EP0900857B1 (en) 1997-01-13 1997-01-13 Hot dip galvanized steel sheet reduced in defects derived from failed plating and excellent in contact plating adhesion and process for producing the same
DE69728389T DE69728389T2 (en) 1997-01-13 1997-01-13 HOT-DIPPED GALVANIZED STEEL PLATE WITH REDUCED DEFECTS, MADE BY MALFUNCTION, WITH EXCELLENT CONTACT COATING HAZARD, AND METHOD OF MANUFACTURING THEREOF
CA002215110A CA2215110C (en) 1997-01-13 1997-01-13 Zinc and zinc-alloy hot-dip-coated steel sheet having decreased bare spots and excellent coating adhesion and a method for manufacturing the same
KR1019970706334A KR100325755B1 (en) 1997-01-13 1997-01-13 Zinc-zinc-alloy hot-dip galvanized steel sheet with low unplated defects and excellent coating adhesion and manufacturing method thereof
PCT/JP1997/000045 WO1998030729A1 (en) 1997-01-13 1997-01-13 Hot dip galvanized steel sheet reduced in defects derived from failed plating and excellent in contact plating adhesion and process for producing the same
US08/913,314 US6030714A (en) 1995-07-13 1997-01-13 Zinc and zinc-alloy hot-dip-coated steel sheet having decreased bare spots and excellent coating adhesion and a method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000045 WO1998030729A1 (en) 1997-01-13 1997-01-13 Hot dip galvanized steel sheet reduced in defects derived from failed plating and excellent in contact plating adhesion and process for producing the same

Publications (1)

Publication Number Publication Date
WO1998030729A1 true WO1998030729A1 (en) 1998-07-16

Family

ID=14179915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000045 WO1998030729A1 (en) 1995-07-13 1997-01-13 Hot dip galvanized steel sheet reduced in defects derived from failed plating and excellent in contact plating adhesion and process for producing the same

Country Status (5)

Country Link
EP (1) EP0900857B1 (en)
KR (1) KR100325755B1 (en)
CA (1) CA2215110C (en)
DE (1) DE69728389T2 (en)
WO (1) WO1998030729A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1076105A4 (en) * 1999-02-25 2009-01-07 Jfe Steel Corp Steel plate, hot-dip steel plate and alloyed hot-dip steel plate and production methods therefor
JP4886118B2 (en) * 2001-04-25 2012-02-29 株式会社神戸製鋼所 Hot-dip galvanized steel sheet
AU2003211728A1 (en) * 2002-03-01 2003-09-16 Kawasaki Steel Corporation Surface treated steel plate and method for production thereof
ES2876258T3 (en) 2009-12-29 2021-11-12 Posco Zinc Plated Hot Pressed Parts and Production Procedure
US11091818B2 (en) 2015-12-23 2021-08-17 Posco High strength cold-rolled steel sheet and hot-dip galvanized steel sheet having excellent hole expansion, ductility and surface treatment properties, and method for manufacturing same
KR102330604B1 (en) * 2019-12-03 2021-11-24 주식회사 포스코 Zinc plated steel sheet having excellent fatigue strength of electrical resistance spot welds and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216524A (en) * 1994-01-25 1995-08-15 Nisshin Steel Co Ltd Hot dipping method of high tensile strength hot rolled steel plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790529A (en) * 1993-09-24 1995-04-04 Sumitomo Metal Ind Ltd Production of galvanized silicon-containing steel sheet and galvannealed steel sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216524A (en) * 1994-01-25 1995-08-15 Nisshin Steel Co Ltd Hot dipping method of high tensile strength hot rolled steel plate

Also Published As

Publication number Publication date
CA2215110A1 (en) 1998-07-13
CA2215110C (en) 2001-08-14
KR19980702926A (en) 1998-09-05
DE69728389D1 (en) 2004-05-06
EP0900857A1 (en) 1999-03-10
DE69728389T2 (en) 2005-02-24
EP0900857B1 (en) 2004-03-31
EP0900857A4 (en) 2000-08-02
KR100325755B1 (en) 2002-07-18

Similar Documents

Publication Publication Date Title
EP1041167B1 (en) High strength thin steel sheet and high strength alloyed hot-dip zinc-coated steel sheet.
WO2003074751A1 (en) Surface treated steel plate and method for production thereof
EP2631319A1 (en) Galvanized steel sheet having excellent coatability, coating adhesion, and spot weldability, and method for manufacturing same
KR20040065996A (en) High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
US20120100391A1 (en) Hot-dip galvanized steel sheet having excellent plating qualities, plating adhesion and spot weldability and manufacturing method thereof
EP3034646B1 (en) Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
JP4631241B2 (en) High-tensile hot-dip galvanized steel sheet and high-tensile alloyed hot-dip galvanized steel sheet with excellent strength ductility balance, plating adhesion and corrosion resistance
JP3912014B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3318385B2 (en) Alloyed hot-dip galvanized steel sheet with excellent press workability and plating resistance
JP2007270176A (en) Hot-dip galvannealed steel sheet excellent in surface appearance and adhesion to plated layer
WO1998030729A1 (en) Hot dip galvanized steel sheet reduced in defects derived from failed plating and excellent in contact plating adhesion and process for producing the same
JP2003328099A (en) Production method for high-strength hot-dip galvanized steel sheet
JPH11140587A (en) Galvannealed steel sheet excellent in plating adhesion
US6030714A (en) Zinc and zinc-alloy hot-dip-coated steel sheet having decreased bare spots and excellent coating adhesion and a method for manufacturing the same
JP4452126B2 (en) Steel plate for galvannealed alloy
KR101188065B1 (en) Galvanized steel sheet having excellent coating adhesion and spot weldability and method for manufacturing the same
JP2555821B2 (en) Method for producing hot dip galvanized steel sheet
JPH0941110A (en) Production of high tensile strength hot dip galvanized steel sheet
JP3185530B2 (en) Surface-treated steel sheet for deep drawing excellent in corrosion resistance and method for producing the same
JP4055597B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JPH06256925A (en) Zinc-iron hot dip galvannealed steel excellent in press formability
JP2003251401A (en) Method for producing cold-rolled steel sheet and method for producing galvanized steel sheet
JP3184445B2 (en) Manufacturing method of galvannealed steel sheet
JPH0953187A (en) Hot-dip aluminized steel sheet having excellent workability and corrosion resistance
JPH07197225A (en) Hot-dip metal plating method of high tensile strength hot-rolled steel sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97193001.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1997900126

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970706334

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2215110

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08913314

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWP Wipo information: published in national office

Ref document number: 1019970706334

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997900126

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019970706334

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997900126

Country of ref document: EP