JPH0341890B2 - - Google Patents
Info
- Publication number
- JPH0341890B2 JPH0341890B2 JP14251982A JP14251982A JPH0341890B2 JP H0341890 B2 JPH0341890 B2 JP H0341890B2 JP 14251982 A JP14251982 A JP 14251982A JP 14251982 A JP14251982 A JP 14251982A JP H0341890 B2 JPH0341890 B2 JP H0341890B2
- Authority
- JP
- Japan
- Prior art keywords
- terminal
- signal
- terminals
- head
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005291 magnetic effect Effects 0.000 claims description 24
- 239000010409 thin film Substances 0.000 claims description 8
- 230000005415 magnetization Effects 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 239000003302 ferromagnetic material Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 3
- 230000005347 demagnetization Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005381 magnetic domain Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
- G11B5/3945—Heads comprising more than one sensitive element
- G11B5/3948—Heads comprising more than one sensitive element the sensitive elements being active read-out elements
- G11B5/3958—Heads comprising more than one sensitive element the sensitive elements being active read-out elements the active elements being arranged in a single plane, e.g. "matrix" disposition
- G11B5/3961—Heads comprising more than one sensitive element the sensitive elements being active read-out elements the active elements being arranged in a single plane, e.g. "matrix" disposition disposed at an angle to the direction of the track or relative movement
- G11B5/3964—Heads comprising more than one sensitive element the sensitive elements being active read-out elements the active elements being arranged in a single plane, e.g. "matrix" disposition disposed at an angle to the direction of the track or relative movement for transducing on a single track
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/399—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures with intrinsic biasing, e.g. provided by equipotential strips
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Magnetic Heads (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明はデイジタル信号の記録再生等に用いら
れる薄膜磁気ヘツドに関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thin film magnetic head used for recording and reproducing digital signals.
従来例の構成とその問題点
従来のデイジタル信号等の再生に用いられる磁
気抵抗効果型ヘツドは第1図に示すように、記録
媒体1と垂直(Y方向)に強磁性薄膜を短冊状に
形成した磁気抵抗効果素子(以下MR素子とい
う)を当接または近接させ、MR素子2の長手方
向(Z方向)の両端に電極3,4を配置し、この
電極3,4間に定電流iを流し、そして記録媒体
1のY方向の信号磁界によりX方向の抵抗値変化
を電極3,4間の電圧変化により検出するように
したものであつた。Conventional structure and its problems As shown in Figure 1, the conventional magnetoresistive head used for reproducing digital signals, etc., has a ferromagnetic thin film formed in a strip shape perpendicular to the recording medium 1 (in the Y direction). magnetoresistive elements (hereinafter referred to as MR elements) are brought into contact with or in close proximity, electrodes 3 and 4 are placed at both ends of the MR element 2 in the longitudinal direction (Z direction), and a constant current i is applied between the electrodes 3 and 4. The change in the resistance value in the X direction is detected by the voltage change between the electrodes 3 and 4 by applying a signal magnetic field of the recording medium 1 in the Y direction.
一般に再生用の磁気抵抗効果型ヘツドは、記録
用の誘導型薄膜磁気ヘツドと同一デツキに組み込
むか、同一基板上に蒸着形成されるかして、接近
した状態で使用される。この時、記録電流は再生
出力にもれ込むため(フイードスルー)、記録し
ている信号を同時に再生するような同時モニター
ではデータ信号の再生が不可能となる。またフイ
ードスルーを減じるためや、短波長再生を行なう
ために、MR素子の両側面に磁気空隙を置くシー
ルド型のヘツドでは外部磁石によつてバイアスを
加える場合、シールドされているため、MR素子
に十分な磁界を与えるには大きな外部磁場が必要
となり、その結果媒体に記録された信号が消磁さ
れまたフイードスルーに対しては、十分でなく記
録時の同時モニターが困難で実用にならない。こ
のようなフイードスルー対策として、同一データ
を複数個のトラツクに分配して記録再生するため
に以下に示すような信号処理がある。すなわち、
同一データを偶数個のトラツクに、偶数番目のト
ラツクと奇数番目のトラツクが逆相になるように
記録し、再生時に前記偶数番目のトラツクからの
出力の和信号と奇数番目のトラツクからの出力の
和信号との引算出力を得ることにより、ヘツド配
線に重畳される同相のフイードスルーあるいはノ
イズの影響を相殺する方法である。この方法では
同一信号を複数個のトラツクで記録再生するため
に、信号数の複数倍(少なくとも2倍)以上の記
録ヘツドと再生ヘツドを必要とし、このためヘツ
ド製造上の歩留りが悪く、またヘツド配線数の増
大等が生じるという問題がある。 Generally, a magnetoresistive head for reproducing is used in close proximity to an inductive thin film magnetic head for recording, either by being built into the same deck or by vapor deposition on the same substrate. At this time, the recording current leaks into the reproduction output (feed-through), making it impossible to reproduce the data signal with simultaneous monitoring that simultaneously reproduces the recorded signals. Furthermore, in order to reduce feed-through or to reproduce short wavelengths, shielded heads have a magnetic air gap on both sides of the MR element, and when bias is applied using an external magnet, the MR element is shielded, so the MR element is shielded. A large external magnetic field is required to provide a strong magnetic field, and as a result, the signal recorded on the medium is demagnetized, and the feed-through is insufficient, making simultaneous monitoring during recording difficult and impractical. As a countermeasure against such feed-through, the following signal processing is available in order to record and reproduce the same data by distributing it to a plurality of tracks. That is,
The same data is recorded on an even number of tracks so that the even numbered track and the odd numbered track are in reverse phase, and during playback, the sum signal of the output from the even numbered track and the output from the odd numbered track are combined. This is a method of canceling out the influence of in-phase feedthrough or noise superimposed on the head wiring by obtaining a subtracted output from the sum signal. In this method, in order to record and reproduce the same signal on a plurality of tracks, it is necessary to have multiple (at least twice) as many recording heads and reproduction heads as the number of signals. There is a problem in that the number of wiring lines increases.
このような問題を克服するために、前記のよう
に一つのデータを記録するためのトラツクを複数
個とはせずに再生ヘツドの構造をシヤントバイア
ス法により実現する方法がある。電流バイアス法
の一構造であるシヤントバイアス法は短波長再生
用として応用するシールド型であり、これを第2
図a,bに示す。共通アース端子21を含む3端
子21,22,23を持ち、MR素子24はTi等
の抵抗素子25によつて短絡されており、この抵
抗素子25に流す電流によつてMR素子24にバ
イアス磁界を加える。このMR素子24には共通
アース端子21に流れ込むように他の2端子に定
電流源回路26,27から定電流iが加えられて
おり、そしてMR素子24には逆方向のバイアス
磁界HBが外部から加えられる。MはMR素子2
4の磁化方向である。このような状態に保たれた
MR素子24に信号磁界が入力されると、その信
号磁界は共通アース端子21を間にはさんだMR
素子24の二つの部分は電流方向が逆であるため
逆相として感磁される。二つの電極に出力される
電圧の差信号を取ると、シヤントバイアス法では
一般に出力はアンダーバイアスであるが一方の出
力がアンダーバイアスで再生出力に歪があつて
も、他の出力と相互に歪成分を打ち消し補うので
再生出力は良好となり、かつ外来ノイズも打ち消
すが素子の均一性や、記録信号の均一性および機
器間での互換性で問題となるアジマスの一致が他
の構造のヘツドと比較するときびしく要求され、
実用的でない。また、MR素子と抵抗素子双方に
電流を流すことから、MR素子特有のサーマルノ
イズの発生も多くなるという欠点がある。 In order to overcome such problems, there is a method of realizing the structure of the reproducing head by the shunt bias method, instead of using a plurality of tracks for recording one data as described above. The shunt bias method, which is a structure of the current bias method, is a shield type that is applied for short wavelength reproduction.
Shown in Figures a and b. It has three terminals 21, 22, 23 including a common ground terminal 21, and the MR element 24 is short-circuited by a resistance element 25 such as T i , and the MR element 24 is biased by the current flowing through this resistance element 25. Apply a magnetic field. A constant current i is applied to the other two terminals of the MR element 24 from constant current source circuits 26 and 27 so as to flow into the common ground terminal 21, and a bias magnetic field H B in the opposite direction is applied to the MR element 24. Added from outside. M is MR element 2
4 magnetization direction. kept in this condition
When a signal magnetic field is input to the MR element 24, the signal magnetic field is transmitted to the MR element with the common ground terminal 21 in between.
The two parts of the element 24 are magnetized with opposite phases because the current directions are opposite. When taking the difference signal between the voltages output to the two electrodes, in the shunt bias method the output is generally underbiased, but even if one output is underbiased and the reproduced output is distorted, it will not be distorted mutually with the other output. Since the components are canceled and compensated, the playback output is good, and external noise is also canceled, but azimuth matching is a problem in terms of element uniformity, recording signal uniformity, and compatibility between devices compared to heads with other structures. When I do, I am strictly required to do so.
Not practical. Furthermore, since current is passed through both the MR element and the resistance element, there is a drawback that thermal noise, which is unique to MR elements, increases.
発明の目的
本発明は上記のような従来の欠点を解消したも
のであり、アジマス調整が容易であり、またサー
マルノイズの発生もない薄膜磁気ヘツドを提供す
るものである。OBJECTS OF THE INVENTION The present invention eliminates the above-mentioned conventional drawbacks, and provides a thin film magnetic head that allows easy azimuth adjustment and does not generate thermal noise.
発明の構成
本発明は、MR素子に3つの端子を設け、内一
つを比較電極とし、この共通端子を交流的に接地
し、他の2つの端子の一方を抵抗を介して接地
し、他方の端子より一定電流を供給して逆相の再
生出力を得、これを差動増幅することによりヘツ
ドおよびヘツドからの配線等に飛び込む外来ノイ
ズの影響を除去するようにし、またバイアス方法
を誘導磁気異方性によるものとすることにより、
媒体と薄膜ヘツドとの相互干渉、すなわち媒体の
消磁や、MRヘツド特有のサーマルノイズ等を除
去し、信号対雑音比の劣化のない良好なヘツドを
提供するものである。Structure of the Invention The present invention provides an MR element with three terminals, one of which is used as a reference electrode, this common terminal is grounded in an alternating current manner, one of the other two terminals is grounded via a resistor, and the other is grounded via a resistor. A constant current is supplied from the terminals of the head to obtain a reproduction output of opposite phase, and this is differentially amplified to eliminate the influence of external noise that enters the head and the wiring from the head. By assuming that it is due to anisotropy,
This eliminates mutual interference between the medium and the thin-film head, that is, demagnetization of the medium, and thermal noise peculiar to MR heads, thereby providing a good head without deterioration of the signal-to-noise ratio.
実施例の説明
以下本発明の一実施例について第3図を用いて
説明する。本発明のMRヘツドの構造としては、
第1図に示したMR素子に三端子を設けたもので
ある。MR素子6にMR電流供給及び再生出力取
り出しのための3つの端子7,8,9を設け、こ
の内の端子9をコンデンサ15を介して接地す
る、すなわち、交流接地を行なう。MR素子6が
多数ある場合にはこの端子9は共通にして共通端
子として取り出し交流接地すれば配線のための端
子数が少なくできる。端子8は抵抗13を介して
接地する。この抵抗13の抵抗値は端子7に接続
される。定電流源回路12の等価出力インピーダ
ンスと同じ値にする。定電流源回路12からは端
子7から端子8、抵抗13を通り接地側へ流れる
MR電流10,11を供給する。端子9は交流接
地されているだけであるのでMR電流10,11
は全く同一となる。そして前記MR素子6に外部
から同一方向のバイアス磁界を加える。磁気記録
媒体からの信号磁界によりMR素子6の磁化方向
Mが変化してその抵抗値が変化すると、MR電流
は一定電流であるので、MR素子6の抵抗値が小
さくなれば、端子7,9間の電位は下るが端子8
は一定電位である。端子7の電位の変動量は端子
9のそれの2倍である。DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. The structure of the MR head of the present invention is as follows:
This is the MR element shown in Figure 1 with three terminals. The MR element 6 is provided with three terminals 7, 8, and 9 for supplying MR current and taking out reproduction output, and terminal 9 of these terminals is grounded via a capacitor 15, that is, AC grounding is performed. If there are a large number of MR elements 6, the number of terminals for wiring can be reduced by making this terminal 9 common and taking it out as a common terminal and connecting it to AC grounding. Terminal 8 is grounded via resistor 13. The resistance value of this resistor 13 is connected to the terminal 7. The value is set to be the same as the equivalent output impedance of the constant current source circuit 12. From the constant current source circuit 12, it flows from terminal 7 to terminal 8 and through resistor 13 to the ground side.
MR currents 10 and 11 are supplied. Since terminal 9 is only connected to AC ground, MR current 10, 11
are exactly the same. Then, a bias magnetic field in the same direction is applied to the MR element 6 from the outside. When the magnetization direction M of the MR element 6 changes due to the signal magnetic field from the magnetic recording medium and its resistance value changes, the MR current is a constant current, so if the resistance value of the MR element 6 becomes small, the terminals 7 and 9 Although the potential between terminals 8 and 8
is a constant potential. The amount of variation in the potential at terminal 7 is twice that at terminal 9.
これにより、端子7の端子9に対する変動電
圧、すなわち端子7に現われる再生出力と端子8
の端子9に対する変動電圧、すなわち端子9に現
われる再生出力とは互いに逆相となる。端子7,
8に現われた出力をコンデンサを介して差動増幅
器14の正側と負側入力にそれぞれ供給し、差動
増幅すればMR素子6より再生出力が得られる。
なお、MR電流の向きが前記と逆であつても同様
である。 This results in a varying voltage between terminal 7 and terminal 9, i.e. the reproduction output appearing at terminal 7 and the terminal 8.
The fluctuating voltage applied to terminal 9, that is, the reproduced output appearing at terminal 9, are in opposite phase to each other. terminal 7,
The output appearing at 8 is supplied to the positive and negative inputs of a differential amplifier 14 via capacitors, and differential amplification is performed to obtain a reproduced output from the MR element 6.
Note that the same applies even if the direction of the MR current is opposite to that described above.
ところで、記録電流のフイードスルー等の外来
ノイズは交流であるので、ヘツド及びヘツドから
の配線には交流接地側(インピーダンスの低い
側)へ流れるように混入する。すなわち外来ノイ
ズは、端子7側のMR素子、配線への混入と、端
子8側のMR素子、配線への混入とは同相とな
る。第3図に示した構成における微小信号等価回
路は前記に述べたことにより第4図に示すように
なる。MR素子6の端子7側において信号16が
あり、信号esを発生している。外来ノイズ18は
eoとして表わされる。定電流源は内部インピーダ
ンスが抵抗13と同じ値を有する抵抗20で置き
換えて表わされる。一方、MR素子6の端子8側
では信号源17があり、端子7側の信号esと逆相
の信号−esを発生し、外来ノイズ19は端子8側
と同相のeoとして表わされる。端子7側系と端子
8側系のインピーダンスは同一であるので、外来
ノイズは前記のように端子7側、端子8側ともに
同じeoとなる。 By the way, since external noise such as feed-through of recording current is alternating current, it is mixed into the head and the wiring from the head so that it flows toward the alternating current grounding side (lower impedance side). That is, the external noise that enters the MR element and the wiring on the terminal 7 side is in the same phase as the external noise that enters the MR element and the wiring on the terminal 8 side. The minute signal equivalent circuit in the configuration shown in FIG. 3 is as shown in FIG. 4 as described above. There is a signal 16 on the terminal 7 side of the MR element 6, which generates a signal e s . External noise 18
Represented as e o . The constant current source is represented by a resistor 20 whose internal impedance has the same value as the resistor 13. On the other hand, there is a signal source 17 on the terminal 8 side of the MR element 6, which generates a signal -e s that is in phase opposite to the signal e s on the terminal 7 side, and external noise 19 is expressed as e o that is in phase with the terminal 8 side. . Since the impedances of the terminal 7 side system and the terminal 8 side system are the same, the external noise has the same e o on both the terminal 7 side and the terminal 8 side as described above.
以上の結果、2つの端子からの信号を差動増幅
器14に入力することにより、その出力にはノイ
ズ成分は打ち消され、信号成分が2esとして得ら
れることになり、外来ノイズの影響を全く受けな
い再生出力を得ることができる。そして、MR素
子6の抵抗変化が共通の端子9に対して左右の素
子の位相が同相であるために、第2図のシヤント
バイアス法によるヘツドで現われたアジマスに対
する出力波形の変動は本発明においては問題でな
い。更にバイアス手段のために電流を素子先端部
に余分に加えないので、ジユール熱によるサーマ
ルノイズは軽減される。また本発明においては、
定電流源は一つでよいので回路構成が簡単となる
利点がある。 As a result of the above, by inputting the signals from the two terminals to the differential amplifier 14, the noise component is canceled in the output, and the signal component is obtained as 2e s , which is completely unaffected by external noise. No playback output can be obtained. Since the phase of the left and right elements is in the same phase with respect to the terminal 9 where the resistance change of the MR element 6 is common, the fluctuation of the output waveform with respect to the azimuth that appears in the head using the shunt bias method in FIG. 2 can be avoided in the present invention. is not a problem. Furthermore, since no extra current is applied to the tip of the element for the bias means, thermal noise due to Joule heat is reduced. Furthermore, in the present invention,
Since only one constant current source is required, there is an advantage that the circuit configuration is simple.
本発明をより効果的に実施するために、媒体の
消磁やノイズの発生がない、すなわち信号Sとノ
イズN比を劣化させない他の実施例を第5図に示
す。この第5図はMR素子6の側面図で第3図の
実施例との相異点はMR素子6のバイアス磁界が
第3図の場合には外部磁石や電流等による外来的
な手段で印加しているのに対し、第5図のもので
は、磁化が誘導磁気異方性によつて最適バイアス
方向に向けられている点である。この誘導磁気異
方性は次のようにして得る。すなわち、MR素子
6が蒸着される基板の表面をラツピングテープ等
により一方向に研摩すると基板表面の荒さはラツ
プ条痕にならつて一定方向だけ異方的に荒れる。
ラツプ条痕間の間隔はランダムであるが、このラ
ツプ条痕に沿つて磁区が発生し、この磁区は細分
化されるとともに配向性が良好となり、大きな誘
導磁気異方性が得られる。 In order to carry out the present invention more effectively, another embodiment is shown in FIG. 5 in which there is no demagnetization of the medium or generation of noise, that is, no deterioration of the signal S to noise N ratio. This FIG. 5 is a side view of the MR element 6, and the difference from the embodiment shown in FIG. 3 is that when the bias magnetic field of the MR element 6 is as shown in FIG. In contrast, in the case of FIG. 5, the magnetization is directed in the optimum bias direction by induced magnetic anisotropy. This induced magnetic anisotropy is obtained as follows. That is, when the surface of the substrate on which the MR element 6 is deposited is polished in one direction with a wrapping tape or the like, the roughness of the substrate surface follows the lapping streaks and becomes rough anisotropically in a certain direction.
Although the intervals between the wrap marks are random, magnetic domains are generated along the wrap marks, and these magnetic domains are subdivided and have good orientation, resulting in large induced magnetic anisotropy.
以上のように付与された誘導磁気異方性によつ
て、MR素子6には外的な手段でもつてバイアス
磁界を印加する必要性がなくなり、媒体の消磁が
なく、またバイアス電流による発熱等でMR素子
6にサーマルノイズのないヘツドを提供すること
ができる。 Due to the induced magnetic anisotropy imparted as described above, there is no need to apply a bias magnetic field to the MR element 6 by external means, there is no demagnetization of the medium, and there is no heat generation due to the bias current. It is possible to provide the MR element 6 with a head free of thermal noise.
発明の効果
以上のように本発明は簡単な構成でアジマス調
整が容易であるとともに、サーマルノイズの発生
もない薄膜磁気ヘツドを提供することができたも
のであり、その効果は大である。Effects of the Invention As described above, the present invention has been able to provide a thin film magnetic head that has a simple configuration, allows easy azimuth adjustment, and does not generate thermal noise, and has great effects.
第1図、第2図a,bは従来例を示す図、第3
図は本発明の一実施例を回路とともに示す図、第
4図は同等価回路図、第5図は他実施例の磁気抵
抗効果素子の側面図である。
6……磁気抵抗効果素子、7,8,9……端
子、10,11……電流、12……定電流源回
路、13……抵抗、14……差動増幅器、15…
…コンデンサ。
Figures 1 and 2 a and b are diagrams showing conventional examples, and Figure 3
The figure shows an embodiment of the present invention together with a circuit, FIG. 4 is an equivalent circuit diagram, and FIG. 5 is a side view of a magnetoresistive element of another embodiment. 6... Magnetoresistive element, 7, 8, 9... Terminal, 10, 11... Current, 12... Constant current source circuit, 13... Resistor, 14... Differential amplifier, 15...
...capacitor.
Claims (1)
気抵抗効果素子を持つ薄膜磁気ヘツドであつて、
前記磁気抵抗効果素子の磁化を一定方向にバイア
スするとともにこの素子に信号磁界を印加し、こ
の磁気抵抗効果素子の中点の共通端子を交流的に
接地し、かつ他の2端子のうち一方の端子を抵抗
を介して接地し、他方の端子より一定電流を供給
することにより前記共通端子と他の2端子との間
の抵抗値の変化をそれぞれ再生電圧として差動的
に取り出すように構成したことを特徴とする薄膜
磁気ヘツド。1. A thin film magnetic head having a magnetoresistive element made of a ferromagnetic material deposited on a substrate,
The magnetization of the magnetoresistive element is biased in a certain direction, a signal magnetic field is applied to this element, the common terminal at the center of the magnetoresistive element is grounded in an alternating current manner, and one of the other two terminals is grounded. The terminal is grounded through a resistor, and by supplying a constant current from the other terminal, the change in resistance value between the common terminal and the other two terminals is differentially extracted as a reproduction voltage. A thin film magnetic head characterized by:
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14251982A JPS5933616A (en) | 1982-08-17 | 1982-08-17 | Thin film magnetic head |
DE8282111355T DE3279790D1 (en) | 1981-12-09 | 1982-12-08 | Thin film magnetic head |
EP82111355A EP0081240B1 (en) | 1981-12-09 | 1982-12-08 | Thin film magnetic head |
US06/448,058 US4660113A (en) | 1981-12-09 | 1982-12-09 | Magnetoresistive thin film head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14251982A JPS5933616A (en) | 1982-08-17 | 1982-08-17 | Thin film magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5933616A JPS5933616A (en) | 1984-02-23 |
JPH0341890B2 true JPH0341890B2 (en) | 1991-06-25 |
Family
ID=15317239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14251982A Granted JPS5933616A (en) | 1981-12-09 | 1982-08-17 | Thin film magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5933616A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS644914A (en) * | 1987-06-29 | 1989-01-10 | Matsushita Electric Ind Co Ltd | Thin film magnetic head |
JP2994522B2 (en) * | 1993-02-22 | 1999-12-27 | 富士通株式会社 | Preamplifier for magnetoresistive element |
WO2005020214A1 (en) | 2003-08-26 | 2005-03-03 | Fujitsu Limited | Reproduction head and magnetic disc device |
KR100822611B1 (en) * | 2006-01-10 | 2008-04-16 | 후지쯔 가부시끼가이샤 | Reproduction head and magnetic disc device |
-
1982
- 1982-08-17 JP JP14251982A patent/JPS5933616A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5933616A (en) | 1984-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0081240B1 (en) | Thin film magnetic head | |
US4356523A (en) | Narrow track magnetoresistive transducer assembly | |
US4691259A (en) | Magnetic transducer head utilizing magnetoresistance effect | |
US4343026A (en) | Magnetoresistive head employing field feedback | |
US4802043A (en) | Magneto-resistive head for protecting against output spike noises | |
JPH04507163A (en) | Shorted double-element magnetoresistive playback head for amplifying high-density signals | |
JPH05225507A (en) | Replay apparatus of digital signal | |
JPH06139525A (en) | Reproducing device for magneto-resistance effect type head | |
JPH0341890B2 (en) | ||
US5914839A (en) | MR Device with anti-ferro magnetic field anti-parallel to sense current magnetic field | |
JPS5898826A (en) | Thin film magnetic head | |
Schwarz et al. | Comparison of calculated and actual density responses of a magnetoresistive head | |
JPS6049969B2 (en) | signal regenerator | |
JPH0440775B2 (en) | ||
JPS6212913A (en) | Multitrack magnetoresistance effect type magnetic head | |
JPS626403A (en) | Head amplifier device | |
Maruyama et al. | A yoke magnetoresistive head for high track density recording | |
JP2770291B2 (en) | Circuit for detecting change in resistance of magnetoresistive element | |
JPH0721530A (en) | Magneto-resistance effect type head | |
JPS5933618A (en) | Detecting system of track position shift | |
JP2601850B2 (en) | Magnetic playback device | |
JPH06124420A (en) | Magnetoresistance effect type head and signal reproducing apparatus for magnetoresistance effect type head | |
JPS62212902A (en) | Magnetic reproducing device | |
JPH06203339A (en) | Magneto-resitance type thin-film magnetic head | |
JPS61230614A (en) | Magneto-resistance effect thin film head |