JP2002207069A - Method for suppressing phase noise of high frequency carrier type magnetic field sensor and apparatus therefor - Google Patents

Method for suppressing phase noise of high frequency carrier type magnetic field sensor and apparatus therefor

Info

Publication number
JP2002207069A
JP2002207069A JP2001003446A JP2001003446A JP2002207069A JP 2002207069 A JP2002207069 A JP 2002207069A JP 2001003446 A JP2001003446 A JP 2001003446A JP 2001003446 A JP2001003446 A JP 2001003446A JP 2002207069 A JP2002207069 A JP 2002207069A
Authority
JP
Japan
Prior art keywords
divider
sensor element
magnetic field
sensor
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001003446A
Other languages
Japanese (ja)
Other versions
JP3822058B2 (en
Inventor
Kenichi Arai
賢一 荒井
Masahiro Yamaguchi
正洋 山口
Makoto Yabugami
信 藪上
Satoru Suzuki
哲 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001003446A priority Critical patent/JP3822058B2/en
Publication of JP2002207069A publication Critical patent/JP2002207069A/en
Application granted granted Critical
Publication of JP3822058B2 publication Critical patent/JP3822058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for suppressing a phase noise of a high frequency carrier type magnetic field sensor and an apparatus therefor which enable detecting minute signals to a level of thermal fluctuation of a sensor element itself or thermal noise by reducing an SSB phase noise. SOLUTION: There are provided a signal generator 1, a first divider 2 connected to the signal generator 1, the sensor element 3 connected to the first divider 2, a series connection circuit which is connected in parallel to the sensor element 3 and is comprised of an attenuator 4 connected to the first divider 2 and a phase shifter 5, a second divider 6 connected to the sensor element 3 and the phase shifter 5, a preamplifier 7 connected to the second divider 6, and a spectrum analyzer 8 connected to the preamplifier 7. A carrier voltage is divided by the first divider 2 and adjusted with the use of the attenuator 4 and the phase shifter 5 so that an output signal of the phase shifter 5 becomes equal in amplitude and different by approximately 180 deg. in phase to a carrier component as an output signal of the sensor element 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波キャリア型
磁界センサから出力されるAM変調波の搬送波成分を抑
圧すると同時に、側波帯における搬送波成分のSSB位
相雑音を低減する高周波キャリア型磁界センサの位相雑
音抑圧方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency carrier type magnetic field sensor which suppresses a carrier component of an AM modulated wave output from a high frequency carrier type magnetic field sensor and reduces SSB phase noise of a carrier component in a sideband. The present invention relates to a phase noise suppression method and an apparatus thereof.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては以
下に開示されるようなものがあった。
2. Description of the Related Art Conventionally, there have been the following techniques disclosed in such fields.

【0003】(1)沼沢茂,村上孝一,北条博行:日本
応用磁気学会誌,9,263(1985) (2)加茂芳邦,島田寛:第13回日本応用磁気学会学
術講演概要集,23aD−6(1989) (3)K.Mohri,T.Kohzawa,K.Ka
washima,H.Yoshida,and L.
V.Panina:IEEE Trans.Mag
n.,28,3150(1992) (4)菊地弘昭,竹澤昌晃,山口正洋,荒井賢一:日本
応用磁気学会誌,21,789(1997) (5)比嘉孝治,内山剛,R.Shin,毛利佳年雄,
宇ノ木保元,菊地和政:日本応用磁気学会誌,21,6
49(1997) (6)M.Senda,O.Ishii,Y.Kosh
imoto,andT.Toshima:IEEE T
rans.Magn.,30,4611(1994). (7)M.Senda,Y.Koshimoto:IE
EE Trans.Magn.,33,3379(19
97) (8)森川健志,西部裕司,山寺秀哉,野々村裕,竹内
正治,多賀康訓:日本応用磁気学会誌,20,553
(1996) (9)T.Morikawa,Y.Nishibe,
H.Yamadera,Y.Nonomura,M.T
akeuchi,and Y.Taga:IEEE T
rans.Magn.,33,4367(1997) (10)M.Yamaguchi,M.Takezaw
a,Y.H.Kim,K.Ishiyama,M.Ba
ba,K.I.Arai,N.Wako,and I.
Abe:Proccedings of Transd
ucers’99,2P3.8(1999) (11)竹澤昌晃:東北大学大学院工学研究科博士学位
論文,p.216(1999) (12)竹澤昌晃,網代紀行,山口正洋,荒井賢一,山
崎二郎:電気学会マグネティクス研究会資料,MAG−
99−189 (13)S.Uchiyama,M.Masuda,a
nd Y.Sasaki:Jpn.J.Appl.Ph
ys.,2,621(1963) 磁性体に高周波キャリア電流を直接通電し、その表皮効
果を利用した高感度な磁界センサを薄膜で実現する研究
が盛んに行われており、これまでに10-10 テスラ
(T)台の交流磁界分解能が得られたという報告例があ
る。
(1) Shigeru Numazawa, Koichi Murakami, Hiroyuki Hojo: Journal of the Japan Society of Applied Magnetics, 9, 263 (1985) (2) Yoshikuni Kamo, Hiroshi Shimada: 13th Annual Meeting of the Japan Society of Applied Magnetics, 23aD- 6 (1989) (3) K.C. Mohri, T .; Kohzawa, K .; Ka
washima, H .; Yoshida, and L.M.
V. Panina: IEEE Trans. Mag
n. , 28, 3150 (1992) (4) Hiroaki Kikuchi, Masaaki Takezawa, Masahiro Yamaguchi, Kenichi Arai: Journal of the Japan Society of Applied Magnetics, 21, 789 (1997) (5) Koji Higa, Tsuyoshi Uchiyama, R. Shin, Toshio Mori,
Yasumoto Unoki, Kazumasa Kikuchi: Journal of the Japan Society of Applied Magnetics, 21, 6
49 (1997) (6) M.P. Senda, O .; Ishii, Y .; Kosh
imoto, andT. Toshima: IEEE T
rans. Magn. , 30, 4611 (1994). (7) M.P. Senda, Y .; Koshimoto: IE
EE Trans. Magn. , 33, 3379 (19
97) (8) K. Morikawa, Y. Nishibe, H. Yamadera, H. Nonomura, S. Takeuchi, and Y. Taga: Journal of the Japan Society of Applied Magnetics, 20, 553
(1996) (9) T.I. Morikawa, Y .; Nishibe,
H. Yamada, Y .; Nonomura, M .; T
akeuchi, and Y .; Taga: IEEE T
rans. Magn. , 33, 4367 (1997). Yamaguchi, M .; Takezawa
a, Y. H. Kim, K .; Ishiyama, M .; Ba
ba, K .; I. Arai, N .; Wako, and I .;
Abe: Procedings of Transd
ucers '99, 2P3.8 (1999) (11) Masaaki Takezawa: Doctoral Dissertation, Graduate School of Engineering, Tohoku University, p. 216 (1999) (12) Masaaki Takezawa, Noriyuki Ajishiro, Masahiro Yamaguchi, Ken-ichi Arai, Jiro Yamazaki: Materials of IEICE Magnetics Research Group, MAG-
99-189 (13) S.R. Uchiyama, M .; Masuda, a
nd Y. Sasaki: Jpn. J. Appl. Ph
ys. , 2,621 (1963) high-frequency carrier currents energized directly to the magnetic, highly sensitive magnetic field sensor using the skin effect studies to realize a thin film has been actively, so far 10 -10 Tesla There are reports that (T) units of AC magnetic field resolution were obtained.

【0004】[0004]

【発明が解決しようとする課題】高周波キャリア型薄膜
磁界センサ既存の磁界センサに比較して更なる高感度が
期待されるものの、出力信号は微小であり、その理論的
最小検出感度は磁気モーメントの熱的な揺らぎで決定さ
れる。この微小な磁界信号は高周波キャリアによりAM
変調され、側波帯信号を生じるが、それの最小検出感度
はこれまで搬送波のSSB位相雑音レベルにより制限さ
れていた。
High-frequency carrier-type thin-film magnetic field sensors Although higher sensitivity is expected compared to existing magnetic field sensors, the output signal is very small and the theoretical minimum detection sensitivity is the magnetic moment. Determined by thermal fluctuations. This small magnetic field signal is amplified by a high-frequency carrier.
Modulated to produce a sideband signal, the minimum detection sensitivity of which was hitherto limited by the SSB phase noise level of the carrier.

【0005】本発明は、上記状況に鑑みて、SSB位相
雑音を低減することにより、センサ素子自身の熱的揺ら
ぎ、あるいは熱雑音レベルまでの微小な信号の検出が可
能となる高周波キャリア型磁界センサの位相雑音抑圧方
法及びその装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a high-frequency carrier type magnetic field sensor capable of detecting a thermal fluctuation of a sensor element itself or a minute signal down to a thermal noise level by reducing SSB phase noise. It is an object of the present invention to provide a phase noise suppressing method and apparatus therefor.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、〔1〕高周波キャリア型磁界センサの位
相雑音抑圧方法において、搬送波と振幅が等しくかつ位
相の180度異なる信号をAM変調波と合成することに
より、搬送波及びSSB位相雑音の抑圧を行うことを特
徴とする。
According to the present invention, there is provided a method for suppressing phase noise of a high-frequency carrier type magnetic field sensor, comprising the steps of: It is characterized in that the carrier and the SSB phase noise are suppressed by combining with the modulation wave.

【0007】〔2〕高周波キャリア型磁界センサの位相
雑音抑圧装置において、信号発生器と、この信号発生器
に接続される第1のデバイダと、この第1のデバイダに
接続されるセンサ素子と、このセンサ素子と並列に接続
され、前記第1のデバイダに接続されるアッテネータと
位相シフタとの直列接続回路と、前記センサ素子と前記
位相シフタに接続される第2のデバイダと、この第2の
デバイダに接続される前置増幅器と、この前置増幅器に
接続されるスペクトラムアナライザとを備え、キャリア
電圧を前記第1のデバイダで分圧し、前記位相シフタの
出力信号が前記センサ素子の出力信号であるキャリア成
分に対し、振幅が等しく、位相がほぼ180°異なるよ
うに、前記アッテネータと前記位相シフタを用いて調節
することを特徴とする。
[2] In a phase noise suppression device for a high-frequency carrier type magnetic field sensor, a signal generator, a first divider connected to the signal generator, a sensor element connected to the first divider, A series connection circuit of an attenuator and a phase shifter connected in parallel with the sensor element and connected to the first divider; a second divider connected to the sensor element and the phase shifter; A preamplifier connected to a divider; and a spectrum analyzer connected to the preamplifier. A carrier voltage is divided by the first divider, and an output signal of the phase shifter is an output signal of the sensor element. It is characterized in that the amplitude is adjusted using the attenuator and the phase shifter so that a certain carrier component has the same amplitude and a phase difference of approximately 180 °. That.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0009】まず、センサ素子の高感度化について説明
する。
First, a description will be given of how to increase the sensitivity of the sensor element.

【0010】ガラス基板上に化学増幅ネガレジストZP
N1100を3μm塗布し、レジストパターニングを行
った。続いて、rfスパッタ法によりアモルファスCo
85Nb12Zr3 単層膜、およびNb導体層により磁性層
を2分割したCoNbZr/Nb/CoNbZr積層膜
を成膜し、リフトオフにより短冊状の磁界センサ素子を
作製した。短冊状磁界センサ素子の外観図を図1に示
す。なお、図1(a)は単層膜センサ、図1(b)は積
層膜センサを示す斜視図である。
[0010] Chemically amplified negative resist ZP on a glass substrate
N1100 was applied at 3 μm and resist patterning was performed. Subsequently, the amorphous Co was formed by rf sputtering.
An 85 Nb 12 Zr 3 single layer film and a CoNbZr / Nb / CoNbZr laminated film in which the magnetic layer was divided into two by an Nb conductor layer were formed, and a strip-shaped magnetic field sensor element was manufactured by lift-off. FIG. 1 shows an external view of the strip-shaped magnetic field sensor element. FIG. 1A is a perspective view showing a single-layer film sensor, and FIG. 1B is a perspective view showing a multilayer film sensor.

【0011】短冊の長さLは1mm、幅Wは10,2
0,50μmと変化させた。単層膜の膜厚Dは1μm、
積層膜では磁性膜の膜厚D1 を1層あたり0.5μmず
つ、層間導体層の膜厚D2 は5μmとした。
The length L of the strip is 1 mm and the width W is 10,2.
It was changed to 0.50 μm. The thickness D of the single-layer film is 1 μm,
By 0.5μm per layer thickness D 1 of the magnetic film in the laminated film, the thickness D 2 of the interlayer conductor layer was 5 [mu] m.

【0012】作製方法としては、単層膜および積層膜の
成膜時に導入された磁気異方性を、8×10-4以下、8
0kA/m(1kOe)の真空回転磁界中で400℃、
2時間の熱処理により緩和した後、同条件の真空静電磁
界中で400℃、1時間熱処理を行って、幅方向が磁化
容易軸方向となるように一軸異方性を導入した。この静
電界中熱処理後の異方性磁界Hk は400〜500A/
m(5〜6Oe)であった。この短冊素子の長手方向に
外部直流磁界Hdcを印加しながら、100MHzの高周
波電流を通電し、ネットワークアナライザ(HP875
2A)を用いて反射法により素子のインピーダンスを測
定した。測定後、ピッター法により各センサ素子の磁区
構造を観察した。
As a manufacturing method, the magnetic anisotropy introduced at the time of forming the single-layer film and the laminated film should be 8 × 10 −4 or less,
400 ° C. in a vacuum rotating magnetic field of 0 kA / m (1 kOe),
After relaxation by heat treatment for 2 hours, heat treatment was performed at 400 ° C. for 1 hour in a vacuum electrostatic magnetic field under the same conditions to introduce uniaxial anisotropy such that the width direction was the easy axis direction. Anisotropic magnetic field H k after this in a static electric field heat treatment 400~500A /
m (5-6 Oe). While applying an external DC magnetic field H dc in the longitudinal direction of the strip element, and applying a high frequency current 100 MHz, network analyzer (HP875
2A), the impedance of the device was measured by a reflection method. After the measurement, the magnetic domain structure of each sensor element was observed by the Pitter method.

【0013】また、磁性膜が理想的な一軸異方性を有し
ている場合の短冊状磁性薄膜の内部インピーダンスZi
を抵抗分Ri とリアクタンスXi とに分けて表すと、 Zi =Ri +jXi …(1)
When the magnetic film has an ideal uniaxial anisotropy, the internal impedance Z i of the strip-like magnetic thin film is
Is divided into resistance R i and reactance X i, and Z i = R i + jX i (1)

【0014】[0014]

【数1】 (Equation 1)

【0015】のように計算される。ここで、ρは抵抗
率、l,wおよびtは長さ、幅および厚さであり、
μer′,μer″はバイアス磁化率の理論より計算される
比透磁率の実部と虚部である。また、δ* は表皮深さで
あり次式で表される。
The calculation is as follows. Where ρ is resistivity, l, w and t are length, width and thickness,
μ er ′ and μ er ″ are the real part and the imaginary part of the relative magnetic permeability calculated from the theory of the bias magnetic susceptibility. δ * is the skin depth and is expressed by the following equation.

【0016】[0016]

【数2】 (Equation 2)

【0017】(1)〜(3)式より、From equations (1) to (3),

【0018】[0018]

【数3】 (Equation 3)

【0019】のように、外部磁界の関数F(Hdc)を定
義すると、Zi は、
When a function F (H dc ) of the external magnetic field is defined as follows, Z i becomes

【0020】[0020]

【数4】 (Equation 4)

【0021】のように表現できる。It can be expressed as follows.

【0022】ここで、センサ利得として外部磁界に対す
るインピーダンス変化の傾き、つまり次式に示すインピ
ーダンス外部磁界に対する微分値(∂Zi /∂Hdc)を
定義する。(10)式を外部磁界で微分して、センサ利
得を計算すると、
Here, a gradient of an impedance change with respect to an external magnetic field, that is, a differential value (∂Z i / ∂H dc ) with respect to an impedance external magnetic field is defined as a sensor gain, which is represented by the following equation. When the sensor gain is calculated by differentiating equation (10) with an external magnetic field,

【0023】[0023]

【数5】 (Equation 5)

【0024】のように表される。It is expressed as follows.

【0025】図2に単層膜を用いた磁界センサ素子の外
部磁界に対するインピーダンス変化を示す。図2(a)
はリフトオフを用いた場合、図2(b)はイオンミリン
グを用いた場合を示している。
FIG. 2 shows a change in impedance of a magnetic field sensor element using a single-layer film with respect to an external magnetic field. FIG. 2 (a)
FIG. 2B shows the case where lift-off is used, and FIG. 2B shows the case where ion milling is used.

【0026】比較のためイオンミリングを用いて作製し
た同寸法の素子の特性も示した。リフトオフを用いた場
合とイオンミリングを用いた場合で、インピーダンス変
化量が最大値をとる磁界強度が異なるのは、磁性膜の異
方性磁界Hk の大きさが異なるためである。素子幅2
0,50μmにおいては、プロセスの違いによってイン
ピーダンス変化量ΔZに差は見られなかった。幅10μ
mではリフトオフを用いた素子では9.5Ωのインピー
ダンス変化量が得られているのに対し、イオンミリング
を用いた素子では、3Ω程度のインピーダンス変化にと
どまった。
For comparison, the characteristics of devices of the same dimensions manufactured using ion milling are also shown. In the case of using a case and an ion milling using lift-off, the magnetic field strength is different from the impedance change amount is a maximum value is because the magnitude of the anisotropy field H k of the magnetic film is different. Element width 2
At 0.5 μm, no difference was observed in the impedance change ΔZ due to the difference in the process. 10μ width
In the case of m, the impedance change amount of 9.5Ω was obtained in the element using the lift-off, whereas the impedance change amount was about 3Ω in the element using the ion milling.

【0027】図3は幅10μmにおける、センサ素子の
磁区構造写真を示したものである。線画も併記した。図
3(a)に示すように、リフトオフを用いた素子では軸
方向に平行な180°磁壁と素子端部では90°磁壁が
観測された。この還流磁区構造の中で主磁区の面積が還
流磁区の面積と比較して支配的であり、磁界中熱処理に
よって素子の幅方向に一軸異方性が誘導されていること
が明らかである。一方、図3(b)に示すように、イオ
ンミリングを用いた素子では180°磁壁は観測され
ず、90°磁壁のみが観測され、一軸異方性の劣化は明
らかである。これが、インピーダンス変化量が低減した
原因と考えられる。
FIG. 3 shows a photograph of the magnetic domain structure of the sensor element at a width of 10 μm. Line drawings are also shown. As shown in FIG. 3A, in the element using lift-off, a 180 ° domain wall parallel to the axial direction and a 90 ° domain wall at the end of the element were observed. In this reflux magnetic domain structure, the area of the main magnetic domain is dominant as compared with the area of the reflux magnetic domain, and it is apparent that the uniaxial anisotropy is induced in the width direction of the element by the heat treatment in the magnetic field. On the other hand, as shown in FIG. 3B, in the element using the ion milling, the 180 ° domain wall is not observed, but only the 90 ° domain wall is observed, and the uniaxial anisotropy is clearly deteriorated. This is considered to be the cause of the reduced amount of impedance change.

【0028】一軸異方性の劣化の一因として、微細加工
時の素子端部での加工精度が考えられる。図4に素子端
部の拡大写真を示す。図4(a)はリフトオフを用いた
場合、図4(b)はイオンミリングを用いた場合を示し
ている。図4(b)に示したように、イオンミリングを
用いた場合、リフトオフを用いた場合と比較してテーパ
が大きく形状に凹凸がある。この形状の乱れが静磁エネ
ルギーの増大につながり、それを抑制するために還流磁
区の大きい磁区構造をとっている可能性がある。
As a cause of the deterioration of the uniaxial anisotropy, the processing accuracy at the end of the element at the time of fine processing can be considered. FIG. 4 shows an enlarged photograph of the end of the element. FIG. 4A shows a case where lift-off is used, and FIG. 4B shows a case where ion milling is used. As shown in FIG. 4B, when ion milling is used, the taper is large and the shape is uneven, as compared with the case where lift-off is used. This disorder of the shape leads to an increase in the magnetostatic energy, and there is a possibility that a magnetic domain structure having a large return magnetic domain is adopted in order to suppress this.

【0029】図5は単層膜および積層膜を用いたセンサ
の素子幅に対するセンサ利得の変化を計算値と併せて示
したものである。計算値は(11)式を基に算出した。
単層膜の場合、素子幅の減少に伴い、センサ利得は増加
し、計算値の傾向と一致した。積層膜の場合、単層膜と
比べてセンサ利得が増加し、高感度化が実現できた。幅
20μm以下では、センサ利得にして100kΩ/T
(10Ω/Oe)以上が得られた。
FIG. 5 shows the change in sensor gain with respect to the element width of a sensor using a single-layer film and a laminated film together with calculated values. The calculated value was calculated based on the equation (11).
In the case of a single-layer film, the sensor gain increased with a decrease in the element width, which was in agreement with the calculated value. In the case of the laminated film, the sensor gain was increased as compared with the single-layer film, and high sensitivity was realized. When the width is 20 μm or less, the sensor gain is 100 kΩ / T
(10Ω / Oe) or more was obtained.

【0030】図6は単層膜によるセンサ素子の磁区構造
を観測した写真を示す図であり、図6(a)は50μm
幅の場合、図6(b)は20μm幅の場合、図6(c)
は10μmである。図7は積層膜によるセンサ素子の磁
区構造を観測した写真を示す図であり、図7(a)は5
0μm幅の場合、図7(b)は20μm幅の場合、図7
(c)は10μmである。
FIG. 6 is a view showing a photograph of the magnetic domain structure of the sensor element formed of a single-layer film, and FIG.
In the case of a width, FIG. 6B shows the case of a 20 μm width, and FIG.
Is 10 μm. FIG. 7 is a view showing a photograph of the magnetic domain structure of the sensor element formed by the laminated film, and FIG.
In the case of 0 μm width, FIG. 7B shows the case of 20 μm width.
(C) is 10 μm.

【0031】これらの図より、積層膜の磁区構造では単
層膜で見られる還流磁区が観測されず、軸方向にほぼ平
行な180°磁壁がみられた。これは分割された磁性層
間の端部で静磁結合が発生し、磁極や還流磁区の発生が
抑えられるためと考えられる。
From these figures, in the magnetic domain structure of the laminated film, the return magnetic domain observed in the single layer film was not observed, and a 180 ° domain wall almost parallel to the axial direction was observed. This is presumably because magnetostatic coupling occurs at the ends between the divided magnetic layers, and the generation of magnetic poles and return magnetic domains is suppressed.

【0032】以上のことから、センサ素子を積層構造に
することにより、還流磁区の面積をセンサ利得を増加で
きることが明らかとなった。
From the above, it has been clarified that the sensor gain can be increased by increasing the area of the return magnetic domain when the sensor element has a laminated structure.

【0033】図8は測定システムの等価回路を示す図で
あり、図8(a)に本発明のキャリア抑圧回路の等価回
路を、図8(b)にセンサ素子とスペクトラムアナライ
ザを直列に接続したキャリア抑圧回路が無い系の等価回
路を示した。
FIG. 8 is a diagram showing an equivalent circuit of the measurement system. FIG. 8A shows an equivalent circuit of the carrier suppressing circuit of the present invention, and FIG. 8B shows a sensor element and a spectrum analyzer connected in series. An equivalent circuit of a system without a carrier suppression circuit is shown.

【0034】図8(a)において、1は信号発生器(H
P8656B)、2は第1のデバイダ(KDI D29
35)、3はセンサ素子、4はアッテネータ(HP84
94A)、5は位相シフタ(HLS−JJ−1)、6は
第2のデバイダ(KDI D2935)、7は前置増幅
器(HP87405)、8はスペクトラムアナライザ
(HP8561E)である。
In FIG. 8A, reference numeral 1 denotes a signal generator (H
P8656B), 2 is a first divider (KDI D29)
35), 3 is a sensor element, 4 is an attenuator (HP84)
94A), 5 is a phase shifter (HLS-JJ-1), 6 is a second divider (KDI D2935), 7 is a preamplifier (HP87405), and 8 is a spectrum analyzer (HP8561E).

【0035】また、図8(b)において、11は信号発
生器(HP8656B)、12はセンサ素子、13はス
ペクトラムアナライザ(HP8561E)である。
In FIG. 8B, 11 is a signal generator (HP8656B), 12 is a sensor element, and 13 is a spectrum analyzer (HP8561E).

【0036】上記したように、高周波キャリア型磁界セ
ンサにおいて、被測定磁界はAM変調波の側波帯の出力
を測定することにより検出する。キャリア抑圧回路は、
センサ素子3からのAM変調波のキャリア成分のみを低
減し、側波帯を高感度に計測することを意図している。
キャリア電圧を第2のディバイダ6で分圧し、点Bの信
号が点Aのキャリア成分に対し、振幅が等しく、位相が
ほぼ180°異なるように、アッテネータ4と位相シフ
タ5を用いて調節した。
As described above, in the high-frequency carrier type magnetic field sensor, the magnetic field to be measured is detected by measuring the output in the sideband of the AM modulated wave. The carrier suppression circuit
It is intended to reduce only the carrier component of the AM modulated wave from the sensor element 3 and measure the sideband with high sensitivity.
The carrier voltage was divided by the second divider 6 and adjusted using the attenuator 4 and the phase shifter 5 so that the signal at the point B and the carrier component at the point A had the same amplitude and a phase difference of almost 180 °.

【0037】図9はキャリア抑圧回路における点Aおよ
び点Cでの周波数スペクトルを示したものである。側波
帯の検出限界は側波帯の大きさがキャリア成分のSSB
位相雑音の大きさと等しい条件で決定される。SSB位
相雑音とは、キャリアを供給する発振器の周波数の揺動
に起因するノイズである。キャリア抑圧回路によってキ
ャリア成分を打ち消すことにより、図9(b)ではキャ
リア成分のSSB位相雑音が−120dBmから−13
3dBmに低減されており、より微小な側波帯の信号の
検出が可能となる。点Aおよび点Bの信号を合成し、利
得24dBNF6.5dBの前置増幅器7で増幅された
合成信号をスペクトラムアナライザ8で測定した。
FIG. 9 shows frequency spectra at points A and C in the carrier suppression circuit. The detection limit of the sideband is the size of the sideband is the SSB of the carrier component.
It is determined under the condition equal to the magnitude of the phase noise. SSB phase noise is noise caused by fluctuations in the frequency of an oscillator that supplies carriers. By canceling the carrier component by the carrier suppression circuit, the SSB phase noise of the carrier component is reduced from −120 dBm to −13 in FIG.
Since the signal is reduced to 3 dBm, it is possible to detect a signal in a smaller sideband. The signals at the points A and B were combined, and the combined signal amplified by the preamplifier 7 having a gain of 24 dBNF 6.5 dB was measured by the spectrum analyzer 8.

【0038】測定に用いたセンサ素子は、長さ5mm、
素子幅50μmでCoNbZr/Cr/CoNbZrの
積層構造である。CoNbZrの膜厚は0.5μmず
つ、非磁性層間膜厚は10nmである。このセンサ素子
に周波数370MHz、電圧3Vのキャリア信号を通電
し、センサ素子に周波数500kHzの微小交流磁界を
印加した場合のセンサ出力を測定した。微小交流磁界計
測時には、センサ素子のセンサ利得が最大となるように
400A/m(5Oe)の直流バイアス磁界を印加し
た。
The sensor element used for the measurement has a length of 5 mm,
This is a stacked structure of CoNbZr / Cr / CoNbZr with an element width of 50 μm. The thickness of CoNbZr is 0.5 μm, and the thickness of the nonmagnetic interlayer is 10 nm. A carrier signal having a frequency of 370 MHz and a voltage of 3 V was applied to the sensor element, and the sensor output when a small alternating magnetic field having a frequency of 500 kHz was applied to the sensor element was measured. During the measurement of the small AC magnetic field, a DC bias magnetic field of 400 A / m (5 Oe) was applied so that the sensor gain of the sensor element was maximized.

【0039】図10はキャリア抑圧回路を用いた場合お
よびセンサ素子とスペクトラムアナライザを直列に接続
した系での微小交流磁界に対するセンサ出力を示したも
のである。センサ素子とスペクトラムアナライザを直列
に接続した系では、磁界の検出分解能は2.0×10-8
T(2.0×10-4Oe)であった。これは、キャリア
周波数のSSB位相雑音が−118dBmであり、2.
0×10-8T以下の磁界では、センサ素子からのAM変
調波の側波帯の出力がSSB位相雑音に埋もれるためで
ある。一方、キャリア抑圧回路を用いると、SSB位相
雑音は−161dBmまで低減できたと考えられる。ス
ペクトラムアナライザのノイズフロアは−140dBm
であるので、これが検出限界となる。その結果、図8
(a)の回路を用いた測定系では8.5×10-11
(8.5×10-7Oe)の磁界検出分解能が得られた。
FIG. 10 shows the sensor output with respect to a minute AC magnetic field when a carrier suppression circuit is used and in a system in which a sensor element and a spectrum analyzer are connected in series. In a system in which a sensor element and a spectrum analyzer are connected in series, the magnetic field detection resolution is 2.0 × 10 -8
T (2.0 × 10 −4 Oe). This means that the SSB phase noise at the carrier frequency is -118 dBm,
This is because in a magnetic field of 0 × 10 −8 T or less, the output of the sideband of the AM modulation wave from the sensor element is buried in the SSB phase noise. On the other hand, it is considered that the SSB phase noise could be reduced to -161 dBm by using the carrier suppression circuit. The noise floor of the spectrum analyzer is -140 dBm
This is the detection limit. As a result, FIG.
8.5 × 10 −11 T in the measurement system using the circuit of FIG.
A magnetic field detection resolution of (8.5 × 10 −7 Oe) was obtained.

【0040】上記したように、本発明では新たに微細加
工プロセスとしてリフトオフを用いてセンサ素子を作製
した。その結果、幅10μmの単層膜において、イオン
ミリングを用いた場合と比較して約3倍のインピーダン
ス変化量を得た。また、積層構造のセンサ素子を作製
し、長さ1mmの素子においてセンサ利得100kΩ/
T(10Ω/Oe)を実現した。さらに、高感度磁界測
定法としてキャリア抑圧回路を提案し、8.5×10
-11 T(8.5×10-2Oe)という微小交流磁界の検
出に成功した。
As described above, in the present invention, a sensor element is newly manufactured by using lift-off as a fine processing process. As a result, in a single-layer film having a width of 10 μm, an impedance change amount about three times as large as that obtained by using ion milling was obtained. Further, a sensor element having a laminated structure was manufactured, and a sensor gain of 100 kΩ /
T (10Ω / Oe) was realized. Furthermore, a carrier suppression circuit was proposed as a highly sensitive magnetic field measurement method, and 8.5 × 10
A small alternating magnetic field of -11 T (8.5 × 10 -2 Oe) was successfully detected.

【0041】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above-described embodiment, but various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0042】[0042]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。
As described above, according to the present invention, the following effects can be obtained.

【0043】(A)微細加工プロセスとして、リフトオ
フを用いてセンサ素子を作製し、幅10μmと小型化し
た素子において、従来と比べて3倍以上のインピーダン
ス変化量を得た。
(A) As a microfabrication process, a sensor element was manufactured by using lift-off, and an element whose size was reduced to 10 μm in width obtained an impedance variation three times or more as compared with the conventional one.

【0044】(B)センサ素子を積層化することで還流
磁区の面積を減少させ、センサ利得の向上を実現した。
(B) By stacking the sensor elements, the area of the return magnetic domain was reduced, and the sensor gain was improved.

【0045】(C)積層構造において、素子を幅10μ
m、長さ1mmと小型化した場合でも、100Ω/T
(10Ω/Oe)のセンサ利得が得られた。
(C) In the laminated structure, the element is 10 μm wide.
100Ω / T, even when downsized to m and 1mm long
A sensor gain of (10Ω / Oe) was obtained.

【0046】(D)キャリア抑圧回路を用いてSSB位
相雑音を低減させることにより、8.5×10-11
(8.5×10-7Oe)の微小な磁界の検出を可能にし
た。上記したように、本発明は、高周波キャリア型セン
サが室温で動作するセンサとしては従来センサをしのぐ
高感度を有し、次世代の磁気記録ヘッドの有力な候補と
なり得るのみならず、室温で動作する超高感度磁界セン
サの登場により新たな産業の創出への道を拓くものと考
えられる。
(D) By reducing the SSB phase noise using the carrier suppression circuit, 8.5 × 10 -11 T
(8.5 × 10 −7 Oe) enables detection of a very small magnetic field. As described above, the present invention provides a high-frequency carrier-type sensor that operates at room temperature, has higher sensitivity than a conventional sensor, and can be a promising candidate for a next-generation magnetic recording head, and operates at room temperature. The emergence of an ultra-sensitive magnetic field sensor that opens the door will open the way to the creation of new industries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる短冊状磁界センサ素子の外観図
である。
FIG. 1 is an external view of a strip-shaped magnetic field sensor element according to the present invention.

【図2】本発明にかかる単層膜を用いた磁界センサ素子
の外部磁界に対するインピーダンス変化を示す図であ
る。
FIG. 2 is a diagram showing a change in impedance with respect to an external magnetic field of a magnetic field sensor element using a single-layer film according to the present invention.

【図3】本発明の実施例を示す幅10μmにおけるセン
サ素子の磁区構造写真を示した図である。
FIG. 3 is a view showing a photograph of a magnetic domain structure of a sensor element with a width of 10 μm showing an example of the present invention.

【図4】本発明の実施例を示す素子端部の拡大写真を示
す図である。
FIG. 4 is a view showing an enlarged photograph of an element end showing an example of the present invention.

【図5】本発明の実施例を示す単層膜および積層膜を用
いたセンサの素子幅に対するセンサ利得の変化を計算値
と併せて示す図である。
FIG. 5 is a diagram illustrating a change in sensor gain with respect to an element width of a sensor using a single-layer film and a stacked film according to an embodiment of the present invention, together with a calculated value.

【図6】本発明の実施例を示す単層膜によるセンサ素子
の磁区構造を観測した写真を示す図である。
FIG. 6 is a view showing a photograph in which a magnetic domain structure of a sensor element having a single-layer film according to an embodiment of the present invention is observed.

【図7】本発明の実施例を示す積層膜によるセンサ素子
の磁区構造を観測した写真を示す図である。
FIG. 7 is a view showing a photograph in which a magnetic domain structure of a sensor element using a laminated film according to an embodiment of the present invention is observed.

【図8】測定システムの等価回路を示す図である。FIG. 8 is a diagram showing an equivalent circuit of the measurement system.

【図9】本発明の実施例を示すキャリア抑圧回路におけ
る点Aおよび点Cでの周波数スペクトルを示す図であ
る。
FIG. 9 is a diagram illustrating frequency spectra at points A and C in the carrier suppression circuit according to the embodiment of the present invention.

【図10】本発明の実施例を示すキャリア抑圧回路を用
いた場合およびセンサ素子とスペクトラムアナライザを
直列に接続した系での微小交流磁界に対するセンサ出力
を示す図である。
FIG. 10 is a diagram showing a sensor output with respect to a small AC magnetic field in a case where a carrier suppression circuit according to an embodiment of the present invention is used and in a system in which a sensor element and a spectrum analyzer are connected in series.

【符号の説明】[Explanation of symbols]

1 信号発生器 2 第1のデバイダ 3 センサ素子 4 アッテネータ 5 位相シフタ 6 第2のデバイダ 7 前置増幅器 8 スペクトラムアナライザ DESCRIPTION OF SYMBOLS 1 Signal generator 2 1st divider 3 Sensor element 4 Attenuator 5 Phase shifter 6 2nd divider 7 Preamplifier 8 Spectrum analyzer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 哲 宮城県仙台市太白区長町字越路19−1393 2−205 Fターム(参考) 2G017 AA01 AD51 AD63 AD65  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Satoshi Suzuki 2-205 F-term (reference) 2G017 AA01 AD51 AD63 AD65

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 外部磁界により変調されたAM変調波を
キャリア成分と逆相の成分を足し合わせることにより、
キャリア成分のみを低減させ、これにより位相雑音を低
減させ、側波帯を高感度に測定可能にすることを特徴と
する高周波キャリア型磁界センサの位相雑音抑圧方法。
1. An AM-modulated wave modulated by an external magnetic field is added to a carrier component and a component having a phase opposite to that of a carrier component.
A phase noise suppressing method for a high-frequency carrier type magnetic field sensor, characterized in that only a carrier component is reduced, thereby reducing phase noise and enabling high sensitivity measurement of a sideband.
【請求項2】(a)信号発生器と、(b)該信号発生器
に接続される第1のデバイダと、(c)該第1のデバイ
ダに接続されるセンサ素子と、(d)該センサ素子と並
列に接続され、前記第1のデバイダに接続されるアッテ
ネータと位相シフタとの直列接続回路と、(e)前記セ
ンサ素子と前記位相シフタに接続される第2のデバイダ
と、(f)該第2のデバイダに接続される前置増幅器
と、(g)該前置増幅器に接続されるスペクトラムアナ
ライザとを備え、(h)キャリア電圧を前記第1のデバ
イダで分圧し、前記位相シフタの出力信号が前記センサ
素子の出力信号であるキャリア成分に対し、振幅が等し
く、位相がほぼ180°異なるように、前記アッテネー
タと前記位相シフタを用いて調節することを特徴とする
高周波キャリア型磁界センサの位相雑音抑圧装置。
2. A signal generator, (b) a first divider connected to the signal generator, (c) a sensor element connected to the first divider, and (d) a sensor element connected to the first divider. A series connection circuit of an attenuator and a phase shifter connected in parallel with the sensor element and connected to the first divider; (e) a second divider connected to the sensor element and the phase shifter; A) a preamplifier connected to the second divider; and (g) a spectrum analyzer connected to the preamplifier; and (h) a carrier voltage divided by the first divider. A high-frequency carrier-type magnetic element, wherein the output signal is adjusted using the attenuator and the phase shifter so that the amplitude is equal to the carrier component which is the output signal of the sensor element, and the phase is different by approximately 180 °. Phase noise suppression apparatus of the sensor.
JP2001003446A 2001-01-11 2001-01-11 Method and apparatus for suppressing phase noise of high frequency carrier type magnetic field sensor Expired - Lifetime JP3822058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001003446A JP3822058B2 (en) 2001-01-11 2001-01-11 Method and apparatus for suppressing phase noise of high frequency carrier type magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001003446A JP3822058B2 (en) 2001-01-11 2001-01-11 Method and apparatus for suppressing phase noise of high frequency carrier type magnetic field sensor

Publications (2)

Publication Number Publication Date
JP2002207069A true JP2002207069A (en) 2002-07-26
JP3822058B2 JP3822058B2 (en) 2006-09-13

Family

ID=18871788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001003446A Expired - Lifetime JP3822058B2 (en) 2001-01-11 2001-01-11 Method and apparatus for suppressing phase noise of high frequency carrier type magnetic field sensor

Country Status (1)

Country Link
JP (1) JP3822058B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374014A (en) * 2001-06-14 2002-12-26 Toyota Motor Corp Magnetic field detection element
WO2020075425A1 (en) * 2018-10-10 2020-04-16 昭和電工株式会社 Magnetic sensor and method for manufacturing magnetic sensor
WO2020137119A1 (en) * 2018-12-27 2020-07-02 昭和電工株式会社 Magnetic sensor and method for producing magnetic sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374014A (en) * 2001-06-14 2002-12-26 Toyota Motor Corp Magnetic field detection element
WO2020075425A1 (en) * 2018-10-10 2020-04-16 昭和電工株式会社 Magnetic sensor and method for manufacturing magnetic sensor
JP2020060446A (en) * 2018-10-10 2020-04-16 昭和電工株式会社 Magnetic sensor and method for manufacturing magnetic sensor
JP7259255B2 (en) 2018-10-10 2023-04-18 株式会社レゾナック Magnetic sensor and method for manufacturing magnetic sensor
WO2020137119A1 (en) * 2018-12-27 2020-07-02 昭和電工株式会社 Magnetic sensor and method for producing magnetic sensor
JP2020106401A (en) * 2018-12-27 2020-07-09 昭和電工株式会社 Magnetic sensor and method for manufacturing magnetic sensor
JP7203598B2 (en) 2018-12-27 2023-01-13 昭和電工株式会社 Magnetic sensor and method for manufacturing magnetic sensor
US11977135B2 (en) 2018-12-27 2024-05-07 Resonac Corporation Magnetic sensor and magnetic sensor manufacturing method

Also Published As

Publication number Publication date
JP3822058B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
US8027110B1 (en) Apparatus for measuring magnetic field of microwave-assisted head
US7145331B2 (en) Magnetic sensor having a closed magnetic path formed by soft magnetic films
CA2503828A1 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
US3260932A (en) Magnet-field measuring device with a galvanomagnetic resistance probe
JPH0875835A (en) Magnetic impedance element and magnetic detection circuit
JPS6149488A (en) Magnetic resistance converter
Yamaguchi et al. Application of bi-directional thin-film micro wire array to RF integrated spiral inductors
JP2002207069A (en) Method for suppressing phase noise of high frequency carrier type magnetic field sensor and apparatus therefor
JPS58185007A (en) Magnetic reproducer
Yabukami et al. Coplanar line thin film sensor and measurement of MCG without magnetic shielding
JP3731288B2 (en) Multilayer magnetic field detector
US5537036A (en) High-frequency magnetic property measuring apparatus with wound plane-shaped conductors for measuring soft magnetic films
JP3001452B2 (en) Magnetic field sensor
Takezawa et al. Miniaturization of high-frequency carrier-type thin-film magnetic field sensor using laminated film
Delooze et al. AC biased sub-nano-tesla magnetic field sensor for low-frequency applications utilizing magnetoimpedance in multilayer films
JP3607447B2 (en) Magnetic field sensor
Uetake et al. Highly Sensitive Thin-Film Magnetic Field Sensor Meandering Coplanar Line
Maruyama et al. A yoke magnetoresistive head for high track density recording
JPH0341890B2 (en)
JP2002043647A (en) Magnetic impedance effect element
Comerci Absolute measurements of magnetic surface induction
JP4474835B2 (en) Magneto-impedance element
Yamaguchi et al. A new planar-type high-frequency current detector utilizing the skin effect in soft magnetic materials
JP3496848B2 (en) Magnetic field detector
JPH08330645A (en) Magnetic detection element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3822058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term