JP2002206818A - Absorbing type heat pump device - Google Patents

Absorbing type heat pump device

Info

Publication number
JP2002206818A
JP2002206818A JP2001039207A JP2001039207A JP2002206818A JP 2002206818 A JP2002206818 A JP 2002206818A JP 2001039207 A JP2001039207 A JP 2001039207A JP 2001039207 A JP2001039207 A JP 2001039207A JP 2002206818 A JP2002206818 A JP 2002206818A
Authority
JP
Japan
Prior art keywords
absorber
regenerator
condenser
heat
reboiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001039207A
Other languages
Japanese (ja)
Inventor
Minoru Morita
稔 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001039207A priority Critical patent/JP2002206818A/en
Publication of JP2002206818A publication Critical patent/JP2002206818A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To attain an effective utilization of heat held in discharged gas from a regenerator. SOLUTION: There are provided a re-boiling unit 7 and a condenser 6. Absorbing solution of high concentration transferred from an absorbing unit 4 at the re-boiling unit 7 is evaporated by the discharging gas flowed from a regenerator 1, the evaporated vapor is transferred to a condenser 6, wherein high concentrated liquid and discharged liquid are attained through condensation at the condenser 6, the high concentrated liquid is heated at a low temperature segment of the absorbing unit 4, thereafter it is transferred to the regenerator 1, the discharged liquid is heated at a high temperature segment of the absorbing unit 4 and transferred to the regenerator 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式ヒートポン
プ装置に係り、食品工業や化学工業の冷熱や冷凍、構築
物や住宅の空調に用いられる各種燃料や高温ガスを用い
た吸収式ヒートポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption heat pump device, and more particularly to an absorption heat pump device using various fuels and high-temperature gas used for cooling and freezing in the food and chemical industries, and for air-conditioning of buildings and houses.

【0002】[0002]

【従来の技術】従来の吸収式ヒートポンプは、高圧の再
生器と低圧の吸収器の間で冷媒高濃度吸収溶液と、低濃
度吸収溶液とを移動させることで熱交換を行い、発熱及
び吸熱するものであり、低圧の吸収器において発熱さ
せ、高圧の再生器において吸熱する。
2. Description of the Related Art A conventional absorption heat pump performs heat exchange by moving a refrigerant high-concentration absorption solution and a low-concentration absorption solution between a high-pressure regenerator and a low-pressure absorber, thereby generating heat and absorbing heat. Heat is generated in a low-pressure absorber and absorbed in a high-pressure regenerator.

【0003】通常、このような吸収式ヒートポンプに
は、数種類の熱交換システムが組み合わせて用いられ、
具体的な熱交換システムとしては、吸収器の熱を再生器
に移動させ、冷媒の精留のために使用するGAX、吸収
器の高温側に熱吸収の完了した高濃度吸収溶液を循環さ
せる熱交換器を設け、高濃度吸収溶液の熱を吸収器に与
えるAHE、あるいは再生器内の高温低濃度吸収溶液と
高濃度吸収溶液もしくは再生器の低温部との熱交換を行
うGHEなどが知られている。
[0003] Usually, such absorption heat pumps are used in combination with several types of heat exchange systems.
As a specific heat exchange system, the heat of the absorber is transferred to the regenerator, GAX used for rectifying the refrigerant, and the heat for circulating the high-concentration absorption solution having completed heat absorption to the high-temperature side of the absorber. An AHE in which an exchanger is provided and heat of the high-concentration absorbing solution is given to the absorber, or GHE in which heat exchange between the high-temperature low-concentration absorbing solution in the regenerator and the high-concentration absorbing solution or the low-temperature portion of the regenerator is known. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながらこれらの
システムにおいては、デューリング線上での吸収器の最
低温度より、その濃度の再生器の液温までの吸収熱が大
きいにもかかわらず、吸収器の低温部の発熱は移転すべ
き再生器側の温度が高いので効果的な移動はできない。
However, in these systems, despite the fact that the heat of absorption up to the liquid temperature of the regenerator of that concentration is higher than the minimum temperature of the absorber on the During line, the absorption of the absorber The heat generated in the low-temperature part cannot be moved effectively because the temperature of the regenerator to be transferred is high.

【0005】このため、特許第2978563号には、
前記と異なる方式のヒートポンプとして、以下の方法が
提案されている。すなわち、吸収完了液(高濃度吸収溶
液)を吸収器の低温部で加温して、再生器と吸収器の中
間圧力で運転されている中間再生器と中間凝縮器に高濃
度吸収溶液を入れ、冷媒の蒸発により強溶液と缶出液を
得る。強溶液は吸収器内で吸熱加温された後、高圧再生
器に送る。缶出液は吸収器で加温され、再生器へ送り吸
収器の熱を再生器に送ることができるとするものであ
る。
For this reason, Japanese Patent No. 2978563 discloses that
The following method has been proposed as a heat pump of a different type from the above. That is, the absorption complete liquid (high concentration absorption solution) is heated in the low temperature part of the absorber, and the high concentration absorption solution is put into the intermediate regenerator and the intermediate condenser operated at the intermediate pressure between the regenerator and the absorber. A strong solution and a bottom liquid are obtained by evaporation of the refrigerant. The strong solution is endothermic and heated in the absorber, and then sent to a high-pressure regenerator. The bottoms are heated in the absorber and sent to the regenerator, and the heat of the absorber can be sent to the regenerator.

【0006】しかし、この方法の欠点は、第1に、吸収
器の熱を使い強溶液を得て、これによりベーパの多い気
液混合物として精留塔の負荷を減少させるとしている
が、濃度の高い強溶液を得るために吸収熱を使う必要が
あり全体の効率は良くない。また、第2に、吸収完了液
により、その液が直前に出てきた吸収部分を冷却するた
め最低温部を冷却水で冷却し、その上部の吸収液との温
度差をつくり出し、吸収器の除熱が可能としているが、
この付近の熱は外部に捨てられて利用できない。また第
3に、リフト(蒸発器と凝縮器の温度差)が60−70
℃と高く冷凍機に利用する場合、吸収器の最高温度が再
沸器の温度に近づき再沸器への熱移動ができない。この
ため高リフトの運転ができない。
However, a drawback of this method is that, first, a strong solution is obtained by using the heat of the absorber, thereby reducing the load on the rectification column as a vapor-rich gas-liquid mixture. In order to obtain a high strong solution, it is necessary to use heat of absorption, and the overall efficiency is not good. Secondly, the absorption complete liquid is used to cool the lowest temperature part with cooling water in order to cool the absorption part where the liquid has just come out, and to create a temperature difference with the absorption liquid on the upper part, and Although it is possible to remove heat,
The heat in this area is discarded outside and cannot be used. Third, the lift (temperature difference between the evaporator and the condenser) is 60-70.
When used for refrigerators as high as ° C., the maximum temperature of the absorber approaches the temperature of the reboiler and heat transfer to the reboiler is not possible. Therefore, high-lift operation is not possible.

【0007】また、吸収ヒートポンプの有効利用の方法
として、GAXサイクルを構成するとともに、その蒸発
器と吸収器の間に内燃機駆動の機械式圧縮機を入れ、冷
媒を圧縮しさらに内燃機関の廃熱をヒートポンプの熱源
にし総合的な効果を狙った提案がある。しかし、従来の
ヒートポンプでは、リフトの低いところでも、たとえば
リフト20℃で成績係数COPt(全供給熱量)は1.
5〜2.0程度で、ヒートポンプの受け持つべき成績係
数COPc(再生器受熱基準)は3−4に到らない。こ
れでは機械式圧縮機の負担が大きくなり、複合的な効率
向上を図ることにつながらない。
As a method of effectively utilizing the absorption heat pump, a GAX cycle is configured, and a mechanical compressor driven by an internal combustion engine is inserted between the evaporator and the absorber to compress the refrigerant and further reduce the waste heat of the internal combustion engine. There is a proposal for using a heat pump as a heat source for an overall effect. However, in the conventional heat pump, even when the lift is low, for example, at a lift of 20 ° C., the coefficient of performance COPt (total heat supply) is 1.
With about 5 to 2.0, the coefficient of performance COPc (regenerator heat receiving standard) to be taken over by the heat pump does not reach 3-4. This increases the burden on the mechanical compressor, and does not lead to a composite efficiency improvement.

【0008】いずれにしても、従来の高温ガスを使うヒ
ートポンプシステムにおいては、再生器からの排ガスの
ヒートポンプ内での有効利用が図られていない。また、
天然ガス、都市ガス、灯油、軽油等を用い効率が良く且
つ小型の内燃機関が実用化され広く利用されつつある。
これら内燃機関の排ガスの熱は、電熱併産以外には有効
利用されていない。
In any case, in a conventional heat pump system using a high-temperature gas, the exhaust gas from the regenerator is not effectively used in the heat pump. Also,
BACKGROUND ART Efficient and small internal combustion engines using natural gas, city gas, kerosene, light oil and the like have been put to practical use and are being widely used.
The heat of the exhaust gas from these internal combustion engines has not been effectively used except for cogeneration.

【0009】したがって、本発明の第1の課題は、再生
器の加熱源が持っている熱を有効に利用することにあ
る。第2の課題は、熱を吸収して移動できる強液の製造
を、従来例のように吸収熱を利用することにより行うの
ではなく、再生器の加熱源が持っている熱を有効に利用
することにより行い、もって吸収器の低温部においても
熱回収を可能とすることにある。第3の課題は、内燃機
関駆動の冷媒圧縮機をヒートポンプの中に組み込み、そ
の冷媒圧縮機のリフトとヒートポンプのリフトとを組み
合わせ熱効率の高いヒートポンプ提供することにある。
他の課題は、以下の説明からも明らかになろう。
Therefore, a first object of the present invention is to effectively use the heat of a heat source of a regenerator. The second problem is that the production of a strong liquid capable of absorbing and moving heat is not performed by using the absorbed heat as in the conventional example, but the heat of the heating source of the regenerator is effectively used. Therefore, it is possible to recover heat even in a low temperature part of the absorber. A third object is to provide a heat pump having high thermal efficiency by incorporating a refrigerant compressor driven by an internal combustion engine into a heat pump and combining a lift of the refrigerant compressor and a lift of the heat pump.
Other issues will become apparent from the following description.

【0010】[0010]

【課題を解決するための手段】上記課題を解決した本発
明に次記のとおりである。 <請求項1項記載の発明>非共沸系の冷媒と吸収剤を用
い、低圧側の蒸発器及び吸収器、ならびに高圧側の再生
器及び凝縮器を組み合わせ、前記蒸発器で蒸発した冷媒
蒸気を前記吸収器内の低濃度吸収溶液に接触・吸収さ
せ、高濃度になった吸収溶液を昇圧して前記発生器に送
り、この発生器に与えられる加熱源により加熱・濃縮
し、冷媒蒸気を凝縮器に送出すとともに、この送出しに
より低濃度になった低濃度吸収溶液を前記吸収器に戻
し、前記凝縮器で液化した冷媒は減圧させて前記発生器
で蒸発させる操作を繰り返す吸収式ヒートポンプシステ
ムであって、中間圧力部位として再沸器及びコンデンサ
ーを設け、前記再沸器において、前記吸収器から高濃度
吸収溶液を移行させ、前記再生器を通る加熱源の排熱に
より蒸発させ、その蒸発ベーパをコンデンサーに送り、
このコンデンサーでの凝縮により強液と缶出液を得て、
前記強液は吸収器の低温部で加温した後、再生器に送
り、前記缶出液は吸収器の高温部で加温した後、再生器
に送る構成としたことを特徴とする吸収式ヒートポンプ
装置。
The present invention which has solved the above-mentioned problems is as follows. <Invention according to claim 1> Combination of a low-pressure side evaporator and absorber, and a high-pressure side regenerator and condenser using a non-azeotropic refrigerant and an absorbent, and refrigerant vapor evaporated in the evaporator Is brought into contact with and absorbed by the low-concentration absorption solution in the absorber, the high-concentration absorption solution is pressurized and sent to the generator, heated and concentrated by a heating source provided to the generator, and the refrigerant vapor is cooled. An absorption heat pump that repeats the operation of sending to the condenser, returning the low-concentration absorption solution reduced in concentration by the delivery to the absorber, and reducing the pressure of the refrigerant liquefied in the condenser and evaporating the refrigerant in the generator. A system comprising a reboiler and a condenser as an intermediate pressure section, wherein the high concentration absorbing solution is transferred from the absorber in the reboiler, and is evaporated by exhaust heat of a heating source passing through the regenerator. evaporation Send over path to the condenser,
Strong liquid and bottom liquid are obtained by condensation in this condenser,
The strong liquid is heated in a low temperature part of the absorber, and then sent to a regenerator. The bottom liquid is heated in a high temperature part of the absorber, and then sent to a regenerator. Heat pump device.

【0011】<請求項2項記載の発明>往復動内燃機関
の排ガスを前記再生器の加熱源に用い、前記再沸器のほ
かに第2再沸器を設け、前記強液の前記吸収器から再生
器へ送る経路に強液再加熱器を設け、前記内燃機関のシ
リンダの温排水または低圧蒸気を、前記第2再沸器及び
前記強液再加熱器に送る構成とした請求項1記載の吸収
式ヒートポンプ装置。
<Invention according to claim 2> The exhaust gas of the reciprocating internal combustion engine is used as a heating source of the regenerator, a second reboiler is provided in addition to the reboiler, and the absorber of the strong liquid is provided. 2. A strong liquid reheater is provided in a path for feeding from the to the regenerator, and a configuration is adopted in which hot waste water or low-pressure steam from the cylinder of the internal combustion engine is sent to the second reboiler and the strong liquid reheater. Absorption heat pump equipment.

【0012】<請求項3項記載の発明>前記蒸発器と吸
収器の間にガスタービン駆動の冷媒用機械式圧縮機を組
み込み、前記ガスタービンの排ガスを再生器の加熱源と
して使用するように構成した請求項1記載の吸収式ヒー
トポンプ装置。
According to a third aspect of the present invention, a mechanical compressor for a gas turbine driven refrigerant is incorporated between the evaporator and the absorber, and the exhaust gas of the gas turbine is used as a heat source for a regenerator. The absorption heat pump device according to claim 1, wherein the absorption heat pump device is configured.

【0013】<請求項4項記載の発明>前記吸収器から
前記再沸器に移行させる高濃度吸収溶液の一部を、前記
コンデンサーにも移行させ、前記コンデンサーでの希釈
に用いる構成とした請求項1〜3のいずれか1項に記載
の吸収式ヒートポンプ装置。本発明においては、非共沸
系動作流体、言い換えれば、冷媒と吸収剤の具体例とし
ては、水−アンモニア系、TFE−DMI系、TFE−
NMP系のものが工業的に好ましく挙げられるが、これ
らに限定されず、気液平衡が適切であり、紫外線破壊を
生ぜず温暖化係数の低い環境に無害の動作流体であれば
よい。
<Invention according to claim 4> A part of the high-concentration absorbing solution transferred from the absorber to the reboiler is also transferred to the condenser and used for dilution in the condenser. Item 4. The absorption heat pump device according to any one of Items 1 to 3. In the present invention, non-azeotropic working fluids, in other words, specific examples of the refrigerant and the absorbent include a water-ammonia system, a TFE-DMI system, and a TFE-
NMP-based ones are industrially preferred, but are not limited thereto, and may be any working fluid that has an appropriate vapor-liquid equilibrium, does not cause ultraviolet destruction, and is harmless to an environment with a low global warming potential.

【0014】(作用効果)次に本発明の吸収式ヒートポ
ンプの作用について説明する。本発明の吸収式ヒートポ
ンプにおいては、従来の吸収式ヒートポンプと同様、凝
縮器で凝縮された冷媒は過冷却器で過冷却された後、蒸
発器で蒸発し、冷熱を発生する。冷媒蒸気は吸収器に送
られ、高濃度吸収溶液に吸収され熱を放出、得られた高
濃度吸収溶液は吸収液ポンプにより再生器で加熱され、
冷媒と低濃度吸収溶液に分離し、冷媒は再び凝縮器へ、
また低濃度吸収溶液は吸収器に送られ、これが繰り返さ
れる。本発明においては、上記した冷媒や熱の流れとは
別に、駆動用加熱源を吸収器からの高濃度吸収溶液の加
熱に利用した後、再沸器及びコンデンサー(再沸器付き
コンデンサーも含む)に導き、強液と缶出液を得る。こ
の際の熱源として吸収熱は使わない。強液は吸収器の低
温部に送り、いわゆる重複部の回収でき難い熱を回収
し、蒸発させて再生器へ送られる。この場合には、ベー
パ量が多いので再生器での精留の負荷が軽減する。一
方、缶出液は吸収器の高温部へ送り、吸収熱で加温され
て熱回収をして再生器に導かれる。吸収器の高濃度吸収
溶液出口温度は25−40℃、缶出液の温度は70〜9
0℃となり、排ガスから熱回収ができ、強液を得るため
に吸収器の熱を使わなくても済むので、吸収器の熱はそ
の分だけ再生器に移動でき熱効率が向上する。またリフ
トの大きい場合 吸収器の最高温度が再沸器の温度に近
づき吸収器より再沸器に熱移動ができない欠点を 排ガ
ス加熱により吸収器とは関係なく強液が製造できるの
で、熱回収が可能となり高リフトの蒸発温度−20℃の
運転が可能になる。
(Function and Effect) Next, the function of the absorption heat pump of the present invention will be described. In the absorption heat pump of the present invention, similarly to the conventional absorption heat pump, the refrigerant condensed in the condenser is supercooled in the subcooler, and then evaporated in the evaporator to generate cold heat. The refrigerant vapor is sent to the absorber, absorbed by the high-concentration absorption solution and releases heat, and the obtained high-concentration absorption solution is heated by the regenerator by the absorption liquid pump,
Separated into refrigerant and low-concentration absorption solution, refrigerant is returned to the condenser again
Also, the low concentration absorbing solution is sent to the absorber, and this is repeated. In the present invention, separately from the above-described refrigerant and heat flows, a driving heating source is used for heating a high-concentration absorbing solution from an absorber, and then a reboiler and a condenser (including a condenser with a reboiler). To obtain a strong liquid and a bottom liquid. Absorption heat is not used as a heat source at this time. The strong liquid is sent to the low-temperature part of the absorber, where the so-called difficult-to-recover heat of the overlapping part is recovered, evaporated and sent to the regenerator. In this case, since the amount of vapor is large, the load of rectification in the regenerator is reduced. On the other hand, the bottom liquid is sent to a high-temperature portion of the absorber, heated by absorption heat, recovers heat, and guided to a regenerator. The outlet temperature of the high-concentration absorbing solution of the absorber is 25-40 ° C, and the temperature of the bottoms is 70-9.
At 0 ° C., heat can be recovered from the exhaust gas, and it is not necessary to use the heat of the absorber to obtain a strong liquid. Therefore, the heat of the absorber can be transferred to the regenerator by that much, thereby improving the heat efficiency. When the lift is large, the disadvantage that the maximum temperature of the absorber approaches the temperature of the reboiler and heat transfer from the absorber to the reboiler cannot be performed is possible. It becomes possible to operate at a high lift evaporation temperature of −20 ° C.

【0015】[0015]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照しながらさらに詳説する。◇
Embodiments of the present invention will be described below in more detail with reference to the drawings. ◇

【0016】<第1の実施の形態>◇ 図1は、本発明の第1の実施の形態であるヒートポンプ
装置の概略構成図であり、再生器1と、凝縮器2と、蒸
発器3と、吸収器4と、過冷却器5と、再沸器7を有す
るコンデンサー6と、高濃度吸収溶液ポンプP1と、強
液ポンプP2と、缶出液ポンプ(昇圧)P3と、駆動加
熱源12とを備える。図1においては、上部側ほど圧力
が高く、右側ほど温度が高いことを意味するものとして
図示してある。
<First Embodiment> FIG. 1 is a schematic configuration diagram of a heat pump device according to a first embodiment of the present invention, in which a regenerator 1, a condenser 2, an evaporator 3, and , An absorber 4, a supercooler 5, a condenser 6 having a reboiler 7, a high-concentration absorption solution pump P1, a strong solution pump P2, a bottom solution pump (pressure increase) P3, and a driving heating source 12. And In FIG. 1, it is illustrated that the pressure is higher on the upper side and the temperature is higher on the right side.

【0017】再生器1には駆動加熱源12による加熱器
1a、及び缶底液熱交換器1bが備えられており、再生
器1内の点線より右側が高温側回収部1c、左側が低温
側濃縮部1dである。また、凝縮器2には冷却手段2a
が、蒸発器3には加熱手段3aが、吸収器4には強液加
熱器4a、缶出液加熱器4b、及び水冷却器4cが、過
冷却器5には、凝縮冷媒と冷媒蒸気との熱交換手段が、
コンデンサー6には凝縮器6a及び分離手段6b、なら
びに再沸器7には駆動加熱源12の排熱により加熱され
る加熱器7aが備えられている。本実施の形態において
は、通常の吸収式ヒートポンプと同様に、以下の流れに
よって、冷熱を発生することができる。すなわち、凝縮
器2の冷却手段2aによって凝縮された冷媒は、減圧弁
G1を経て、過冷却器5内の熱交換手段により過冷却さ
れた後、蒸発器3で蒸発され、これよって冷熱が得ら
れ、冷媒蒸気は過冷却器5内の伝熱手段により、凝縮器
2から送られる凝縮冷媒と熱交換を行ない、凝縮冷媒の
熱を吸収した後、低圧の吸収器4に送られる。冷媒蒸気
は吸収器4で高濃度吸収溶液に吸収され熱を放出すると
共に、得られた高濃度吸収溶液は、高濃度吸収溶液ポン
プP1により再沸器7に送られ、駆動加熱源12の排熱
により加熱される加熱器7aにより加温されて冷媒が蒸
発させられ、コンデンサー6で凝縮されて強液となり、
残液は缶出液となる。強液と缶出液は、それぞれ強液ポ
ンプP2及び缶出液ポンプ(昇圧)P3により吸収器4
に送られ、強液は強液加熱器4aで、また缶出液は缶出
液加熱器4bにより加熱後、再生器1の高温側回収部1
c、低温側濃縮部1dにそれぞれ供給され、ここで精留
が行なわれる。再生器1には、駆動加熱源12により加
熱される駆動加熱源12による加熱器1aが配設されて
おり、これによって加熱される。再生器1の高温側回収
部1cでは、低濃度吸収溶液が低濃度吸収溶液熱交換器
1bにおける熱交換によって熱を放出した後、減圧弁G
2を経て低圧の吸収器4に戻される。一方、精留により
得られた冷媒は凝縮器2へ送られる。このような上記し
た循環が繰り返される。
The regenerator 1 is provided with a heater 1a by a driving heating source 12 and a can bottom liquid heat exchanger 1b. The right side of the dotted line in the regenerator 1 is a high temperature side recovery section 1c, and the left side is a low temperature side. This is the concentration section 1d. The condenser 2 has a cooling means 2a.
However, the evaporator 3 has a heating means 3a, the absorber 4 has a strong liquid heater 4a, a bottoms heater 4b, and a water cooler 4c, and the subcooler 5 has a condensed refrigerant and a refrigerant vapor. Heat exchange means
The condenser 6 is provided with a condenser 6a and a separating means 6b, and the reboiler 7 is provided with a heater 7a which is heated by exhaust heat of the driving heating source 12. In the present embodiment, similarly to a normal absorption heat pump, cold heat can be generated by the following flow. That is, the refrigerant condensed by the cooling means 2a of the condenser 2 passes through the pressure reducing valve G1, is supercooled by the heat exchange means in the subcooler 5, and is then evaporated by the evaporator 3, thereby obtaining cold heat. The refrigerant vapor exchanges heat with the condensed refrigerant sent from the condenser 2 by the heat transfer means in the subcooler 5, absorbs the heat of the condensed refrigerant, and is sent to the low-pressure absorber 4. The refrigerant vapor is absorbed by the high-concentration absorbing solution in the absorber 4 to release heat, and the obtained high-concentration absorbing solution is sent to the reboiler 7 by the high-concentration absorbing solution pump P 1, and the drive heating source 12 is discharged. The refrigerant is evaporated by being heated by the heater 7a heated by heat, and condensed by the condenser 6 to become a strong liquid,
The remaining liquid becomes bottoms. The strong liquid and the bottom liquid are supplied to the absorber 4 by the strong liquid pump P2 and the bottom liquid pump (pressure increase) P3, respectively.
The strong liquid is heated by a strong liquid heater 4a, and the bottom liquid is heated by a bottom liquid heater 4b.
c, each is supplied to the low temperature side enrichment section 1d, where rectification is performed. The regenerator 1 is provided with a heater 1a by the driving heating source 12 heated by the driving heating source 12, and is heated by this. In the high-temperature side recovery section 1c of the regenerator 1, after the low-concentration absorption solution releases heat by heat exchange in the low-concentration absorption solution heat exchanger 1b, the pressure reducing valve G
2 and is returned to the low-pressure absorber 4. On the other hand, the refrigerant obtained by rectification is sent to the condenser 2. Such a circulation described above is repeated.

【0018】本発明においては、通常の吸収式ヒートポ
ンプと同様の冷媒や熱の移動・循環に加え、コンデンサ
ー6を設けたことによりさらに、新たな冷媒や熱の移動
・循環が生じる。すなわち、コンデンサー6の凝縮部か
ら強溶液がポンプP2により吸収器4の最低温度部にお
ける強液加熱器4aで吸収熱を取り、加温され再生器1
に供給される。吸収器4の高濃度吸収溶液は、高濃度吸
収溶液ポンプP1により再沸器7に供給され、そこで蒸
発される。蒸発ベーパはコンデンサー6で凝縮されて冷
媒の多い強液とされ、未蒸発物は冷媒の少ない缶出液と
して、それぞれ再生器1の高温部に移行され、加熱され
た後、吸収器4に戻る。ベーパの多い強液と、冷媒濃度
は低いが温度の高い缶出液とは、濃度に適した再生器1
の供給段に入れることにより、駆動加熱源加熱器1aに
供給される駆動加熱源で加温され、冷媒の精留が行われ
る。一方、再生器1からの駆動加熱源の排熱はコンデン
サー6に導かれる。再生器1で精留された冷媒は、凝縮
器3に移行され、冷却水で凝縮されて過冷却器5を経
て、蒸発器3に供給され、ブラインにより加熱され、ブ
ラインは冷却されて冷熱を発生できる。この蒸発器3で
の蒸発ベーパは吸収器4に送られて、ヒートポンプのサ
イクルが完結する。なお、吸収器4に付設された冷却水
を送る水冷却器4cは、吸収器4全体の温度を調整する
ために用いられるものである。
In the present invention, in addition to the movement and circulation of the refrigerant and heat as in the ordinary absorption heat pump, the provision of the condenser 6 further causes the movement and circulation of new refrigerant and heat. That is, the strong solution from the condensing part of the condenser 6 absorbs the heat absorbed by the strong liquid heater 4a at the lowest temperature part of the absorber 4 by the pump P2, and is heated and regenerated.
Supplied to The high concentration absorption solution in the absorber 4 is supplied to the reboiler 7 by the high concentration absorption solution pump P1, where it is evaporated. The evaporative vapor is condensed by the condenser 6 to be a strong liquid with a large amount of refrigerant, and the un-evaporated matter is transferred to the high temperature part of the regenerator 1 as a bottom liquid with little refrigerant, heated, and then returned to the absorber 4. . A strong liquid having a large amount of vapor and a bottom liquid having a low refrigerant concentration but a high temperature are provided with a regenerator 1 suitable for the concentration.
The heating stage is heated by the driving heating source supplied to the driving heating source heater 1a, and the rectification of the refrigerant is performed. On the other hand, the exhaust heat of the driving heating source from the regenerator 1 is guided to the condenser 6. The refrigerant rectified by the regenerator 1 is transferred to the condenser 3, condensed by cooling water, supplied to the evaporator 3 via the supercooler 5, and heated by the brine, and the brine is cooled to generate cold heat. Can occur. The evaporation vapor in the evaporator 3 is sent to the absorber 4 to complete the cycle of the heat pump. The water cooler 4c attached to the absorber 4 for sending cooling water is used for adjusting the temperature of the entire absorber 4.

【0019】<第2の実施の形態>◇ 図2は本発明の第2の実施の形態を示したもので、燃料
8a及び空気8bの供給により駆動される往復動内燃機
関8の排ガスを再生器1の加熱源12に用いるものであ
る。また、再沸器5に第2再沸加熱器7bを設け、強液
の吸収器4から再生器1へ送る経路に強液再加熱器9を
設けたものである。内燃機関8のシリンダへの冷却水8
cの加温に伴なう温排水または低圧蒸気は、第2再沸加
熱器7b及び強液再加熱器9に送る構成とされている。
シリンダの廃熱は、通常は廃熱の30〜40%あり、再
生器1の熱量としては少ないが、温排水または低圧蒸気
を第2再沸加熱器7bに送り強液製造用に使用し、か
つ、強液再加熱器9に送り強液の加熱に使用すること
で、総合成績係数COPtはリフト35℃のとき約0.
85となる。なおリフトが高くなり缶出液の温度が高い
場合には吸収器での熱交缶ができないので缶出液を直接
再生器に送ることができる。
<Second Embodiment> FIG. 2 shows a second embodiment of the present invention, in which exhaust gas of a reciprocating internal combustion engine 8 driven by supply of fuel 8a and air 8b is regenerated. It is used for the heating source 12 of the vessel 1. Further, a second reboiler 7b is provided in the reboiler 5, and a strong liquid reheater 9 is provided in a path for feeding the strong liquid from the absorber 4 to the regenerator 1. Cooling water 8 to cylinders of internal combustion engine 8
The warm drainage or low-pressure steam accompanying the heating of c is sent to the second reboiler 7b and the strong liquid reheater 9.
The waste heat of the cylinder is usually 30 to 40% of the waste heat, and although the calorie of the regenerator 1 is small, hot wastewater or low-pressure steam is sent to the second reboiler 7b and used for producing a strong liquid. In addition, by sending it to the strong liquid reheater 9 and using it for heating the strong liquid, the overall coefficient of performance COPt is about 0.
It becomes 85. When the lift is high and the temperature of the bottom liquid is high, heat exchange in the absorber cannot be performed, so that the bottom liquid can be sent directly to the regenerator.

【0020】<第3の実施の形態>◇ 図3は本発明の第3の実施の形態を示したもので、蒸発
器3と吸収器4との間に、ガスタービン10駆動の冷媒
用機械式圧縮機11を組み込み、燃料供給10a及び空
気10bの供給により駆動されるガスタービン10の排
ガスは、再生器1の加熱源12として使用するように構
成したものである。機械式圧縮機11は、蒸発器3で発
生したベーパを昇圧し吸収器4に供給するのに使用され
る。ガスタービン8からの排ガスを再生器1の加熱に使
用し、さらにその排ガスをコンデンサー6に導き、強液
をつくる吸収器4の熱を再生器1に送る。この際ヒート
ポンプのリフトが低いので、リフト15℃で、成績係数
COPcは4〜6と高いものとなり、総合効率が高くな
る。
<Third Embodiment> FIG. 3 shows a third embodiment of the present invention. A refrigerant machine driven by a gas turbine 10 is provided between an evaporator 3 and an absorber 4. The exhaust gas of the gas turbine 10 driven by the supply of the fuel supply 10 a and the air 10 b is incorporated into the compressor 11, and the exhaust gas is used as the heating source 12 of the regenerator 1. The mechanical compressor 11 is used for increasing the pressure of the vapor generated in the evaporator 3 and supplying it to the absorber 4. The exhaust gas from the gas turbine 8 is used for heating the regenerator 1, and the exhaust gas is guided to the condenser 6, and the heat of the absorber 4 for producing a strong liquid is sent to the regenerator 1. At this time, since the lift of the heat pump is low, the coefficient of performance COPc is as high as 4 to 6 at the lift of 15 ° C., and the overall efficiency is high.

【0021】<第4の実施の形態>◇ 図2に示されているように、吸収器4から再沸器7に移
行させる高濃度吸収溶液の一部を、コンデンサー6にも
移行させ、コンデンサー6での希釈に用いることができ
る。たとえば、動作流体として水−アンモニア系を使用
した場合、吸収器4から再沸器7に移行させる高濃度吸
収溶液の濃度が40%以上となると、中間圧力0.8〜
1.0MPaではアンモニア濃度が80%以上となりコ
ンデンサー6で凝縮しない。そこで、その防止のため
に、高濃度吸収溶液の一部を、コンデンサー6にも移行
させ、コンデンサー6での希釈に用いることが望まし
い。
<Fourth Embodiment> As shown in FIG. 2, a part of the high-concentration absorption solution transferred from the absorber 4 to the reboiler 7 is also transferred to the condenser 6, and 6 can be used for dilution. For example, when a water-ammonia system is used as the working fluid, when the concentration of the high-concentration absorbing solution transferred from the absorber 4 to the reboiler 7 becomes 40% or more, the intermediate pressure becomes 0.8 to 0.8%.
At 1.0 MPa, the ammonia concentration becomes 80% or more, and no condensation occurs in the condenser 6. Therefore, in order to prevent this, it is desirable to transfer a part of the high-concentration absorption solution to the condenser 6 and use it for dilution in the condenser 6.

【0022】[0022]

【実施例】次に実施例を示す。◇Next, an embodiment will be described. ◇

【0023】<実施例1>◇ 第1の実施の形態での吸収式ヒートポンプ装置におい
て、動作流体をアンモニア−水とし、駆動加熱源とし
て、再生器1の駆動加熱源加熱器1aに、100KWの
ガスタービンの590℃の排気を、平均2775kg/
hrで供給することで、以下の条件で冷熱を発生させ
た。再生器1から、1050〜1250kg/hrのア
ンモニア蒸気を、凝縮器2へ送り40℃に凝縮し、過冷
却器5で、蒸発器3から送られるアンモニア蒸気と熱交
換して25〜28℃に冷却した後、蒸発器3へ供給し、
そこで戻り冷水により、アンモニアを圧力1.51MP
a、5℃で蒸発させ、7℃冷水の冷凍能力370kwを
得た。このアンモニア蒸気は過冷却器5で熱交換を行な
った後、低圧の吸収器4の低温部に送られ、一方、再生
器1からの低濃度吸収溶液を吸収器4の高温部に入れ、
ここで吸収熱を次の方法で除去した。すなわち、吸収器
4の高濃度吸収溶液は濃度50%で、再沸器7とコンデ
ンサー6に移行され、その加熱器7aにより加温されて
アンモニアがコンデンサー6へで送られ、凝縮強溶液を
及び缶出液を得た。一方、その缶出液は、吸収器4の高
温の缶出液加熱器4bで加温されて160℃となり再生
器1に導かれた。強液は、強液加熱器4aにおいて、コ
ンデンサー6から500〜600kg/hrで受け取
り、吸収熱で冷媒圧力1.53MPaで蒸発させ、再生
器1に送られた。水冷却器4cは、安定運転のため25
0Kwの除熱をした。上記のシステム操作中は、再生器
1の温度を180℃とし、低濃度吸収溶液(缶底液)を
缶底液熱交換器1bで140℃として吸収器4に送っ
た。一方、再生器1で濃縮された冷媒は、凝縮器2で凝
縮され、冷凍冷媒として使用された。本実施例におい
て、高濃度吸収溶液ポンプP1、強液ポンプP2および
缶出液ポンプP3の必要なポンプ動力はそれぞれ2.
2、0.75および2.2Kwである。このCOPcは
1.4〜1.5であり、総合成績係数COPtは約0.
9で、従来法に比較して15〜20%改良された。
<Example 1> In the absorption heat pump device of the first embodiment, the working fluid was ammonia-water, and the driving heating source heater 1a of the regenerator 1 was supplied with 100 KW as the driving heating source. The gas turbine exhaust at 590 ° C was averaged at 2775 kg /
By supplying at hrs, cold heat was generated under the following conditions. From the regenerator 1, 1050 to 1250 kg / hr of ammonia vapor is sent to the condenser 2 and condensed to 40 ° C. The supercooler 5 exchanges heat with the ammonia vapor sent from the evaporator 3 to 25 to 28 ° C. After cooling, supply to evaporator 3,
Therefore, the pressure of 1.51MPa is returned by cold water.
a, evaporated at 5 ° C. to obtain a refrigeration capacity of 370 kW of 7 ° C. cold water. After performing heat exchange in the supercooler 5, the ammonia vapor is sent to the low-temperature part of the low-pressure absorber 4, while the low-concentration absorption solution from the regenerator 1 is put into the high-temperature part of the absorber 4,
Here, the heat of absorption was removed by the following method. That is, the high-concentration absorbing solution in the absorber 4 has a concentration of 50%, is transferred to the reboiler 7 and the condenser 6, and is heated by the heater 7a, and ammonia is sent to the condenser 6, and the strong condensing solution is removed. A bottoms was obtained. On the other hand, the bottom liquid was heated by the high-temperature bottom liquid heater 4 b of the absorber 4 to 160 ° C. and led to the regenerator 1. The strong liquid was received from the condenser 6 at 500 to 600 kg / hr in the strong liquid heater 4 a, evaporated at a refrigerant pressure of 1.53 MPa by heat of absorption, and sent to the regenerator 1. The water cooler 4c has 25
The heat was removed at 0 Kw. During the operation of the system, the temperature of the regenerator 1 was set to 180 ° C., and the low-concentration absorbing solution (can bottom liquid) was sent to the absorber 4 at 140 ° C. in the can bottom liquid heat exchanger 1b. On the other hand, the refrigerant concentrated in the regenerator 1 was condensed in the condenser 2 and used as a frozen refrigerant. In this embodiment, the required pump powers of the high concentration absorption solution pump P1, the strong solution pump P2 and the bottoms pump P3 are respectively 2.
2, 0.75 and 2.2 Kw. This COPc is 1.4 to 1.5, and the overall coefficient of performance COPt is about 0.4.
In No. 9, the improvement was 15 to 20% compared to the conventional method.

【0024】<実施例2>◇ 第3の実施の形態での吸収式ヒートポンプ装置におい
て、実施例1のシステムに30kwのガスタービン駆動
のスクリュウ型コンプレッサーを設け、650℃の排気
を駆動加熱源加熱器1aに入れ180℃とし、その後、
再沸器7に入れ75℃で排出した。出口温度を80℃に
した場合、再生器1及び凝縮器2の圧力は1.55MP
a、蒸発器の圧力0.515MPa、吸収器の圧力1.
05MPaとした。このヒートポンプのCOPtは、リ
フト35℃で2.8であった。
<Embodiment 2> ◇ In the absorption heat pump apparatus according to the third embodiment, a 30 kW gas turbine driven screw-type compressor is provided in the system of Embodiment 1, and exhaust gas of 650 ° C. is heated by a driving heating source. Put in the vessel 1a and reach 180 ° C.
It was put into the reboiler 7 and discharged at 75 ° C. When the outlet temperature is 80 ° C., the pressure of the regenerator 1 and the condenser 2 is 1.55MP.
a, evaporator pressure 0.515 MPa, absorber pressure 1.
05 MPa. The COPt of this heat pump was 2.8 at a lift of 35 ° C.

【0025】[0025]

【発明の効果】以上のとおり、本発明の吸収式ヒートポ
ンプ装置においては、コンデンサー及び再沸器を設け
て、吸収器の操作とは無関係に排ガスで吸収熱の回収可
能な強液をつくることにより、吸収熱の損出なく、広い
リフトの範囲で、従来、吸収器の未利用廃棄熱を回収で
き、高いCOPの吸収式ヒートポンプを構築できる。ま
た、往復動内燃機関の排ガスを再生器の加熱源に用い、
再沸器のほかに第2再沸器を設け、強液の前記吸収器か
ら再生器へ送る経路に強液再加熱器を設け、内燃機関の
シリンダの温排水または低圧蒸気を、第2再沸器及び前
記強液再加熱器に送る構成とすることにより、効率の高
い熱利用が可能となる。さらに、蒸発器と吸収器の間に
ガスタービン駆動の冷媒用機械式圧縮機を組み込み、ガ
スタービンの排気をヒートポンプの熱源にするので、吸
収器の熱を有効に利用でき非常に高いCOPのヒートポ
ンプを構築できる。
As described above, in the absorption heat pump apparatus of the present invention, the condenser and the reboiler are provided to produce a strong liquid capable of recovering the absorbed heat from the exhaust gas regardless of the operation of the absorber. Conventionally, unused waste heat of the absorber can be recovered in a wide range of lift without loss of absorbed heat, and an absorption heat pump with a high COP can be constructed. Also, the exhaust gas of the reciprocating internal combustion engine is used as a heat source for the regenerator,
A second reboiler is provided in addition to the reboiler, a strong liquid reheater is provided in a path for sending the strong liquid from the absorber to the regenerator, and the hot waste water or low-pressure steam of the cylinder of the internal combustion engine is supplied to the second reboiler. By adopting a configuration in which the heat is sent to the boiler and the strong liquid reheater, highly efficient heat utilization becomes possible. In addition, a gas turbine driven mechanical compressor for refrigerant is installed between the evaporator and the absorber, and the exhaust gas of the gas turbine is used as the heat source of the heat pump. Can be constructed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態ヒートポンプ装置の
概略構成図である。
FIG. 1 is a schematic configuration diagram of a heat pump device according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態ヒートポンプ装置の
概略構成図である。
FIG. 2 is a schematic configuration diagram of a heat pump device according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態ヒートポンプ装置の
概略構成図である。
FIG. 3 is a schematic configuration diagram of a heat pump device according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…再生器、2…凝縮器、3…蒸発器、4…吸収器、5
…過冷却器、6…コンデンサー、7…再沸器、7a…
(第1)再沸加熱器、7b…第2再沸加熱器、8…往復
動内燃機関、9…強液再加熱器、10…ガスタービン、
11…冷媒用機械式圧縮機、P1…高濃度吸収溶液ポン
プ、P2…強液ポンプ、P3…缶出液ポンプ、12…駆
動加熱源。
DESCRIPTION OF SYMBOLS 1 ... Regenerator, 2 ... Condenser, 3 ... Evaporator, 4 ... Absorber, 5
... supercooler, 6 ... condenser, 7 ... reboiler, 7a ...
(1) reboiler, 7b: second reboiler, 8: reciprocating internal combustion engine, 9: strong liquid reheater, 10: gas turbine,
11: mechanical compressor for refrigerant, P1: high concentration absorption solution pump, P2: strong liquid pump, P3: bottom discharge pump, 12: drive heating source.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】非共沸系の冷媒と吸収剤を用い、低圧側の
蒸発器及び吸収器、ならびに高圧側の再生器及び凝縮器
を組み合わせ、前記蒸発器で蒸発した冷媒蒸気を前記吸
収器内の低濃度吸収溶液に接触・吸収させ、高濃度にな
った吸収溶液を昇圧して前記発生器に送り、この発生器
に与えられる加熱源により加熱・濃縮し、冷媒蒸気を凝
縮器に送出すとともに、この送出しにより低濃度になっ
た低濃度吸収溶液を前記吸収器に戻し、前記凝縮器で液
化した冷媒は減圧させて前記発生器で蒸発させる操作を
繰り返す吸収式ヒートポンプシステムであって、 中間圧力部位として再沸器及びコンデンサーを設け、前
記再沸器において、前記吸収器から高濃度吸収溶液を移
行させ、前記再生器を通る加熱源の排熱により蒸発さ
せ、その蒸発ベーパをコンデンサーに送り、このコンデ
ンサーでの凝縮により強液と缶出液を得て、 前記強液は吸収器の低温部で加温した後、再生器に送
り、前記缶出液は吸収器の高温部で加温した後、再生器
に送る構成としたことを特徴とする吸収式ヒートポンプ
装置。
A low-pressure side evaporator and an absorber, and a high-pressure side regenerator and a condenser are combined using a non-azeotropic refrigerant and an absorbent, and the refrigerant vapor evaporated in the evaporator is supplied to the absorber. The absorption solution having a high concentration is brought into contact with and absorbed by the low-concentration absorption solution in the container, and the absorption solution having a high concentration is pressurized and sent to the generator, heated and concentrated by a heating source provided to the generator, and the refrigerant vapor is sent to the condenser. An absorption heat pump system that repeats an operation of discharging the low-concentration absorption solution having a low concentration by the delivery to the absorber, reducing the pressure of the refrigerant liquefied in the condenser, and evaporating the refrigerant in the generator. A reboiler and a condenser are provided as an intermediate pressure section. In the reboiler, the high-concentration absorption solution is transferred from the absorber, and evaporated by the exhaust heat of a heating source passing through the regenerator, and the evaporation vapor is condensed. The strong liquid is heated in the low temperature part of the absorber and sent to the regenerator, and the strong liquid is heated in the high temperature part of the absorber. An absorption heat pump device, wherein the heat is sent to a regenerator after being heated.
【請求項2】往復動内燃機関の排ガスを前記再生器の加
熱源に用い、前記再沸器のほかに第2再沸器を設け、前
記強液の前記吸収器から再生器へ送る経路に強液再加熱
器を設け、 前記内燃機関のシリンダの温排水または低圧蒸気を、前
記第2再沸器及び前記強液再加熱器に送る構成とした請
求項1記載の吸収式ヒートポンプ装置。
2. An exhaust gas from a reciprocating internal combustion engine is used as a heating source for the regenerator, and a second reboiler is provided in addition to the reboiler, so that a path for sending the strong liquid from the absorber to the regenerator is provided. The absorption heat pump device according to claim 1, further comprising a strong liquid reheater, wherein hot water discharged from a cylinder of the internal combustion engine or low-pressure steam is sent to the second reboiler and the strong liquid reheater.
【請求項3】前記蒸発器と吸収器の間にガスタービン駆
動の冷媒用機械式圧縮機を組み込み、前記ガスタービン
の排ガスを再生器の加熱源として使用するように構成し
た請求項1記載の吸収式ヒートポンプ装置。
3. The gas turbine driven mechanical compressor according to claim 1, wherein a gas turbine driven refrigerant compressor is incorporated between the evaporator and the absorber, and the exhaust gas of the gas turbine is used as a heating source of a regenerator. Absorption heat pump device.
【請求項4】前記吸収器から前記再沸器に移行させる高
濃度吸収溶液の一部を、前記コンデンサーにも移行さ
せ、前記コンデンサーでの希釈に用いる構成とした請求
項1〜3のいずれか1項に記載の吸収式ヒートポンプ装
置。
4. The method according to claim 1, wherein a part of the high-concentration absorbing solution transferred from the absorber to the reboiler is also transferred to the condenser and used for dilution in the condenser. Item 2. An absorption heat pump device according to item 1.
JP2001039207A 2001-01-12 2001-01-12 Absorbing type heat pump device Pending JP2002206818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001039207A JP2002206818A (en) 2001-01-12 2001-01-12 Absorbing type heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001039207A JP2002206818A (en) 2001-01-12 2001-01-12 Absorbing type heat pump device

Publications (1)

Publication Number Publication Date
JP2002206818A true JP2002206818A (en) 2002-07-26

Family

ID=18902050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001039207A Pending JP2002206818A (en) 2001-01-12 2001-01-12 Absorbing type heat pump device

Country Status (1)

Country Link
JP (1) JP2002206818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108844253A (en) * 2018-09-06 2018-11-20 华北电力大学 A kind of superhigh temperature non-azeotropic working medium heat pump unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108844253A (en) * 2018-09-06 2018-11-20 华北电力大学 A kind of superhigh temperature non-azeotropic working medium heat pump unit
CN108844253B (en) * 2018-09-06 2023-11-24 华北电力大学 Super-high temperature non-azeotropic working medium heat pump unit

Similar Documents

Publication Publication Date Title
JP6441511B2 (en) Multistage plate-type evaporative absorption refrigeration apparatus and method
JPH10259737A (en) Gas turbine intake air cooling device
US20100229594A1 (en) Chilling economizer
JP4187562B2 (en) Ammonia absorption heat pump
JP4187563B2 (en) Ammonia absorption refrigerator
JP5389366B2 (en) Steam compression / absorption hybrid refrigerator
JP3865346B2 (en) Absorption chiller / heater
JP2002206818A (en) Absorbing type heat pump device
JPH05272837A (en) Compression absorption composite heat pump
US6651457B2 (en) Absorption refrigerator
JPH06257878A (en) Absorption refrigerator and water cooler-heater with both low temperature regenerator and exhaust heat recovering low temperature regenerator
KR101271189B1 (en) Intake air cooling system for ship
JP2010096414A (en) Ammonia absorption refrigeration type power generating device
JP3290464B2 (en) Combined refrigeration equipment
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system
JP4005884B2 (en) Ammonia absorption refrigerator
JP2004190886A (en) Absorption refrigerating machine and absorption refrigerating system
JP2000018757A (en) Cooler
JP2002188438A (en) Power recovery system
JPH02106665A (en) Cogeneration system utilizing absorbing type heat pump cycle
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JPH06185830A (en) Absorption type refrigerator, cold/warm water machine and heat pump provided with steam turbine and compressor at absorber
JP2004069276A (en) Waste heat recovering cooling system
JPH06213526A (en) Complex heat pump
JP4169318B2 (en) Exhaust gas type absorption chiller / heater