JP3744356B2 - Alloyed hot-dip galvanized steel sheet with excellent powdering resistance and low-temperature chipping resistance - Google Patents

Alloyed hot-dip galvanized steel sheet with excellent powdering resistance and low-temperature chipping resistance Download PDF

Info

Publication number
JP3744356B2
JP3744356B2 JP2001003361A JP2001003361A JP3744356B2 JP 3744356 B2 JP3744356 B2 JP 3744356B2 JP 2001003361 A JP2001003361 A JP 2001003361A JP 2001003361 A JP2001003361 A JP 2001003361A JP 3744356 B2 JP3744356 B2 JP 3744356B2
Authority
JP
Japan
Prior art keywords
steel sheet
plating
mass
resistance
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001003361A
Other languages
Japanese (ja)
Other versions
JP2002212698A (en
Inventor
亘江 藤林
一章 京野
千昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001003361A priority Critical patent/JP3744356B2/en
Publication of JP2002212698A publication Critical patent/JP2002212698A/en
Application granted granted Critical
Publication of JP3744356B2 publication Critical patent/JP3744356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用防錆表面処理鋼板として用いられる鋼板であり、特に耐パウダリング性および耐低温チッピング性に優れた合金化溶融亜鉛めっき鋼板に関するものである。
【0002】
【従来の技術】
合金化溶融亜鉛めっき鋼板 (以下、GA鋼板と略記)は安価で防食性に優れるため自動車用鋼板として広く用いられている。
しかし、GA鋼板は地鉄 (Fe) とZnを加熱合金化することによりZn−Fe合金層を形成させるため、鋼板とめっき層の界面に硬くてもろいΓ層が生成する。そのため、プレス加工による鋼板の変形や金型との接触によって、めっき層がパウダリングと呼ばれる、およそ100 μm以下のめっきの粉となり、剥がれ落ちるという欠陥が発生しやすい。
このパウダリングは、GA鋼板のめっき層が圧縮応力を受けることにより発生しやすいことが知られて (「プレス成形難易ハンドブック」第2版、第5章参照) いる。また、この耐パウダリング性の評価方法として、ドロービード試験、曲げ戻し試験、カップ絞り試験などにより行われることが検討されている。
【0003】
ところで、耐パウダリング性を改善するための方法がこれまでにも幾つか提案されている。例えば、鋼中Si量やP量を規定する方法 (特開平6−41707 号公報、特開平 9−291349号公報) 、合金化時の昇温速度・冷却速度を規定する方法 (特開平 2−170959号公報) などである。
しかし、高強度化に用いられるSiやPの添加量を規制することは、GA鋼板の強度や伸び、r値といった材質上の制約を招くこととなるので、目標とする材質を満たして耐パウダリング性も良好な鋼板を得るのは困難となる。また、合金化時の昇温や冷却速度を規制するには、設備の増強などが必要であり、コストアップを招くこととなる。
【0004】
一方、チッピングとは、自動車用外板などに使用された塗装後のGA鋼板が、小石などの飛散衝突により、めっき層界面から剥離する現象を言い、とくに低温で発生しやすく、これを低温チッピングと称する。低温チッピングも、パウダリングと同様に、界面の密着性が関与し、硬くてもろいΓ相が生成すると耐低温チッピング性は劣化すると言われている。
これまでに提案されているGA鋼板の耐低温チッピング性の改善方法としては、鋼中SiおよびP量を規定する方法 (特開平9-291349号公報) 、GA鋼板の上層に第2層としてFe合金めっき皮膜を有する方法 (特開平 5−339751号公報) 、めっき前の母板表面を研削しさらに合金化時の昇温速度を規定する方法 (特開平 6−57391 号公報) などがある。
【0005】
しかし、高強度化に用いられるSiやPの添加量を規制することは、鋼板の強度や伸び、r値といった材質を制約することになり、目標とする材質で耐低温チッピング性の良好なものを得るのは困難となる。また、合金化時の昇温速度,冷却速度を規制する方法、GAの上層にめっきを施す方法、母板を研削する方法は、設備の増強などを必要とし、また、工程の煩雑化を招き、コストアップとなる。
【0006】
【発明が解決しようとする課題】
本発明は、従来技術が抱えていた上記の問題、とりわけ強化元素の鋼中添加量の規制による材質の制約、工程の煩雑化等によるVコストの上昇を招くことなく、合金化溶融亜鉛めっき鋼板のプレス加工時における耐パウダリング性および塗装後の耐低温チッピング性を良好にすることを目的とするものである。
【0007】
【課題を解決するための手段】
本発明の要旨構成は以下のとおりである。すなわち、
(1) C: 0.002 0.01 質量%、 Si 0.01 0.5 質量%、 Mn 0.1 0.5 質量%、P: 0.01 0.05 質量%、 Al:0.03 0.08 質量%、 Sb 0.0003 0.01 質量%を含有し、さらに、 Ti 0.005 0.06 質量%、 Nb 0.05 質量%以下 ( 0を含む ) を含有し、残部が Fe 及び不可避的不純物からなる鋼板に合金化溶融亜鉛めっきが施されてなり、めっき中の鉄含有率が13質量%以下であって、めっき除去後の鋼板表面ビッカース硬度の10点平均をHav.、最大値をHmax.、最小値をHmin.とした時(Hmax.−Hmin.)/Hav.<0.3であることを特徴とする耐パウダリング性および耐低温チッピング性に優れた合金化溶融亜鉛めっき鋼板。
(2) めっき除去後の鋼板最表面結晶粒の圧延方向と圧延方向に直角な方向の粒径比が3.0以下であることを特徴とする上記(1)に記載の合金化溶融亜鉛めっき鋼板。
(3) めっき中の鉄含有率が8〜13質量%であり、めっき中Al量が次式:
めっき中Al量(g/m2)−0.0012×めっき中Zn量(g/m2)≧0.06
を満足する上記(1)または(2)に記載の合金化溶融亜鉛めっき鋼板。
【0008】
【発明の実施の形態】
発明者らは、プレス加工のシミュレーションとして、曲げ戻し、金型との接触および摺動、鋼板の縮みおよび伸び変形を兼ね備えたカップ絞り成形試験により耐パウダリング性を調査した。また、耐低温チッピング性は塗装後−20℃で小石を飛散させて調査した。
この方法により、種々の条件で作成したGA鋼板および塗装後GA鋼板を詳細に調査した結果、めっき特性に加えて、めっき除去後の鋼板表面性状が耐パウダリング性、耐低温チッピング性に大きな影響を及ぼしていることがわかった。すなわち、鋼板の縮み変形を伴うめっきの剥離 (パウダリング) や鋼板への衝撃によるめっきの剥離 (チッピング) は、めっき層の鉄含有率やΓ相厚さ、鋼板の性質のうち、特にめっき層直下の鋼板最表面の硬度の均一性に影響をうけることがわかった。以下、このことについて詳しく説明する。
【0009】
プレス成形などにより、GA鋼板が圧縮や引張り変形を受けたとき、めっき層は殆ど変形しえないため、めっき層の表面から鋼板界面につながる亀裂 (クラック) が入り、めっき層と鋼板の界面より剥離する。その時、めっき層下の鋼板は延性があるため、ある程度は変形に追従するが、変形が大きい場合には鋼板表層の粒界にもクラックが発生する。発明者らは、この現象を詳細に調査した結果、鋼板によってクラックの大きさ、深さおよび密度が異なること、めっき層の剥離にはこの鋼板表層の粒界クラックが関与していることがわかった。そして、鋼板表面に少ないけれども大きなクラックが発生している場合には、その大きなクラックが起点となりめっき層が剥離し、一方、鋼板表面のクラックの数は多くても小さい場合には、めっきの剥離がおこりにくいこともわかった。
【0010】
次に、この鋼板表層の粒界クラックの大きさ、深さおよび密度がいかなる要因により影響を受けるかについて、種々異なる特性の鋼板を用いて調査した。
その結果、めっき除去後の鋼板表層の硬度のばらつきが上記特性に関与していることを見いだした。以降は、硬度のばらつきはビッカース硬度の最大値と最小値の差で表わす。
鋼板表層の硬度差が大きい場合には、鋼板表面のクラックは数は少ないものの大きく深いクラックが発生し、一方、比較的硬度差が小さい場合には、数は多いが小さく浅いクラックが発生する。このような現象が現れた理由は、鋼板の表層部が変形を受けたときに、表面の硬度差が大きいと局所的に不均一変形をしやすくなると考えられる。つまり、軟質部分では変形しやすく硬質部分では変形しにくいために、軟質部と硬質部の境界近傍の粒界で大きな深いクラックが発生すると考えられる。硬度のばらつきが少ない場合には、どの結晶粒も同様の変形をするためクラックは小さく浅い。
【0011】
発明者らが調査した結果によると、表面の硬度差が大きいGA鋼板では、クラックは100〜300μm長さ、深さ約10μmにも達するが、硬度差が小さいGA鋼板では、クラックは数10μm長さ、深さ2μm程度に止まっている。
そこで、種々のGA鋼板をさらに詳細に調査した結果、めっき除去後の鋼板表面ビッカース硬度の10点平均をHav. 、最大値をHmax.、最小値をHmin.としたときに、 (Hmax.−Hmin.) /Hav. <0.3 の範囲に制御すれば、GA鋼板表層のクラックは小さく、耐パウダリング性は良好になることがわかった。
【0012】
さらに、このように硬度のばらつきを少なくした鋼板では、塗装後の耐低温チッピング性も良好であることがわかった。そのメカニズムは、以下のように考える。
低温チッピングは、小石などが塗装表面に衝突した時の衝撃がめっきと鋼板の界面にまで達し、めっきが界面より剥離することにより発生する。鋼板表層の硬度差が大きいときには、硬質部と軟質部が局所的に存在するので、外部から加えられた衝撃は、軟質部では吸収されやすくても、硬質部に沿っては伝播しやすくなるため、めっきが剥離しやすくなると考えられる。
【0013】
また、耐パウダリング性、耐低温チッピング性は鋼板表面の結晶粒の形にも影響を受け、めっき除去後の鋼板最表面結晶粒の圧延方向と圧延方向に直角な方向の粒径比を3.0 以下とすることが望ましい。より好ましくは 2.0以下である。
冷延後の再結晶焼鈍において最表層の結晶粒が方向に関係なく均一に再結晶および粒成長すれば、結晶粒は比較的円形に近く、圧延方向と圧延方向に直角な方向の粒径比は1に近くなる。これに対し、鋼板表層の析出物が多いなどの原因により、再結晶と粒成長が不均一になると、冷延状態で圧延方向に伸展した組織の形状が残存し、粒径比は大きくなる。
こうして形成した鋼板表層の結晶粒の粒径比が小さく均一に再結晶している場合には、耐パウダリング性、耐低温チッピング性はより一層良好となる。これに対して、結晶粒の粒径比が3.0 以上と不均一になった場合には、変形や衝撃が鋼板の加わったときに、局所的に変形量の多いところや衝撃を伝播しやすい部分が存在することとなり、めっきが剥離しやすくなる。
【0014】
めっき層中の鉄含有率については、13質量%以下であることが好ましい。鉄含有率が13質量%を超えると、めっき層中に硬いΓ相が多くなりやすく、めっき自体が破壊されやすくなり、耐パウダリング性、耐低温チッピング性に劣るようになる。
さらに、めっき層中の鉄含有率が8〜13質量%であって、めっき中Al量が次式:めっき中Al量(g/m)−0.0012×めっき中Zn量(g/m) ≧0.06を満足すると、耐パウダリング性、耐低温チッピング性ともに一層良好になる。
めっき中の鉄含有率が8質量%未満では、軟質なη相が残存するため、耐パウダリング性、耐低温チッピング性は問題にならない。このため、めっき中の鉄含有率が8〜13質量%の範囲で、上記対策による耐パウダリング性、耐低温チッピング性の向上が顕著である。
【0015】
また、めっき中のAl量は、合金化の均一性およびΓ相の生成量に影響を及ぼす。Al量が少ないと合金化は均一におこるために、めっきと鋼板の界面が平滑になり、めっきと鋼板の密着性は弱まる。反対にAl量が多いと、結晶粒界での合金化が抑制されるといった不均一な合金化を生じて、めっきと鋼板との界面が凹凸になるので、アンカー効果により、めっきと鋼板の界面強度、密着性は向上する。また、めっき中にAlが存在すると、熱力学上Γ相の安定領域が変化するため、硬くてもろいΓ相は生成しにくくなる。
以上のようなAlの効果は、めっき層中のAl量とめっき中Zn量との関係で、
めっき中Al量(g/m) −0.0012×めっき中Zn量(g/m) ≧0.06、の範囲に制御することにより発揮される。
【0016】
以下、上述した鋼板表面の硬度と結晶粒径の測定方法について述べる。
硬度測定のためのめっきの除去方法としては、▲1▼ JIS H 0401 に定められるSb添加塩酸水溶液、▲2▼インヒビター添加塩酸水溶液、▲3▼アルカリ溶液、が使用可能である。このような酸やアルカリによるめっき除去では、溶解反応が終了した段階で鋼板を取り出せばよい。電解によるめっき除去方法では、▲4▼の電解液を用いて鉄電位になるまで溶解すればよい。具体的な液の混合方法を以下に示す。

Figure 0003744356
【0017】
めっきを溶解除去した鋼板表面のビッカース硬さは、圧痕の深さを結晶粒径の1/5以下とするため、0.049 N〜0.98N程度の荷重で測定するのが望ましい。また、ビッカース硬さの測定点の数は10点とすればよい。このように、荷重を通常の鋼板の硬度測定よりも小さくすることにより、鋼板表面のみの結晶粒の硬度を測ることが可能になる。なお、ビッカース硬さの測定間隔を、圧痕の大きさ (対角線長さ) の5倍以上10倍以下として測定するのは、圧痕周囲の硬度変化によって、後の圧痕が影響を受けないようにするためである。図1は本発明で採用したビッカース硬さの測定方法を模式的に示したものである。
また、めっき除去後の鋼板表面の結晶粒の観察方法は、硬度測定と同様にめっきを除去した鋼板の表面を、ダイヤモンドペーストを塗布したバフにて約1μm厚を研磨し、ナイタールによりエッチングして光学顕微鏡にて観察を行う。圧延方向と圧延方向に直角な方向の粒径比は、圧延方向および圧延方向に垂直な方向において250 μm長さに存在する結晶粒の個数を数え、それぞれの粒径とし、その比から求められる。通常3視野で求めた粒径比を平均するのがよい。
【0018】
鋼板表面硬度には、例えば、スラブ再加熱の温度と時間が関与する。温度が高く長時間の加熱では、スラブ表層が局所的に窒化されたり酸化されて、表層に析出物、酸化物が多く存在するようになる。これらが多く存在した部分では、熱延・冷延後再結晶焼鈍時に転位 (歪) の消滅が遅くなり、結果的に硬い部分となる。一方、析出物、酸化物が少ない部分では柔らかいため、硬度の差が発生する。またその時、再結晶が十分に進まず冷延組織の形態が残存すると、粒径比が大きくなる。これらを制御する方法としては、鋼中にSbを添加しても良い。
めっき層中のAl量は、めっき浴中のAl濃度とめっき時間に大きく影響を受ける。そのため、めっき中Al−0.0012×Zn≧ 0.06 を満たすためには、浴中Al濃度を0.132 質量%以上、めっき時間を 0.5秒以上とすれば良い。
【0019】
【実施例】
表1に示す成分の供試鋼を転炉にて溶製し、連鋳にて厚さ250 mmのスラブとした。スラブ再加熱温度を、表2に示すように変更して、仕上げ温度(FDT)900℃にて4mmまで熱間圧延し、巻取温度(CT)500℃で熱延コイルに巻き取った。ついで、酸洗ラインにて主として鉄の酸化膜を溶解除去し、冷間圧延を行い板厚を 0.7mmとした。これを連続溶融亜鉛めっきライン(CGL)にて、露点−30℃、焼鈍温度800℃で再結晶焼鈍した後、溶融亜鉛めっきし、さらに加熱合金化処理によりZn−Fe合金層を形成した。
【0020】
【表1】
Figure 0003744356
【0021】
得られたGA鋼板について、ビッカース硬度、結晶粒径を測定するとともに、耐パウダリング性および耐低温チッピング性を評価した。それぞれの測定、評価方法は以下のとおりである。
・鋼板表面のビッカース硬度:
Sb添加塩酸水溶液にてめっき層を溶解除去した後、板表面の硬度を測定した。図1に示すような、圧延方向に20μm、圧延方向に垂直な方向に20μmピッチとする位置で、荷重を0.147 N(15gf)として測定した。
・鋼板表面の結晶粒径比:
Sb添加塩酸水溶液でめっき層を溶解除去した鋼板をダイヤモンドペーストを塗布したバフにて1μm厚だけ研磨した後、ナイタール (硝酸−エタノール溶液)にてエッチングし、光学顕微鏡観察により各方向の径を測定して比を求めた。
・耐パウダリング性:
70mmφのブランクを33mmφのポンチを用い、しわ押さえ圧4900N (500 kgf)で円筒絞りを行い、高さ25mmのカップとした。カップ外側一周分の剥離量として、金型と接触するショルダー部より開放部にかけて幅20mmのテープを貼り付けてはがし、付着分について蛍光X線によりZnカウント数を測定し、次の基準で3段階評価した。
Figure 0003744356
・耐低温チッピング性:
GA鋼板に2g/mの化成処理をした後、自動車用のカチオン電着塗装 (20μm) 、中塗り (35μm) 、上塗り (35μm) を行い、170℃×20分の焼付け処理を行った。これらの薬液は全て日本ペイント (株) 製のものを用いた。この塗装したGA鋼板を30分以上、−25℃以下で保った後、グラベロ試験機にて−20℃とし、0.3 〜0.5 g/個の御影石を15個、エアー圧196kPa (2kg/cm)にて1個づつ飛散させ、鋼板に衝突させた。試験後常温に戻した後、ガムテープを張り付けてはがし、付着分について画像処理を行うことにより剥離面積率を求めた。
Figure 0003744356
【0022】
【表2】
Figure 0003744356
【0023】
表2から、本発明例はすべて、耐パウダリング性および耐低温チッピング性がに優れていることがわかる。しかも、本発明例は、Si:0.5 質量%、Mn:0.5 質量%の鋼組成においても、スラブ加熱温度等を適宜選択することで耐パウダリング性および耐低温チッピング性を達成するので、従来技術では問題であった強化元素の鋼中添加量の規制による材質の制約、工程の煩雑化等によるコストの上昇が解消できる。
【0024】
【発明の効果】
以上説明したように、本発明によれば、強化元素の鋼中添加量の規制による材質の制約、工程の煩雑化等によるコストの上昇を招くことなく、耐パウダリング性および耐低温チッピング性に優れた合金化溶融亜鉛めっき鋼板を提供することが可能となる。
したがって、本発明は、プレス成形工程での歩留りの向上や寒冷地での自動車の耐久性の向上に寄与することが期待される。
【図面の簡単な説明】
【図1】鋼板表面のビッカース硬度の測定方法を示す模式図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel sheet used as a rust-proof surface-treated steel sheet for automobiles, and particularly to an alloyed hot-dip galvanized steel sheet excellent in powdering resistance and low-temperature chipping resistance.
[0002]
[Prior art]
Alloyed hot-dip galvanized steel sheets (hereinafter abbreviated as GA steel sheets) are widely used as automotive steel sheets because they are inexpensive and excellent in corrosion resistance.
However, since the GA steel sheet forms a Zn-Fe alloy layer by heat-alloying iron (Fe) and Zn, a hard and brittle Γ layer is formed at the interface between the steel sheet and the plating layer. For this reason, the deformation of the steel plate by press working or contact with the mold tends to cause a defect that the plating layer becomes powder of plating of about 100 μm or less called powdering and peels off.
It is known that this powdering is likely to occur when the coating layer of the GA steel sheet is subjected to compressive stress (refer to Chapter 5 of the “Press Form Difficult Handbook” 2nd edition). In addition, as a method for evaluating the powdering resistance, it has been studied to perform a draw bead test, a bending back test, a cup drawing test, and the like.
[0003]
By the way, several methods for improving the powdering resistance have been proposed. For example, a method for defining the amount of Si and P in steel (Japanese Patent Laid-Open Nos. 6-41707 and 9-291349), a method for regulating the heating rate and cooling rate during alloying (Japanese Patent Laid-Open No. 2-41). 170959).
However, restricting the amount of Si or P used for increasing the strength causes restrictions on the material such as the strength, elongation, and r value of the GA steel sheet. It becomes difficult to obtain a steel plate with good ringability. Moreover, in order to regulate the temperature rise and cooling rate at the time of alloying, it is necessary to reinforce equipment, which leads to an increase in cost.
[0004]
On the other hand, chipping refers to a phenomenon in which a coated GA steel sheet used for automotive outer panels, etc., peels off from the plating layer interface due to scattering collisions of pebbles, etc., especially at low temperatures. Called. Similarly to powdering, low temperature chipping is also related to interface adhesion, and it is said that low temperature chipping resistance deteriorates when a hard and brittle Γ phase is generated.
As a method for improving the low temperature chipping resistance of the GA steel sheet that has been proposed so far, there is a method of defining the amount of Si and P in the steel (Japanese Patent Laid-Open No. 9-291349), Fe layer as the second layer on the GA steel sheet. There are a method having an alloy plating film (Japanese Patent Laid-Open No. 5-339751) and a method for grinding the surface of a base plate before plating and further defining a temperature rising rate during alloying (Japanese Patent Laid-Open No. 6-57391).
[0005]
However, restricting the amount of Si or P added to increase the strength restricts the material such as strength, elongation and r value of the steel sheet, and the target material has good low temperature chipping resistance. It will be difficult to get. In addition, the method of regulating the heating rate and cooling rate during alloying, the method of plating the upper layer of the GA, and the method of grinding the base plate require enhancement of equipment, etc., and also complicate the process. This will increase costs.
[0006]
[Problems to be solved by the invention]
The present invention provides an alloyed hot-dip galvanized steel sheet without incurring the above-mentioned problems of the prior art, in particular, the increase in the V cost due to the restriction of the material due to the restriction of the addition amount of strengthening elements in the steel and the complexity of the process. The object is to improve the powdering resistance at the time of press working and the low-temperature chipping resistance after coating.
[0007]
[Means for Solving the Problems]
The gist of the present invention is as follows. That is,
(1) C: 0.002 to 0.01 mass%, Si : 0.01 to 0.5 mass%, Mn : 0.1 to 0.5 mass%, P: 0.01 to 0.05 mass%, Al: 0.03 to 0.08 mass%, Sb : 0.0003 to 0.01 mass% Further, Ti : 0.005 to 0.06 % by mass, Nb : 0.05 % by mass or less ( including 0 ) , and the remainder is made of alloyed hot dip galvanized steel sheet composed of Fe and inevitable impurities , equal to or less than the iron content of 13 mass% in the plating, the 10-point average surface of the steel sheet Vickers hardness after-plating Hav., the maximum value Hmax., when the Hmin. the minimum value, (Hmax. -Hmin.) / Hav. <0.3. An alloyed hot-dip galvanized steel sheet having excellent powdering resistance and low temperature chipping resistance.
(2) The alloyed hot-dip galvanized steel sheet according to (1) above, wherein the grain size ratio between the rolling direction of the outermost surface crystal grains of the steel sheet after plating removal and the direction perpendicular to the rolling direction is 3.0 or less.
(3) The iron content during plating is 8 to 13% by mass, and the Al content during plating is expressed by the following formula:
Al amount in plating (g / m 2 ) −0.0012 × Zn amount in plating (g / m 2 ) ≧ 0.06
The alloyed hot-dip galvanized steel sheet according to the above (1) or (2) satisfying
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The inventors investigated the powdering resistance as a simulation of press working by a cup drawing test that combines bending back, contact and sliding with a mold, shrinkage and elongation deformation of a steel plate. The low temperature chipping resistance was investigated by scattering pebbles at -20 ° C after coating.
As a result of detailed investigation of GA steel sheets prepared under various conditions and post-painted GA steel sheets by this method, in addition to plating characteristics, the steel sheet surface properties after plating removal have a significant effect on powdering resistance and low temperature chipping resistance. I found out that In other words, plating delamination (powdering) accompanied by shrinkage deformation of the steel sheet and plating delamination (chipping) due to impact on the steel sheet are the iron content of the plating layer, the Γ phase thickness, and the properties of the steel sheet. It was found that the hardness uniformity on the outermost surface of the steel sheet directly under the steel was affected. This will be described in detail below.
[0009]
When the GA steel sheet is subjected to compression or tensile deformation due to press forming, etc., the plating layer can hardly be deformed, so there is a crack that leads from the surface of the plating layer to the steel sheet interface, and from the interface between the plating layer and the steel sheet. Peel off. At that time, since the steel sheet under the plating layer is ductile, it follows the deformation to some extent, but if the deformation is large, cracks also occur at the grain boundary of the steel sheet surface layer. As a result of detailed investigation of this phenomenon, the inventors have found that the size, depth and density of cracks differ depending on the steel sheet, and that the grain boundary cracks on the surface layer of this steel sheet are involved in the peeling of the plating layer. It was. And if there are few but large cracks on the steel sheet surface, the large cracks are the starting point and the plating layer peels off. On the other hand, if the number of cracks on the steel sheet surface is large or small, the plating peels off. I also found it difficult to occur.
[0010]
Next, it was investigated using various steel sheets having different characteristics whether the size, depth and density of the grain boundary cracks on the steel sheet surface layer were affected.
As a result, it has been found that the variation in hardness of the steel sheet surface after plating is related to the above characteristics. Hereinafter, the variation in hardness is represented by the difference between the maximum value and the minimum value of Vickers hardness.
When the hardness difference of the steel sheet surface layer is large, cracks on the surface of the steel sheet are small but large and deep cracks are generated. On the other hand, when the hardness difference is relatively small, a large number of small cracks are generated. The reason why such a phenomenon appears is that when the surface layer portion of the steel sheet is deformed, if the surface hardness difference is large, local uneven deformation is likely to occur. That is, it is considered that large deep cracks are generated at the grain boundary near the boundary between the soft part and the hard part because the soft part is easily deformed and the hard part is not easily deformed. When there is little variation in hardness, the cracks are small and shallow because every crystal grain undergoes the same deformation.
[0011]
According to the results of the investigation by the inventors, in the GA steel sheet having a large surface hardness difference, the crack reaches 100 to 300 μm in length and the depth is about 10 μm, but in the GA steel sheet having a small hardness difference, the crack is several tens of μm long. The depth is only about 2 μm.
Therefore, as a result of investigating various GA steel plates in more detail, when the average of 10 points of the Vickers hardness of the steel plate after plating removal is Hav., The maximum value is Hmax., And the minimum value is Hmin. Hmin.) / Hav. <0.3, it was found that the cracks on the surface of the GA steel sheet were small and the powdering resistance was good.
[0012]
Furthermore, it was found that the steel sheet with less variation in hardness had good low-temperature chipping resistance after coating. The mechanism is considered as follows.
Low temperature chipping occurs when the impact of pebbles and the like hits the paint surface reaches the interface between the plating and the steel sheet, and the plating peels off from the interface. When the hardness difference of the steel sheet surface layer is large, since the hard part and the soft part exist locally, the impact applied from the outside is easy to be absorbed along the hard part, but easily propagates along the hard part It is considered that the plating is easily peeled off.
[0013]
In addition, the powdering resistance and the low temperature chipping resistance are also affected by the shape of the crystal grains on the surface of the steel sheet, and the grain size ratio in the direction perpendicular to the rolling direction and the rolling direction of the outermost surface crystal grains after plating removal is 3.0. The following is desirable. More preferably, it is 2.0 or less.
In the recrystallization annealing after cold rolling, if the crystal grains in the outermost layer recrystallize and grow uniformly regardless of the direction, the grain size is relatively circular and the grain size ratio between the rolling direction and the direction perpendicular to the rolling direction Is close to 1. On the other hand, when recrystallization and grain growth become non-uniform due to a large amount of precipitates on the steel sheet surface layer, the shape of the structure stretched in the rolling direction in the cold rolled state remains, and the grain size ratio increases.
When the grain size ratio of the crystal grains of the steel sheet surface layer thus formed is small and recrystallized uniformly, the powdering resistance and the low temperature chipping resistance are further improved. On the other hand, when the grain size ratio of the crystal grains becomes non-uniform (3.0 or more), when deformation or impact is applied to the steel sheet, the area where the deformation is large or where the impact is likely to propagate As a result, the plating is easily peeled off.
[0014]
The iron content in the plating layer is preferably 13% by mass or less. When the iron content exceeds 13% by mass, the hard Γ phase tends to increase in the plating layer, and the plating itself tends to be broken, resulting in poor powdering resistance and low temperature chipping resistance.
Furthermore, the iron content in the plating layer is 8 to 13% by mass, and the amount of Al in plating is the following formula: Al amount in plating (g / m 2 ) −0.0012 × Zn amount in plating (g / m 2 ) When ≧ 0.06 is satisfied, both powdering resistance and low-temperature chipping resistance are further improved.
When the iron content in the plating is less than 8% by mass, a soft η phase remains, so that the powdering resistance and the low temperature chipping resistance do not matter. For this reason, when the iron content in the plating is in the range of 8 to 13% by mass, the improvement of the powdering resistance and the low temperature chipping resistance due to the above measures is remarkable.
[0015]
Further, the amount of Al during plating affects the uniformity of alloying and the amount of Γ phase produced. When the amount of Al is small, alloying occurs uniformly, so that the interface between the plating and the steel plate becomes smooth, and the adhesion between the plating and the steel plate is weakened. On the other hand, if the amount of Al is large, non-uniform alloying occurs such that alloying at the grain boundaries is suppressed, and the interface between the plating and the steel sheet becomes uneven, so the anchor effect causes the interface between the plating and the steel sheet. Strength and adhesion are improved. In addition, when Al is present during plating, the stable region of the Γ phase changes in terms of thermodynamics, so that a hard and brittle Γ phase is difficult to be generated.
The effect of Al as described above is related to the amount of Al in the plating layer and the amount of Zn in the plating.
It is exhibited by controlling the amount of Al during plating (g / m 2 ) −0.0012 × the amount of Zn during plating (g / m 2 ) ≧ 0.06.
[0016]
Hereinafter, a method for measuring the hardness and crystal grain size of the steel sheet surface will be described.
As a plating removal method for hardness measurement, (1) Sb-added hydrochloric acid aqueous solution, (2) inhibitor-added hydrochloric acid aqueous solution, and (3) alkaline solution defined in JIS H 0401 can be used. In such plating removal with acid or alkali, the steel plate may be taken out when the dissolution reaction is completed. In the plating removal method by electrolysis, the electrolytic solution (4) may be dissolved until the iron potential is reached. A specific liquid mixing method is shown below.
Figure 0003744356
[0017]
The Vickers hardness on the surface of the steel plate from which the plating has been dissolved and removed is preferably measured with a load of about 0.049 N to 0.98 N so that the depth of the indentation is 1/5 or less of the crystal grain size. The number of measurement points for Vickers hardness may be 10 points. Thus, it becomes possible to measure the hardness of the crystal grains only on the surface of the steel sheet by making the load smaller than the normal hardness measurement of the steel sheet. Note that the measurement interval of the Vickers hardness is 5 times to 10 times the size of the indentation (diagonal length) so that the subsequent indentation is not affected by the hardness change around the indentation. Because. FIG. 1 schematically shows a Vickers hardness measurement method employed in the present invention.
In addition, the method for observing the crystal grains on the surface of the steel plate after removing the plating is to polish the surface of the steel plate from which the plating has been removed by polishing with about 1 μm thickness with a buff coated with diamond paste and etching with nital. Observe with an optical microscope. The grain size ratio between the rolling direction and the direction perpendicular to the rolling direction is obtained from the ratio by counting the number of crystal grains existing in a length of 250 μm in the rolling direction and the direction perpendicular to the rolling direction. . In general, it is better to average the particle size ratio obtained in three fields of view.
[0018]
For example, the temperature and time of slab reheating are involved in the steel sheet surface hardness. When the temperature is high and the heating is performed for a long time, the slab surface layer is locally nitrided or oxidized, and a large amount of precipitates and oxides are present on the surface layer. In the portion where many of these exist, the disappearance of dislocation (strain) is delayed during recrystallization annealing after hot rolling and cold rolling, resulting in a hard portion. On the other hand, a difference in hardness occurs because the portion where there are few precipitates and oxides is soft. At that time, if the recrystallization does not proceed sufficiently and the form of the cold-rolled structure remains, the particle size ratio increases. As a method for controlling these, Sb may be added to the steel.
The amount of Al in the plating layer is greatly affected by the Al concentration in the plating bath and the plating time. Therefore, in order to satisfy Al-0.0012 × Zn ≧ 0.06 during plating, the Al concentration in the bath should be 0.132% by mass or more and the plating time should be 0.5 seconds or more.
[0019]
【Example】
Test steels having the components shown in Table 1 were melted in a converter and slabs having a thickness of 250 mm were formed by continuous casting. The slab reheating temperature was changed as shown in Table 2, hot rolled to a finish temperature (FDT) of 900 ° C. to 4 mm, and wound on a hot rolled coil at a winding temperature (CT) of 500 ° C. Next, the iron oxide film was mainly dissolved and removed by the pickling line, and cold rolling was performed to adjust the plate thickness to 0.7 mm. This was subjected to recrystallization annealing at a dew point of −30 ° C. and an annealing temperature of 800 ° C. in a continuous hot dip galvanizing line (CGL), then hot dip galvanized, and a Zn—Fe alloy layer was formed by heat alloying treatment.
[0020]
[Table 1]
Figure 0003744356
[0021]
The obtained GA steel sheet was measured for Vickers hardness and crystal grain size, and was evaluated for powdering resistance and low temperature chipping resistance. Each measurement and evaluation method is as follows.
・ Vickers hardness of steel sheet surface:
After the plating layer was dissolved and removed with an aqueous Sb-added hydrochloric acid solution, the hardness of the plate surface was measured. As shown in FIG. 1, the load was measured at 0.147 N (15 gf) at a position where the pitch was 20 μm in the rolling direction and 20 μm in the direction perpendicular to the rolling direction.
-Crystal grain size ratio on the steel sheet surface:
The steel sheet with the Sb-added hydrochloric acid solution dissolved and removed is polished to a thickness of 1 μm with a buff coated with diamond paste, then etched with nital (nitric acid-ethanol solution), and the diameter in each direction is measured by observation with an optical microscope. To find the ratio.
・ Powdering resistance:
A 70 mmφ blank was punched using a 33 mmφ punch and subjected to a cylindrical drawing with a wrinkle holding pressure of 4900 N (500 kgf) to obtain a cup with a height of 25 mm. As the amount of peel for the outer circumference of the cup, a 20 mm wide tape is applied and peeled from the shoulder part in contact with the mold to the open part, and the Zn count is measured by fluorescent X-ray for the adhering part. evaluated.
Figure 0003744356
・ Low temperature chipping resistance:
The GA steel sheet was subjected to a chemical conversion treatment of 2 g / m 2 , followed by a cationic electrodeposition coating (20 μm), intermediate coating (35 μm) and top coating (35 μm) for automobiles, followed by baking at 170 ° C. for 20 minutes. All of these chemicals were manufactured by Nippon Paint Co., Ltd. After keeping this coated GA steel sheet at −25 ° C. or less for 30 minutes or more, it was adjusted to −20 ° C. with a Gravelo tester, 15 pieces of 0.3 to 0.5 g / granite, air pressure 196 kPa (2 kg / cm 2 ) Were scattered one by one and collided with the steel plate. After returning to normal temperature after the test, the adhesive tape was attached and peeled off, and the peeled area ratio was determined by performing image processing on the adhesion.
Figure 0003744356
[0022]
[Table 2]
Figure 0003744356
[0023]
From Table 2, it can be seen that all of the inventive examples are excellent in powdering resistance and low temperature chipping resistance. In addition, the present invention example achieves powdering resistance and low temperature chipping resistance by appropriately selecting the slab heating temperature and the like even in a steel composition of Si: 0.5 mass% and Mn: 0.5 mass%. Then, it was possible to solve the problem of the increase in cost due to the restriction of the material due to the restriction of the addition amount of the strengthening element in the steel and the complicated process.
[0024]
【The invention's effect】
As described above, according to the present invention, the powdering resistance and the low-temperature chipping resistance can be improved without incurring a cost increase due to restrictions on materials due to restrictions on the amount of strengthening elements added in steel and complicated processes. An excellent alloyed hot-dip galvanized steel sheet can be provided.
Therefore, the present invention is expected to contribute to improvement of yield in the press molding process and improvement of durability of automobiles in cold regions.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a method for measuring the Vickers hardness of a steel sheet surface.

Claims (3)

C: 0.002 0.01 質量%、 Si 0.01 0.5 質量%、 Mn 0.1 0.5 質量%、P: 0.01 0.05 質量%、 Al:0.03 0.08 質量%、 Sb 0.0003 0.01 質量%を含有し、さらに、 Ti 0.005 0.06 質量%、 Nb 0.05 質量%以下 ( 0を含む ) を含有し、残部が Fe 及び不可避的不純物からなる鋼板に合金化溶融亜鉛めっきが施されてなり、めっき中の鉄含有率が13質量%以下であって、めっき除去後の鋼板表面ビッカース硬度の10点平均をHav.、最大値をHmax.、最小値をHmin.とした時(Hmax.−Hmin.)/Hav.の値を0.30未満とすることを特徴とする耐パウダリング性および耐低温チッピング性に優れた合金化溶融亜鉛めっき鋼板。 C: 0.002 to 0.01 % by mass, Si : 0.01 to 0.5 % by mass, Mn : 0.1 to 0.5 % by mass, P: 0.01 to 0.05 % by mass, Al: 0.03 to 0.08 % by mass, Sb : 0.0003 to 0.01 % by mass Further, Ti : 0.005 to 0.06 % by mass, Nb : 0.05 % by mass or less ( including 0 ) , with the balance being Fe and unavoidable impurities are subjected to alloying hot dip galvanization, and during plating of a in the iron content is 13 wt% or less, when the 10-point average surface of the steel sheet Vickers hardness after-plating Hav., the maximum value Hmax., was Hmin. the minimum value, (Hmax.-Hmin. ) / Hav. Value of less than 0.30, an alloyed hot-dip galvanized steel sheet with excellent powdering resistance and low temperature chipping resistance. めっき除去後の鋼板最表面結晶粒の圧延方向と圧延方向に直角な方向の粒径比が3.0以下であることを特徴とする請求項1に記載の合金化溶融亜鉛めっき鋼板。2. The alloyed hot-dip galvanized steel sheet according to claim 1, wherein a grain size ratio between a rolling direction of the outermost surface crystal grains of the steel sheet after plating removal and a direction perpendicular to the rolling direction is 3.0 or less. めっき中の鉄含有率が8〜13質量%であり、めっき中Al量が次式:
めっき中Al量(g/m2)−0.0012×めっき中Zn量(g/m2)≧0.06
を満足する、請求項1または2に記載の合金化溶融亜鉛めっき鋼板。
The iron content during plating is 8 to 13% by mass, and the Al content during plating is represented by the following formula:
Al amount in plating (g / m 2 ) −0.0012 × Zn amount in plating (g / m 2 ) ≧ 0.06
The alloyed hot-dip galvanized steel sheet according to claim 1 or 2, wherein:
JP2001003361A 2001-01-11 2001-01-11 Alloyed hot-dip galvanized steel sheet with excellent powdering resistance and low-temperature chipping resistance Expired - Fee Related JP3744356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001003361A JP3744356B2 (en) 2001-01-11 2001-01-11 Alloyed hot-dip galvanized steel sheet with excellent powdering resistance and low-temperature chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001003361A JP3744356B2 (en) 2001-01-11 2001-01-11 Alloyed hot-dip galvanized steel sheet with excellent powdering resistance and low-temperature chipping resistance

Publications (2)

Publication Number Publication Date
JP2002212698A JP2002212698A (en) 2002-07-31
JP3744356B2 true JP3744356B2 (en) 2006-02-08

Family

ID=18871715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001003361A Expired - Fee Related JP3744356B2 (en) 2001-01-11 2001-01-11 Alloyed hot-dip galvanized steel sheet with excellent powdering resistance and low-temperature chipping resistance

Country Status (1)

Country Link
JP (1) JP3744356B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156729A (en) * 2006-12-26 2008-07-10 Nisshin Steel Co Ltd Zn-Al-BASED PLATING-COATED STEEL SHEET EXCELLENT IN UNBENDING RESISTANCE, AND ITS PRODUCTION METHOD
JP6331257B2 (en) * 2013-04-09 2018-05-30 新日鐵住金株式会社 Method for evaluating powdering resistance of plated steel sheets
CN112501529B (en) * 2020-10-20 2023-03-28 邯郸钢铁集团有限责任公司 Method for accurately controlling aluminum content of hot-dip galvanized pot

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2932701B2 (en) * 1991-01-09 1999-08-09 住友金属工業株式会社 Galvannealed steel sheet
JP2903732B2 (en) * 1991-02-21 1999-06-14 住友金属工業株式会社 Alloyed hot-dip galvanized steel sheet
JPH07228944A (en) * 1993-12-20 1995-08-29 Nkk Corp Galvannealed steel sheet and its production
JPH08277457A (en) * 1995-02-09 1996-10-22 Nippon Steel Corp Galvannealed steel sheet having excellent appearance
JPH11269625A (en) * 1998-03-25 1999-10-05 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and its production

Also Published As

Publication number Publication date
JP2002212698A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
KR102115278B1 (en) High-strength hot-dip galvanized steel sheet with excellent impact resistance and peeling resistance
TWI507535B (en) Alloyed molten galvanized steel sheet
TWI511875B (en) Molten galvanized steel sheet
EP1149928A1 (en) Hot dip galvanized steel plate excellent in balance of strength and ductility and in adhesiveness between steel and plating layer
JP5783269B2 (en) Alloy hot-dip galvanized steel sheet
KR101679159B1 (en) Hot-dip galvanized steel sheet
WO2018151023A1 (en) High-strength steel plate and method for manufacturing same
JP5488410B2 (en) Hot-dip galvanized steel sheet for heat treatment and method for producing the same
JP6398967B2 (en) High-strength hot-dip hot-rolled steel sheet excellent in surface appearance and plating adhesion and method for producing the same
WO2016031166A1 (en) High-strength molten galvanized steel sheet and method for production thereof
KR20190100370A (en) High strength hot dip galvanized hot rolled steel sheet and its manufacturing method
JP4889212B2 (en) High-strength galvannealed steel sheet and method for producing the same
JP5907324B1 (en) High strength hot dip galvanized steel sheet
JP5907323B1 (en) High strength hot dip galvanized steel sheet
JP3744356B2 (en) Alloyed hot-dip galvanized steel sheet with excellent powdering resistance and low-temperature chipping resistance
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP3163986B2 (en) Galvannealed steel sheet
WO2022091351A1 (en) Zn-plated hot-stamped molded article
JP3023875B2 (en) Method for producing hot-dip galvanized steel sheet with excellent surface properties
JP4337199B2 (en) Method for producing alloyed hot-dip galvanized steel sheet
JP6848939B2 (en) Hot-dip galvanized steel sheet manufacturing method and hot-dip galvanized hot-dip steel sheet, and hot-dip galvanized steel sheet manufacturing method and hot-dip galvanized steel sheet
JPH075971B2 (en) Method for producing alloy electroplated steel sheet for deep drawing with excellent impact peel resistance after painting
WO2023132350A1 (en) Steel sheet for hot stamping, method for producing steel sheet for hot stamping, and hot-stamped molded article
JP2001262302A (en) Method for producing galvanized steel sheet and galvannealed steel sheet excellent in hot dip metal coated property
JPH09314202A (en) Manufacture of high-strength plated steel sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3744356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees