JP2002206814A - Rapid freezing cycle device and rapid freezing method using the same - Google Patents

Rapid freezing cycle device and rapid freezing method using the same

Info

Publication number
JP2002206814A
JP2002206814A JP2000402323A JP2000402323A JP2002206814A JP 2002206814 A JP2002206814 A JP 2002206814A JP 2000402323 A JP2000402323 A JP 2000402323A JP 2000402323 A JP2000402323 A JP 2000402323A JP 2002206814 A JP2002206814 A JP 2002206814A
Authority
JP
Japan
Prior art keywords
compressor
temperature
rapid
refrigerating capacity
compressors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000402323A
Other languages
Japanese (ja)
Other versions
JP4528436B2 (en
Inventor
Tetsuo Owada
哲男 大和田
Hiroichi Furukawa
博一 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABI KK
Original Assignee
ABI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABI KK filed Critical ABI KK
Priority to JP2000402323A priority Critical patent/JP4528436B2/en
Publication of JP2002206814A publication Critical patent/JP2002206814A/en
Application granted granted Critical
Publication of JP4528436B2 publication Critical patent/JP4528436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rapid freezing cycle device and a rapid freezing method using the same in which a maximum freezing capability can be realized over a wide range of evaporating temperature and further a freezing processing capability can be improved. SOLUTION: There is provided a rapid freezing cycle device 1 in which compressors 3, 5, a condenser 9, an expansion valve 15 and an evaporator 17 are connected in series in an annular form by a refrigerant pipe. In this rapid freezing device, a first compressor 3 and a second compressor 5 are arranged side by side in which freezing capabilities are reversed to each other with an interface of a predetermined evaporating temperature of refrigerant. There is provided an operation controller for detecting the evaporating temperature and changing over its operation to the compressors 3, 5 where a high freezing capability can be attained at the detected temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、急速冷凍サイクル
装置およびこれを用いた急速冷凍方法に関する。
The present invention relates to a rapid refrigeration cycle apparatus and a rapid refrigeration method using the same.

【0002】[0002]

【従来の技術】従来から、食品等の鮮度を長期間維持し
て保存する冷凍装置が種々開発され利用されているが、
生鮮食品を冷凍する際のドリップ(解凍時の液汁の流
出)の問題は十分には解決されていない。このドリップ
は、生鮮食品内の水分が凍結する際に氷の結晶が過度に
大きく成長して粗大化し、これにより細胞組織が破壊さ
れて生じるもので、つまり前記氷の結晶が成長する−1
〜−5℃の温度域の通過時間が長いことに起因してい
る。そこで、本願出願人は、先にこの温度域を極短時間
で通過できる急速冷凍装置を開発し、この問題を解決し
た。
2. Description of the Related Art Conventionally, various types of refrigerating apparatuses for preserving and preserving the freshness of food and the like for a long time have been developed and used.
The problem of drip (leaching sap when thawing) when freezing fresh food is not sufficiently solved. This drip is generated when ice in the fresh food freezes, and ice crystals grow excessively large and become coarse, thereby destroying cell tissues, that is, the ice crystals grow -1.
This is due to the long transit time in the temperature range of -5C. Therefore, the present applicant has previously developed a rapid refrigeration apparatus that can pass through this temperature range in an extremely short time, and has solved this problem.

【0003】この急速冷凍装置は、生鮮食品等の冷凍対
象物の出し入れ用ドアを有する密閉型の冷凍庫と、その
庫内に磁場を作用する磁場発生手段と、同庫内を冷却す
るための急速冷凍サイクル装置とを備え、当該急速冷凍
サイクル装置は、圧縮機、凝縮器、膨張弁、および蒸発
器を冷媒管路にて環状に連結して構成される。そして、
庫内に載置した冷凍対象物に磁場をかけながら冷却し
て、同対象物内部の水分を過冷却状態にすることで、前
記温度域を極短時間で通過させ、最終的に概ね−50℃
という極低温にまで冷凍するものである。
This quick freezing apparatus comprises a hermetic freezer having a door for taking in and out a frozen object such as fresh food, a magnetic field generating means for applying a magnetic field to the freezer, and a quick freezer for cooling the inside of the freezer. A refrigerating cycle device, wherein the rapid refrigerating cycle device is configured by annularly connecting a compressor, a condenser, an expansion valve, and an evaporator by a refrigerant line. And
The frozen object placed in the refrigerator is cooled while applying a magnetic field to make the water inside the object in a supercooled state, so that it passes through the temperature range in a very short time, and finally has a temperature of approximately −50. ° C
It is frozen to extremely low temperatures.

【0004】しかしながら、当該急速冷凍装置はバッチ
式であるため、一回毎の冷凍処理において、前記ドアを
開閉して冷凍対象物を庫内へ搬入して載置し、冷凍後ド
アを開けて搬出するという手順を踏む。したがって、該
冷凍処理の度に、その庫内温度を毎回概ね常温から−6
0℃まで下降させなければならず、その温度下降に著し
く時間がかかる結果、その冷凍処理能力は非常に低くな
り、更なる改善が望まれている。
[0004] However, since the rapid freezing apparatus is of a batch type, in each freezing process, the door is opened and closed, the object to be frozen is carried into the refrigerator, placed, and after the freezing, the door is opened. Take the procedure of unloading. Therefore, every time the freezing process is performed, the temperature in the refrigerator is generally lowered from room temperature by -6 ° C.
The temperature must be lowered to 0 ° C., and the temperature reduction takes a considerable amount of time. As a result, the refrigerating capacity is extremely low, and further improvement is desired.

【0005】この降温速度を速くするには、前記急速冷
凍サイクル装置の冷凍能力Q(kW)を高くすればよ
く、該冷凍能力は、主に前記圧縮機の種類と、冷媒の蒸
発温度に応じて変化する。一般的には、冷媒の蒸発温度
の下降に伴って冷凍能力は低下する性質を示し、その立
ち下がり曲線は主に圧縮機の種類によって定まる。例え
ば、図2に、7.5kWの電動機称呼出力の単段圧縮機
並びに二段圧縮機の冷凍能力特性を、縦軸に冷凍能力、
横軸に冷媒の蒸発温度をとって示すが、単段圧縮機の特
性は、蒸発温度の低下に伴い冷凍能力が単調減少する下
に凸の曲線である一方、二段圧縮機にあっては、使用下
限温度から−35℃までの範囲では、概ね前記曲線に沿
ってその上方に位置し、−35℃以上ではその冷凍能力
が一定値となる複合曲線である(詳細は後記を参照)。
このため、これら二つの圧縮機の冷凍能力は、概ね−3
1℃を境に逆転し、該境界温度よりも高温側では単段圧
縮機の方が高い冷凍能力を、また低温側では二段圧縮機
の方が高い冷凍能力を発揮し、つまり各圧縮機が高い冷
凍能力を発揮できる蒸発温度範囲は限られている。
In order to increase the cooling rate, the refrigerating capacity Q (kW) of the rapid refrigerating cycle device may be increased. The refrigerating capacity mainly depends on the type of the compressor and the evaporation temperature of the refrigerant. Change. Generally, the refrigerating capacity decreases as the evaporation temperature of the refrigerant decreases, and its falling curve is determined mainly by the type of the compressor. For example, FIG. 2 shows the refrigerating capacity characteristics of a single-stage compressor and a two-stage compressor having a nominal output of 7.5 kW of an electric motor, and the vertical axis represents the refrigerating capacity.
The evaporating temperature of the refrigerant is shown on the horizontal axis, and the characteristics of the single-stage compressor have a downwardly convex curve in which the refrigerating capacity monotonously decreases with a decrease in the evaporating temperature. In the range from the lower limit temperature of use to -35 ° C, it is a composite curve which is located substantially above the curve along the curve, and has a constant refrigeration capacity at -35 ° C or higher (for details, see below).
Therefore, the refrigerating capacity of these two compressors is approximately -3.
Inverted around 1 ° C, the single-stage compressor has a higher refrigeration capacity on the higher side than the boundary temperature, and the two-stage compressor has a higher refrigeration capacity on the lower side. Has a limited evaporating temperature range in which it can exhibit high refrigeration capacity.

【0006】一方、上述した急速冷凍装置にあっては、
庫内を常温から−60℃までという広い温度範囲で冷却
しなければならず、この時には、庫内温度と概ね同様
に、冷媒の蒸発温度は約常温から−60℃位まで大幅に
変化する。よって、いずれの圧縮機を一つだけ用いて
も、高温側のみ、若しくは低温側のみ優れるというよう
に一長一短があって、前記蒸発温度の全範囲で最高の冷
凍能力を発揮することはできない。そして、その結果、
急速冷凍過程、つまり冷凍開始から完了に至る間、降温
速度を常に速くすることは難しく、ひいては冷凍処理能
力の向上が阻まれている。
On the other hand, in the above-mentioned rapid refrigeration apparatus,
The inside of the refrigerator must be cooled in a wide temperature range from room temperature to −60 ° C. At this time, the evaporation temperature of the refrigerant changes substantially from about room temperature to about −60 ° C., almost in the same manner as the temperature in the refrigerator. Therefore, even if only one of the compressors is used, it has advantages and disadvantages such as being superior only on the high temperature side or only on the low temperature side, and cannot exhibit the highest refrigeration capacity in the entire range of the evaporation temperature. And as a result,
During the rapid refrigeration process, that is, during the period from the start to the end of freezing, it is difficult to always increase the temperature drop rate, which hinders the improvement of the refrigeration processing capacity.

【0007】本発明はかかる従来の課題に鑑みて成され
たもので、広範囲の蒸発温度に亘って最高の冷凍能力を
発揮できて冷凍処理能力の向上が図れる急速冷凍サイク
ル装置およびこれを用いた急速冷凍方法を提供すること
を目的とする。
The present invention has been made in view of such conventional problems, and uses a rapid refrigeration cycle apparatus capable of exhibiting the highest refrigeration capacity over a wide range of evaporation temperatures and improving the refrigeration processing capacity. It is intended to provide a quick freezing method.

【0008】[0008]

【課題を解決するための手段】かかる目的を達成するた
めに請求項1に示す発明は、圧縮機、凝縮器、膨張弁、
蒸発器を順次、冷媒管路にて環状に連結してなる急速冷
凍サイクル装置において、冷媒の所定の蒸発温度を境に
冷凍能力が互いに逆転する第1圧縮機と第2圧縮機とを
並設することを特徴する。
In order to achieve the above object, an invention according to claim 1 includes a compressor, a condenser, an expansion valve,
In a rapid refrigeration cycle device in which evaporators are sequentially connected in a ring by a refrigerant pipe, a first compressor and a second compressor whose refrigerating capacities are reversed with respect to a predetermined evaporation temperature of a refrigerant are juxtaposed. It is characterized by doing.

【0009】上記発明によれば、前記急速冷凍サイクル
装置は、冷媒の所定の蒸発温度を境に冷凍能力が互いに
逆転する第1圧縮機と第2圧縮機とを並設している。こ
のため、これら圧縮機の内、一方に、蒸発温度の高温側
で高い冷凍能力を発揮する圧縮機を適用し、また他方に
は、低温側で高い冷凍能力を発揮する圧縮機を適用すれ
ば、前記急速冷凍過程において、高い冷凍能力を発揮す
るいずれか一方の圧縮機のみを単独運転することで、高
温域から低温域に至る広範囲の蒸発温度において常に高
い冷凍能力を発揮することができる。よって、バッチ式
の急速冷凍装置のように蒸発温度が広範囲に変化する場
合であっても、その冷凍開始から完了に至るまで最高の
冷凍能力を発揮することができて、その降温速度を最速
に維持できる。また、必要に応じてこれら圧縮機を二台
運転することも可能なため、要求される冷凍能力が大き
くて一台の圧縮機では賄えない場合には、二台運転して
冷凍能力を概ね倍増して対応することもできる。
According to the above-mentioned invention, the rapid refrigeration cycle apparatus includes the first compressor and the second compressor in which the refrigerating capacity is reversed with respect to a predetermined evaporation temperature of the refrigerant. Therefore, if one of these compressors is applied with a compressor exhibiting a high refrigerating capacity on the high temperature side of the evaporation temperature, and the other is applied with a compressor exhibiting a high refrigerating capacity on the low temperature side. In the rapid refrigeration process, by operating only one of the compressors exhibiting a high refrigerating capacity alone, a high refrigerating capacity can be constantly exhibited at a wide range of evaporation temperatures from a high temperature range to a low temperature range. Therefore, even when the evaporation temperature varies widely as in the case of a batch-type rapid refrigeration apparatus, the highest refrigeration capacity can be exhibited from the start to the completion of refrigeration, and the rate of temperature decrease is the fastest. Can be maintained. In addition, since two compressors can be operated as needed, if the required refrigerating capacity is large and cannot be covered by one compressor, the two refrigerating machines are operated and the refrigerating capacity is generally reduced. It is possible to respond by doubling.

【0010】請求項2に示す発明は、前記請求項1に記
載の急速冷凍サイクル装置において、前記蒸発温度を検
知して、該検知温度における冷凍能力が高い方の圧縮機
への単独運転に作動を切り換える作動制御器を備えるこ
とを特徴する。上記発明によれば、前記作動制御器を備
えたので、前記急速冷凍過程の間、冷媒の蒸発温度を逐
一検知して、該検知温度における冷凍能力の高い方の圧
縮機を作動し低い方を停止する操作が自動的におこなわ
れる。したがって、前述した圧縮機の単独運転の切り換
え動作を確実におこなうことができて、高い冷凍能力を
確実に発揮することができる。
According to a second aspect of the present invention, in the rapid refrigeration cycle apparatus according to the first aspect, the evaporating temperature is detected, and the compressor is operated independently with respect to the compressor having a higher refrigerating capacity at the detected temperature. And an operation controller for switching between the two. According to the above invention, since the operation controller is provided, during the rapid refrigeration process, the evaporating temperature of the refrigerant is detected one by one, and the compressor having the higher refrigeration capacity at the detected temperature is operated to determine the lower one. The operation to stop is performed automatically. Therefore, the switching operation of the single operation of the compressor described above can be reliably performed, and a high refrigeration capacity can be reliably exhibited.

【0011】請求項3に示す発明は、請求項1若しくは
2のいずれかに記載の急速冷凍サイクル装置において、
前記凝縮器が、前記第1および第2圧縮機に対応して、
それぞれに直列接続されて並設された第1、第2凝縮器
とからなり、第1圧縮機と第1凝縮器、並びに第2圧縮
機と第2凝縮器とは、それぞれコンデンシング・ユニッ
トをなしていることを特徴とする。上記発明によれば、
市販のコンデンシング・ユニットを利用して、当該急速
冷凍サイクル装置を構成することができるため、組立工
数の削減が図れる。また、第1、第2圧縮機のそれぞれ
の特性に合った凝縮器を各々選定できるため、圧縮機と
凝縮器との相性の最適化が図れ、冷凍能力を更に向上す
ることができる。
According to a third aspect of the present invention, there is provided the rapid refrigeration cycle apparatus according to the first or second aspect,
The condenser corresponds to the first and second compressors,
The first compressor and the first condenser, and the second compressor and the second condenser are each provided with a condensing unit. It is characterized by doing. According to the above invention,
Since the quick refrigeration cycle apparatus can be configured using a commercially available condensing unit, the number of assembly steps can be reduced. In addition, since a condenser suitable for each characteristic of the first and second compressors can be selected, the compatibility between the compressor and the condenser can be optimized, and the refrigerating capacity can be further improved.

【0012】請求項4に示す発明は、請求項1〜3のい
ずれかに記載の急速冷凍サイクル装置において、前記境
界温度より高温側で前記第2圧縮機より高い冷凍能力を
発揮する第1圧縮機として単段圧縮機を、低温側で前記
第1圧縮機より高い冷凍能力を発揮する第2圧縮機とし
て二段圧縮機を用いることを特徴とする。
According to a fourth aspect of the present invention, in the rapid refrigeration cycle apparatus according to any one of the first to third aspects, the first compression having a higher refrigerating capacity than the second compressor at a temperature higher than the boundary temperature. It is characterized in that a single-stage compressor is used as the compressor and a two-stage compressor is used as the second compressor that exhibits a higher refrigerating capacity than the first compressor on the low temperature side.

【0013】上記発明によれば、高温側で高い冷凍能力
を発揮する第1圧縮機として単段圧縮機を、低温側で高
い冷凍能力を発揮する第2圧縮機として二段圧縮機を用
いているので、互いに同一の電動機称呼出力の圧縮機を
用いても、前記境界温度にて互いの冷凍能力を逆転させ
て、第1圧縮機を高温側冷凍用に、第2圧縮機を低温側
冷凍用に各々特化させて用いることができる。よって、
圧縮機を作動する作動手段への必要電力を同じにできる
ので、該作動手段に電力供給する受配電設備などの仕様
を最小にできる。
According to the above invention, a single-stage compressor is used as the first compressor exhibiting a high refrigerating capacity on the high temperature side, and a two-stage compressor is used as the second compressor exhibiting a high refrigerating capacity on the low temperature side. Therefore, even if compressors having the same motor output power are used, the refrigerating capacity is reversed at the boundary temperature, and the first compressor is used for high-temperature refrigeration, and the second compressor is used for low-temperature refrigeration. Can be used by specializing each. Therefore,
Since the required power to the operating means for operating the compressor can be made the same, the specifications of power receiving and distribution equipment for supplying power to the operating means can be minimized.

【0014】請求項5に示す発明は、請求項1〜4のい
ずれかに記載の急速冷凍サイクル装置において、前記圧
縮機の吐出側の冷媒管路に設けられた油分離器と、該油
分離器にて分離回収された潤滑油を貯留するリザーブタ
ンクと、該リザーブタンクの潤滑油を各圧縮機へ還流す
る還油管と、該各還油管の流路を開閉する各バルブと、
前記各圧縮機内の油面高さを検知する油面センサーと、
該各油面高さに応じて前記各バルブを開閉制御するバル
ブ制御器とを備えることを特徴とする。
According to a fifth aspect of the present invention, in the rapid refrigeration cycle apparatus according to any one of the first to fourth aspects, an oil separator provided in a refrigerant pipe on a discharge side of the compressor; A reserve tank for storing the lubricating oil separated and recovered by the vessel, a return oil pipe for returning the lubricating oil of the reserve tank to each compressor, and each valve for opening and closing the flow path of each return oil pipe,
An oil level sensor for detecting an oil level in each of the compressors,
A valve controller that controls opening and closing of each of the valves according to each of the oil level.

【0015】上記発明によれば、冷媒に混入した圧縮機
の潤滑油は、圧縮機の吐出側の油分離器で分離回収され
てリザーブタンクに貯留される。そして、各圧縮機がそ
れぞれに備える油面センサーにて圧縮機の各クランク室
内の油面を検知し、検知油面高さに応じて、各還油管に
それぞれ設けられた前記バルブを開閉して油面高さを調
整する。したがって、常に必要な潤滑油量をそれぞれの
クランク室内に保持することができる。よって、従来か
ら二つの圧縮機を並設する際におこなわれている、均油
管若しくは均圧管にて互いの圧縮機のクランク室を連結
して潤滑油の油面を維持する方法において生じていた、
互いのクランク室の圧力差に起因する油面変動の問題、
ひいては油面降下に伴う潤滑不良の問題は生じない。
According to the present invention, the lubricating oil of the compressor mixed into the refrigerant is separated and recovered by the oil separator on the discharge side of the compressor and stored in the reserve tank. Then, each compressor detects an oil level in each crank chamber of the compressor with an oil level sensor provided in each of the compressors, and opens and closes the valves provided in each return oil pipe according to the detected oil level. Adjust the oil level. Therefore, the required amount of lubricating oil can always be held in each crank chamber. Therefore, a problem has arisen in a method in which two compressors are conventionally arranged side by side, and a method in which the crank chambers of the compressors are connected to each other with an oil equalizing pipe or an equalizing pipe to maintain the oil level of the lubricating oil. ,
The problem of oil level fluctuation due to the pressure difference between the crankcases,
As a result, the problem of poor lubrication due to the oil level drop does not occur.

【0016】請求項6に示す発明は、圧縮機、凝縮器、
膨張弁、蒸発器を順次、冷媒管路にて環状に連結してな
る急速冷凍サイクル装置を用いた急速冷凍方法であっ
て、冷媒の所定の蒸発温度を境に冷凍能力が互いに逆転
する第1圧縮機と第2圧縮機とを並設し、該両圧縮機
を、要求される冷凍能力に応じて同時に、あるいは単独
で運転させることを特徴とする。
According to a sixth aspect of the present invention, there is provided a compressor, a condenser,
A rapid refrigeration method using a rapid refrigeration cycle device in which an expansion valve and an evaporator are sequentially connected in an annular manner by a refrigerant pipe, wherein a refrigeration capacity is reversed at a predetermined evaporation temperature of a refrigerant. A compressor and a second compressor are provided side by side, and both compressors are operated simultaneously or independently according to a required refrigerating capacity.

【0017】上記発明によれば、急速冷凍過程において
要求される冷凍能力に応じて、第1圧縮機若しくは第2
圧縮機のいずれか一方の単独運転、または両圧縮機の同
時運転に適宜切り換えて急速冷凍することができる。こ
のため、これら運転のうち前記単独運転の切り換えによ
って、すなわち、蒸発温度の高温側では、該温度にて高
い冷凍能力を発揮する一方の圧縮機のみを単独運転し、
低温側では、該温度にて高い冷凍能力を発揮する他方の
圧縮機のみを単独運転することによって、高温域から低
温域に至る広範囲の蒸発温度において常に高い冷凍能力
を発揮することができる。したがって、バッチ式の急速
冷凍装置のように蒸発温度が広範囲に変化する場合であ
っても、その冷凍開始から完了に至るまで最高の冷凍能
力を発揮することができて、その降温速度を最速に維持
できる。また、要求される冷凍能力が大きくて一台の圧
縮機では賄えない場合には、これら両圧縮機を同時運転
して、冷凍能力を倍増させることもできる。
According to the above invention, the first compressor or the second compressor can be used in accordance with the refrigerating capacity required in the rapid refrigerating process.
Rapid freezing can be performed by appropriately switching to either one of the compressors alone operation or the simultaneous operation of both compressors. For this reason, of these operations, by switching the single operation, that is, on the high temperature side of the evaporating temperature, only one of the compressors exhibiting a high refrigerating capacity at the temperature is operated alone,
On the low temperature side, by operating only the other compressor that exhibits a high refrigerating capacity at that temperature alone, a high refrigerating capacity can always be exhibited over a wide range of evaporation temperatures from a high temperature range to a low temperature range. Therefore, even when the evaporation temperature varies widely as in the case of a batch type rapid refrigerating apparatus, the highest refrigerating capacity can be exhibited from the start to the end of the refrigerating operation, and the temperature decreasing rate is the fastest. Can be maintained. If the required refrigerating capacity is too large to be covered by a single compressor, both compressors can be operated simultaneously to double the refrigerating capacity.

【0018】請求項7に示す発明は、請求項6に記載の
急速冷凍方法において、前記蒸発温度を検知して、該検
知温度における冷凍能力が高い方の圧縮機のみを単独運
転させることを特徴する。上記発明によれば、前記検知
温度における冷凍能力が高い方の圧縮機のみを単独運転
させるので、前記急速冷凍過程に亘って高い冷凍能力を
維持しつつ、消費電力を低く抑えることができる。
According to a seventh aspect of the present invention, in the rapid refrigeration method according to the sixth aspect, the evaporating temperature is detected, and only the compressor having a higher refrigerating capacity at the detected temperature is operated alone. I do. According to the above invention, only the compressor having the higher refrigerating capacity at the detected temperature is operated alone, so that the power consumption can be reduced while maintaining the high refrigerating capacity throughout the rapid freezing process.

【0019】[0019]

【発明の実施の形態】以下、本発明に係る実施形態を添
付図面を参照して詳細に説明する。図1は、本発明に係
る第1実施形態の急速冷凍サイクル装置の系統図であ
り、図2は、該急速冷凍サイクル装置に供された圧縮機
の冷凍特性たる、冷凍能力の対蒸発温度特性のグラフで
ある。尚、図1にあっては、圧縮機の作動を制御する作
動制御器については図示していない。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a system diagram of a rapid refrigerating cycle device according to a first embodiment of the present invention, and FIG. 2 is a refrigerating characteristic of a compressor provided in the rapid refrigerating cycle device, ie, a refrigerating capacity versus an evaporating temperature characteristic. It is a graph of. Note that FIG. 1 does not show an operation controller for controlling the operation of the compressor.

【0020】図1に示すように、本実施形態の急速冷凍
サイクル装置1は、気相冷媒を圧縮する圧縮機3、5、
該高圧に圧縮された気相冷媒に混入した圧縮機用潤滑油
を分離回収する油分離器7、該潤滑油が除去された高圧
気相冷媒を液化する空冷凝縮器9、該高圧の液相冷媒を
一時的に貯留する液溜11、同高圧液相冷媒を冷却する
過冷却器13、高圧液相冷媒を減圧する膨張弁15、減
圧された低圧液相冷媒を蒸発させて冷凍庫内空気を冷却
する蒸発器17を順次、太実線で示す冷媒管路にて環状
に連結して構成される。そして、前記圧縮機3、5は、
単段圧縮機3と二段圧縮機5とが並設されて構成され、
その作動は前記作動制御器によって制御され、基本的に
はいずれか一方の圧縮機3、5にて前記気相冷媒を圧縮
する。
As shown in FIG. 1, a rapid refrigeration cycle apparatus 1 according to the present embodiment includes compressors 3, 5,
An oil separator 7 for separating and recovering the compressor lubricating oil mixed in the high-pressure compressed gas-phase refrigerant, an air-cooled condenser 9 for liquefying the high-pressure gas-phase refrigerant from which the lubricating oil has been removed, A liquid reservoir 11 for temporarily storing a refrigerant, a supercooler 13 for cooling the high-pressure liquid-phase refrigerant, an expansion valve 15 for reducing the pressure of the high-pressure liquid-phase refrigerant, and evaporating the depressurized low-pressure liquid-phase refrigerant to remove air in the freezer. The evaporator 17 to be cooled is sequentially connected in a ring shape by a refrigerant pipe shown by a thick solid line. And the compressors 3, 5 are:
A single-stage compressor 3 and a two-stage compressor 5 are arranged side by side,
The operation is controlled by the operation controller, and basically, one of the compressors 3 and 5 compresses the gas-phase refrigerant.

【0021】前記単段圧縮機3は低段の圧縮機構のみを
有し、前記二段圧縮機5は低段および高段の二段階の圧
縮機構を有するものであり、圧縮機の潤滑油を収容する
クランク室の圧力は、単段3よりも二段圧縮機5の方が
高くなっている。尚、該二段圧縮機5については、圧縮
機保護のために、その吸い込み圧力が上昇すると使用最
上限圧まで前記吸い込み圧力を下げる吸い込み圧力調整
弁(図示なし)が設けられていて、高段側の圧縮機構部
分に過負荷を与えないように、その吸い込み圧力の上限
は制限されている。
The single-stage compressor 3 has only a low-stage compression mechanism, and the two-stage compressor 5 has a low-stage and high-stage two-stage compression mechanism. The pressure of the accommodated crank chamber is higher in the two-stage compressor 5 than in the single stage 3. In order to protect the compressor, the two-stage compressor 5 is provided with a suction pressure regulating valve (not shown) for lowering the suction pressure to the maximum use pressure when the suction pressure increases. The upper limit of the suction pressure is limited so as not to overload the side compression mechanism.

【0022】これら二つの圧縮機3、5の電動機称呼出
力は共に7.5kWであり、その冷凍能力は、前記図2
に示すような対蒸発温度特性をそれぞれ奏する。前述し
たように、両者の冷凍能力は、基本的には二段圧縮機5
の冷凍能力の方が単段圧縮機3よりも高い状態を保ちつ
つ、該蒸発温度の上昇とともに大きくなるが、蒸発温度
が−35℃以上では、前記二段圧縮機5の吸い込み圧力
が前記上限圧に達して該温度以上にて冷凍能力が一定と
なるため、約−31℃を境にしてその冷凍能力は単段圧
縮機3に逆転される。すなわち、約−31℃という境界
温度の低温側では二段圧縮機5が、高温側では単段圧縮
機3が高い冷凍能力を発揮する。
The nominal output of the motors of these two compressors 3 and 5 is 7.5 kW, and the refrigerating capacity is as shown in FIG.
, Respectively. As described above, both refrigeration capacities are basically two-stage compressor 5
The refrigerating capacity of the compressor increases as the evaporating temperature increases while maintaining a state higher than that of the single-stage compressor 3. However, when the evaporating temperature is −35 ° C. or more, the suction pressure of the two-stage compressor 5 is set to the upper limit. Since the pressure reaches the pressure and the refrigerating capacity becomes constant above the temperature, the refrigerating capacity is reversed by the single-stage compressor 3 at about -31 ° C. That is, the two-stage compressor 5 exhibits a high refrigerating capacity on the low temperature side of the boundary temperature of about −31 ° C., and the single-stage compressor 3 exhibits a high refrigerating capacity on the high temperature side.

【0023】このため、常温から−60℃に至る急速冷
凍過程にて常に高い冷凍能力を発揮するように、前記境
界温度(−31℃)にて、図1に示す圧縮機3、5の作
動を切り換えて使用する。すなわち、冷凍開始時である
高温側では単段圧縮機3のみを作動し、低温側では二段
圧縮機5を作動して単段圧縮機3を停止して、常に冷凍
能力が高い方の圧縮機へ切り換え作動するようになって
いる。
Therefore, the compressors 3 and 5 shown in FIG. 1 are operated at the boundary temperature (-31.degree. C.) so as to always exhibit a high refrigerating capacity in the rapid freezing process from normal temperature to -60.degree. Switch and use. That is, only the single-stage compressor 3 is operated on the high-temperature side at the start of refrigeration, and the two-stage compressor 5 is operated and the single-stage compressor 3 is stopped on the low-temperature side. Switch to the machine.

【0024】この切り換え作動制御は、前記作動制御器
によっておこなわれる。同作動制御器は、蒸発器17出
口直近に設けられ蒸発冷媒の温度をリアルタイムで検知
する温度センサー(図示なし)と、該検知温度に応じ
て、概ね作動させる圧縮機3、5を択一的に選択して作
動・停止指令を同圧縮機3,5へ送信する制御部とから
なる。
This switching operation control is performed by the operation controller. The operation controller includes a temperature sensor (not shown) provided in the vicinity of the outlet of the evaporator 17 for detecting the temperature of the evaporated refrigerant in real time, and the compressors 3 and 5 which generally operate according to the detected temperature. And a control unit for transmitting a start / stop command to the compressors 3 and 5.

【0025】この制御部には、各圧縮機3、5の前記冷
凍特性、前記境界温度、および境界温度の±α℃に亘っ
て設定された切り換え温度範囲(図2を参照)が記憶さ
れている。そして、前記検知温度が前記切り換え温度範
囲に入ったら、停止状態だった圧縮機を作動して、同切
り換え温度範囲内では二台運転とし、切り換え温度範囲
を外れたら、当該検知温度における冷凍能力の低い方の
圧縮機を停止するようになっている。このように切り換
え温度範囲において二台運転にするのは、停止状態だっ
た圧縮機の起動直後の暖気状態を考慮してのことであ
る。尚、前記切り換え温度範囲を設定する代わりに、図
1の各圧縮機3、5に、その作動が定常状態にあるかを
検知するセンサーを設けて、一方が定常状態になってか
ら他方を停止するようにしてもよい。また、前記温度の
代わりに、冷媒が飽和蒸気となっている、蒸発器出側の
圧力若しくは圧縮機の吸い込み圧力を検出して、切り換
えてもよい。
The controller stores the refrigerating characteristics of the compressors 3 and 5, the boundary temperature, and the switching temperature range (see FIG. 2) set over ± α ° C. of the boundary temperature. I have. Then, when the detected temperature falls within the switching temperature range, the compressor that was in a stopped state is operated, and two units are operated within the switching temperature range. The lower compressor is stopped. The reason why the two-unit operation is performed in the switching temperature range is to take into consideration the warm-up state immediately after the start of the compressor that has been in the stopped state. Instead of setting the switching temperature range, each of the compressors 3 and 5 in FIG. 1 is provided with a sensor for detecting whether the operation is in a steady state, and one of the compressors is stopped after the other is in a steady state. You may make it. Further, instead of the temperature, the pressure may be switched by detecting the pressure on the outlet side of the evaporator or the suction pressure of the compressor at which the refrigerant is saturated vapor.

【0026】以上の構成からなる急速冷凍サイクル装置
1によれば、蒸発温度が高い冷凍開始時には、前記境界
温度(−31℃)の高温側で高い冷凍能力を発揮する単
段圧縮機3が作動されて、該高温域にて降温速度を高速
にできるとともに、蒸発温度が前記切り換え温度範囲内
に入ったら、低温側で高い冷凍能力を発揮する二段圧縮
機5が作動されて二台運転状態となり、蒸発温度が、該
切り換え温度範囲の下限に達するまで冷却されたら前記
単段圧縮機3が停止されて、二段圧縮機5にて低温域で
も降温速度を高速にできるようになっている。よって、
冷凍開始から完了までの全範囲に亘って降温速度を速く
できるので、冷凍処理の所要時間を著しく短縮できて、
特にバッチ式急速冷凍装置の冷凍処理能力を著しく改善
することができる。
According to the rapid refrigeration cycle apparatus 1 having the above configuration, at the start of refrigeration where the evaporation temperature is high, the single-stage compressor 3 which exhibits a high refrigeration capacity on the high temperature side of the boundary temperature (-31 ° C.) operates. Then, the cooling rate can be increased in the high temperature range, and when the evaporating temperature falls within the switching temperature range, the two-stage compressor 5 exhibiting a high refrigerating capacity on the low temperature side is operated to operate the two units. When the evaporating temperature is cooled to reach the lower limit of the switching temperature range, the single-stage compressor 3 is stopped, and the two-stage compressor 5 can increase the cooling rate even in a low temperature range. . Therefore,
Since the cooling rate can be increased over the entire range from the start to the end of freezing, the time required for the freezing process can be significantly reduced,
In particular, the refrigerating capacity of the batch type rapid refrigerating apparatus can be remarkably improved.

【0027】尚、前記各圧縮機3、5の吐出口には逆止
弁若しくはこれに類する構造(図示なし)が備えられて
いて、作動状態たる一方の圧縮機から吐出した高圧気相
冷媒が、冷媒管路を経由して停止状態たる他方の圧縮機
内へと逆流することを防ぐようになっている。
A check valve or a similar structure (not shown) is provided at a discharge port of each of the compressors 3 and 5, and a high-pressure gas-phase refrigerant discharged from one of the compressors in an operating state is provided. In addition, it is prevented from flowing back into the other stopped compressor via the refrigerant pipe.

【0028】前記油分離器7にて高圧冷媒から分離回収
された潤滑油は、圧縮機3、5のクランク室内に戻され
て、再び圧縮機3、5内の摺動部の潤滑に供される。そ
して、該圧縮機3、5から高圧冷媒とともに吐出され
て、前記油分離器7にて分離回収されるという工程を繰
り返す。かかる潤滑油は、前記クランク室内に常に適量
が保持されていないと、前記圧縮機摺動部の潤滑不良を
起こすが、これは、以下で説明する油面制御器19によ
って、圧縮機3、5の各々のクランク室内の潤滑油の油
面高さが調整されて防止されている。
The lubricating oil separated and recovered from the high-pressure refrigerant in the oil separator 7 is returned to the crank chambers of the compressors 3 and 5, and is again used for lubricating sliding portions in the compressors 3 and 5. You. Then, the process of being discharged together with the high-pressure refrigerant from the compressors 3 and 5 and separated and recovered by the oil separator 7 is repeated. If an appropriate amount of such lubricating oil is not always maintained in the crank chamber, poor lubrication of the compressor sliding portion will occur. The height of the lubricating oil in each of the crank chambers is adjusted to prevent the oil level.

【0029】当該油面制御器19は、油分離器7にて回
収された潤滑油を貯留するリザーブタンク21と、該リ
ザーブタンク21から単段圧縮機3並びに二段圧縮機5
の各クランク室内へそれぞれ繋ぐ還油管23、25と、
還油管23、25の流路を開閉する電磁弁27と、前記
クランク室内の各々の油面高さを検知する液面センサー
としての光センサー33、35と、該各油面高さに応じ
て前記電磁弁27を作動するバルブ制御器(図示なし)
とからなる。
The oil level controller 19 includes a reserve tank 21 for storing the lubricating oil collected by the oil separator 7, and a single-stage compressor 3 and a two-stage compressor 5 from the reserve tank 21.
Return oil pipes 23 and 25 respectively connected to the crank chambers of
An electromagnetic valve 27 for opening and closing the flow paths of the oil return pipes 23 and 25, optical sensors 33 and 35 as liquid level sensors for detecting the respective oil level in the crank chamber, and according to the respective oil level. Valve controller for operating the electromagnetic valve 27 (not shown)
Consists of

【0030】そして、前記油面高さが、前記各圧縮機
3、5毎に設定された下限値を割ると、これを光センサ
ー33、35が検知し、該検知信号によって前記バルブ
制御器は、前記電磁弁27を作動させて対応する還油管
23、25の流路を開けて潤滑油をリザーブタンク21
から圧縮機3、5のクランク室へと補給し、上限値に達
すると前記流路を閉じて補給を停止するようになってい
る。したがって、常に必要な潤滑油量を圧縮機3、5の
クランク室内に確実に保持することができる。よって、
従来から二つの圧縮機を並設する際におこなわれてい
る、均油管若しくは均圧管にて互いのクランク室を連結
して油面高さを保持する方法において生じていた、互い
のクランク室内の圧力差による油面変動の問題を防止す
ることができる。
When the oil level falls below the lower limit set for each of the compressors 3 and 5, the light sensors 33 and 35 detect this, and the valve controller responds to the detection signal. By operating the solenoid valve 27, the flow path of the corresponding oil return pipes 23 and 25 is opened to supply the lubricating oil to the reserve tank 21.
To the crank chambers of the compressors 3 and 5, when the upper limit is reached, the flow path is closed and the supply is stopped. Therefore, the required amount of lubricating oil can always be reliably held in the crank chambers of the compressors 3 and 5. Therefore,
Conventionally, when two compressors are juxtaposed, a problem has occurred in a method of connecting the respective crank chambers with oil equalizing pipes or equalizing pipes to maintain the oil level, The problem of oil level fluctuation due to the pressure difference can be prevented.

【0031】図3は、本発明に係る第2実施形態の急速
冷凍サイクル装置2の系統図である。前記第1実施形態
において、その油分離器、空冷凝縮器、および液溜が、
単段圧縮機と二段圧縮機とで共用されていたところ、本
第2実施形態では、油分離器7a、7b、空冷凝縮器9
a、9b、および液溜11a、11bが、前記二つの圧
縮機3、5に対応して設けられ、それぞれに直列に接続
されていて、各々が、いわゆるコンデンシング・ユニッ
ト4a、4bを構成している点で相違する。
FIG. 3 is a system diagram of a rapid refrigeration cycle apparatus 2 according to a second embodiment of the present invention. In the first embodiment, the oil separator, the air-cooled condenser, and the liquid reservoir are:
In the second embodiment, the oil separators 7a and 7b and the air-cooled condenser 9 are shared by the single-stage compressor and the two-stage compressor.
a, 9b and liquid reservoirs 11a, 11b are provided corresponding to the two compressors 3, 5 and connected in series with each other, each constituting a so-called condensing unit 4a, 4b. Is different.

【0032】かかる構成によれば、前記コンデンシング
・ユニット4a、4bは組立状態で市販されているた
め、圧縮機3、5、油分離器7a、7b、空冷凝縮器9
a、9b、および液溜11a、11bの組立工程を省略
できて、該急速冷凍サイクル装置2の総組立工数を削減
できる。また、単段圧縮機3、二段圧縮機5のそれぞれ
の特性に合った専用の空冷凝縮器9a、9b並びに他の
機器を各々選定することができるため、圧縮機3、5
と、空冷凝縮器9a、9b並びに他の機器との相性の最
適化が図れる。
According to this configuration, since the condensing units 4a and 4b are commercially available in an assembled state, the compressors 3 and 5, the oil separators 7a and 7b, and the air-cooled condenser 9
a, 9b and the liquid reservoirs 11a, 11b can be omitted, and the total assembly man-hours of the quick refrigeration cycle apparatus 2 can be reduced. In addition, since dedicated air-cooled condensers 9a and 9b and other devices that match the characteristics of the single-stage compressor 3 and the two-stage compressor 5, respectively, can be selected, the compressors 3, 5
And the compatibility with the air-cooled condensers 9a and 9b and other devices can be optimized.

【0033】尚、油面制御器19については、油分離器
7a、7bが二つになった関係で、双方の油分離器7
a、7bとリザーブタンク21とを連結する配管22
a、22bがそれぞれ設けられており、この点で第1実
施形態と相違するが、それ以外は前述した構成と同じで
ある。
The oil level controller 19 has two oil separators 7a and 7b, so that both oil separators 7a and 7b are used.
a, a pipe 22 connecting the 7b and the reserve tank 21
a and 22b are provided, respectively, which is different from the first embodiment in this point, but the rest is the same as the above-described configuration.

【0034】以上、本発明に係る一実施形態について説
明したが、本発明は、かかる実施形態に限定されるもの
ではなく、その要旨を逸脱しない範囲で以下に示すよう
な変形が可能である。 (a)本実施形態においては、当該急速冷凍サイクル装
置をバッチ式の急速冷凍装置に適用したが、連続式の急
速冷凍装置、すなわち、コンベア上に載置された冷凍対
象物を、出入り口が有る冷凍庫内を移動させつつ冷凍す
る急速冷凍装置にあっても適用可能であることはいうま
でもない。尚、この装置の場合は、バッチ式と比較し
て、庫内温度は比較的一定に保たれるため、蒸発温度の
変動は小さいが、庫内に搬入される冷凍対象物毎の含熱
量の変動によって、急速冷凍サイクル装置の熱負荷が変
動し蒸発温度が変動する。この時、当該急速冷凍サイク
ル装置を用いれば、蒸発温度の変動に応じて、常に高い
冷凍能力を奏する圧縮機を択一的に作動させるため、熱
負荷変動による冷凍処理能力の変動を小さく抑えられ
る。
Although the embodiment according to the present invention has been described above, the present invention is not limited to the embodiment, and the following modifications can be made without departing from the gist thereof. (A) In the present embodiment, the rapid refrigeration cycle apparatus is applied to a batch-type rapid refrigeration apparatus. However, a continuous rapid refrigeration apparatus, that is, a freezing object placed on a conveyor has an entrance and an exit. It goes without saying that the present invention is also applicable to a rapid freezing apparatus that freezes while moving in a freezer. In addition, in the case of this apparatus, the temperature in the refrigerator is kept relatively constant as compared with the batch type, so that the fluctuation of the evaporation temperature is small, but the heat content of each refrigeration object carried into the refrigerator is reduced. Due to the fluctuation, the heat load of the rapid refrigeration cycle apparatus fluctuates and the evaporation temperature fluctuates. At this time, if the rapid refrigeration cycle device is used, the compressor having a high refrigerating capacity is selectively operated in accordance with the fluctuation of the evaporating temperature, so that the fluctuation of the refrigerating processing capacity due to the fluctuation of the heat load can be suppressed. .

【0035】(b)本実施形態においては、液面センサ
ーとして、該液面高さを、所定の基準位置から液面まで
の距離を測定して検知する光センサーを用いたが、これ
に代えて、同じく液面までの計測距離にて油面高さを検
知する超音波センサーや、フロートの上下移動にて液面
の上下変動を検知するフロートスイッチ等も適用可能で
ある。
(B) In this embodiment, as the liquid level sensor, an optical sensor that detects the liquid level by measuring the distance from a predetermined reference position to the liquid level is used. In addition, an ultrasonic sensor that detects the oil level at the measurement distance to the liquid level, a float switch that detects the vertical fluctuation of the liquid level by moving the float up and down, and the like are also applicable.

【0036】(c)本実施形態においては、単段圧縮機
と二段圧縮機とを概ね択一的に作動させたが、これら圧
縮機へ電源供給する受配電設備などの電源容量を常時二
台運転可能な仕様に設定すれば、前記単段圧縮機と二段
圧縮機との両方を定常的に運転させたり、冷凍能力を大
きくしたい所定の蒸発温度範囲のみを局所的に二台運転
させることもできる。後者の例としては、図2に示すよ
うに、常温から所定温度、例えば−45℃までは圧縮機
を択一的に作動させ、そして、該−45℃以下にあって
は、冷凍能力が大きくなるように停止状態の単段圧縮機
を再稼働させて2台運転させることなどが挙げられる。
かかる運転方法によれば、冷凍能力が著しく小さくなる
ため、該冷凍能力の増加が望まれる低温側にて、局所的
に冷凍能力を倍増できるとともに、その消費電力も常時
2台運転と比較して著しく小さくなる。
(C) In the present embodiment, the single-stage compressor and the two-stage compressor are generally selectively operated, but the power capacity of the power receiving and distribution equipment for supplying power to these compressors is always two. If it is set to a specification that allows the unit to be operated, both the single-stage compressor and the two-stage compressor are operated steadily, or the two units are locally operated only in a predetermined evaporation temperature range in which the refrigeration capacity is to be increased. You can also. As an example of the latter, as shown in FIG. 2, the compressor is selectively operated from a room temperature to a predetermined temperature, for example, from -45 ° C. One example is to restart the stopped single-stage compressor to operate two units.
According to such an operation method, the refrigerating capacity is significantly reduced, so that the refrigerating capacity can be locally doubled on the low temperature side where the increase in the refrigerating capacity is desired, and the power consumption is always smaller than in the two-unit operation. It becomes significantly smaller.

【0037】[0037]

【発明の効果】以上説明したように、請求項1に示す発
明によれば、急速冷凍時の冷凍開始から完了に至るまで
の間、最高の冷凍能力を発揮できてその降温速度を最速
に維持できるので、特にバッチ式の急速冷凍装置に関し
て冷凍処理能力の著しい向上が図れる。また、二台運転
してその冷凍能力を概ね倍増させることもできるので、
冷凍能力の自由度に優れる。
As described above, according to the first aspect of the present invention, the highest refrigeration capacity can be exhibited from the start to the end of refrigeration during rapid freezing, and the temperature decreasing rate is maintained at the highest speed. As a result, the refrigerating capacity of the batch type rapid refrigerating apparatus can be significantly improved. In addition, since it is possible to double the refrigeration capacity by operating two units,
Excellent refrigerating capacity.

【0038】請求項2に示す発明によれば、高い冷凍能
力を確実に発揮することができるので、前記冷凍処理能
力の確実な向上が図れる。
According to the second aspect of the present invention, a high refrigeration capacity can be reliably exhibited, so that the refrigeration processing capacity can be reliably improved.

【0039】請求項3に示す発明によれば、組立工数を
削減できるので、製作期間の短縮および製造コストの削
減が図れる。また、圧縮機と凝縮器との相性の最適化が
図れて冷凍能力を更に高くできるので、冷凍処理能力を
更に向上できる。
According to the third aspect of the present invention, the number of assembling steps can be reduced, so that the manufacturing period and the manufacturing cost can be reduced. Further, since the compatibility between the compressor and the condenser can be optimized and the refrigerating capacity can be further increased, the refrigerating processing capacity can be further improved.

【0040】請求項4に示す発明によれば、圧縮機の作
動電力を供給する受配電設備などの仕様を最小にできる
ので、製造コストの削減が図れる。
According to the fourth aspect of the invention, the specifications of the power receiving and distribution equipment for supplying the operating power of the compressor can be minimized, so that the manufacturing cost can be reduced.

【0041】請求項5に示す発明によれば、常に必要な
潤滑油量を圧縮機内に確保できるので、油切れによる圧
縮機の緊急停止などが防げて、急速冷凍装置を安定稼働
できる。
According to the fifth aspect of the invention, the required amount of lubricating oil can always be ensured in the compressor, so that emergency stop of the compressor due to lack of oil can be prevented, and the rapid refrigerating apparatus can be operated stably.

【0042】請求項6に示す発明によれば、急速冷凍時
の冷凍開始から完了に至るまでの間、最高の冷凍能力を
発揮できてその降温速度を最速に維持できるので、特に
バッチ式の急速冷凍装置に関して冷凍処理能力の著しい
向上が図れる。また、二台運転してその冷凍能力を概ね
倍増させることもできるので、冷凍能力の自由度に優れ
る。
According to the sixth aspect of the present invention, the highest refrigeration capacity can be exhibited from the start to the completion of refrigeration during rapid refrigeration and the temperature can be maintained at the highest rate. The refrigeration processing capacity of the refrigeration system can be significantly improved. In addition, since the refrigeration capacity can be almost doubled by operating two units, the degree of freedom of the refrigeration capacity is excellent.

【0043】請求項7に示す発明によれば、消費電力を
低く抑えることができて、ランニングコストを低減でき
る。
According to the present invention, the power consumption can be suppressed low, and the running cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る第1実施形態の急速冷凍サイクル
装置の系統図である。
FIG. 1 is a system diagram of a rapid refrigeration cycle apparatus according to a first embodiment of the present invention.

【図2】前記急速冷凍サイクル装置に供された圧縮機の
冷凍特性たる、冷凍能力の対蒸発温度特性のグラフであ
る。
FIG. 2 is a graph showing a refrigerating capacity, which is a refrigerating property of a compressor provided to the rapid refrigerating cycle apparatus, versus an evaporating temperature characteristic.

【図3】本発明に係る第2実施形態の急速冷凍サイクル
装置の系統図である。
FIG. 3 is a system diagram of a rapid refrigeration cycle device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、2 急速冷凍サイクル装置 3 単段圧縮機(第1圧縮機) 5 二段圧縮機(第2圧縮機) 7、7a、7b 油分離器 9、9a、9b 空冷凝縮器(凝縮器) 11、11a、11b 液溜 13 過冷却器 15 膨張弁 17 蒸発器 19 液面制御器 21 リザーブタンク 23、25 還油管 27 電磁弁(バルブ) 33、35 光センサー(液面センサー) 1, 2 rapid refrigerating cycle device 3 single-stage compressor (first compressor) 5 two-stage compressor (second compressor) 7, 7a, 7b oil separator 9, 9a, 9b air-cooled condenser (condenser) 11 , 11a, 11b Liquid reservoir 13 Subcooler 15 Expansion valve 17 Evaporator 19 Liquid level controller 21 Reserve tank 23, 25 Oil return pipe 27 Solenoid valve (valve) 33, 35 Optical sensor (liquid level sensor)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、膨張弁、蒸発器を順
次、冷媒管路にて環状に連結してなる急速冷凍サイクル
装置において、 冷媒の所定の蒸発温度を境に冷凍能力が互いに逆転する
第1圧縮機と第2圧縮機とを並設することを特徴する急
速冷凍サイクル装置。
1. A rapid refrigeration cycle apparatus comprising a compressor, a condenser, an expansion valve, and an evaporator sequentially connected in an annular manner by a refrigerant pipe. A rapid refrigeration cycle apparatus comprising: a first compressor and a second compressor.
【請求項2】 前記蒸発温度を検知して、該検知温度に
おける冷凍能力が高い方の圧縮機への単独運転に作動を
切り換える作動制御器を備えることを特徴する請求項2
に記載の急速冷凍サイクル装置。
2. An operation controller for detecting the evaporation temperature and switching an operation to an independent operation of a compressor having a higher refrigerating capacity at the detected temperature.
2. The rapid refrigerating cycle device according to item 1.
【請求項3】 前記凝縮器が、前記第1および第2圧縮
機に対応して、それぞれに直列接続されて並設された第
1、第2凝縮器とからなり、第1圧縮機と第1凝縮器、
並びに第2圧縮機と第2凝縮器とは、それぞれコンデン
シング・ユニットをなしていることを特徴とする請求項
1若しくは2のいずれかに記載の急速冷凍サイクル装
置。
3. The condenser according to claim 1, wherein the condenser includes first and second condensers connected in series and arranged in parallel with the first and second compressors, respectively. 1 condenser,
3. The rapid refrigeration cycle apparatus according to claim 1, wherein the second compressor and the second condenser each constitute a condensing unit.
【請求項4】 前記境界温度より高温側で前記第2圧縮
機より高い冷凍能力を発揮する第1圧縮機として単段圧
縮機を、低温側で前記第1圧縮機より高い冷凍能力を発
揮する第2圧縮機として二段圧縮機を用いることを特徴
とする請求項1〜3のいずれかに記載の急速冷凍サイク
ル装置。
4. A single-stage compressor as a first compressor exhibiting a higher refrigerating capacity than the second compressor at a temperature higher than the boundary temperature, and exhibiting a higher refrigerating capacity than the first compressor at a low temperature side. The rapid refrigeration cycle apparatus according to any one of claims 1 to 3, wherein a two-stage compressor is used as the second compressor.
【請求項5】 前記圧縮機の吐出側の冷媒管路に設けら
れた油分離器と、該油分離器にて分離回収された潤滑油
を貯留するリザーブタンクと、該リザーブタンクの潤滑
油を各圧縮機へ還流する還油管と、該各還油管の流路を
開閉する各バルブと、前記各圧縮機内の油面高さを検知
する油面センサーと、該各油面高さに応じて前記各バル
ブを開閉制御するバルブ制御器とを備えることを特徴と
する請求項1〜4のいずれかに記載の急速冷凍サイクル
装置。
5. An oil separator provided in a refrigerant pipe on a discharge side of the compressor, a reserve tank for storing lubricating oil separated and recovered by the oil separator, and a lubricating oil in the reserve tank. A return oil pipe that returns to each compressor, each valve that opens and closes the flow path of each return oil pipe, an oil level sensor that detects the oil level in each of the compressors, and according to each oil level The rapid refrigeration cycle apparatus according to any one of claims 1 to 4, further comprising a valve controller that controls opening and closing of each of the valves.
【請求項6】 圧縮機、凝縮器、膨張弁、蒸発器を順
次、冷媒管路にて環状に連結してなる急速冷凍サイクル
装置を用いた急速冷凍方法であって、 冷媒の所定の蒸発温度を境に冷凍能力が互いに逆転する
第1圧縮機と第2圧縮機とを並設し、該両圧縮機を、要
求される冷凍能力に応じて同時に、あるいは単独で運転
させることを特徴とする急速冷凍方法。
6. A rapid refrigeration method using a rapid refrigeration cycle device in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in a ring through a refrigerant line, wherein a predetermined evaporation temperature of the refrigerant is provided. The first compressor and the second compressor whose refrigerating capacity is reversed to each other are provided side by side, and both compressors are operated simultaneously or independently according to the required refrigerating capacity. Quick freezing method.
【請求項7】 前記蒸発温度を検知して、該検知温度に
おける冷凍能力が高い方の圧縮機のみを単独運転させる
ことを特徴する請求項6に記載の急速冷凍方法。
7. The rapid refrigerating method according to claim 6, wherein the evaporating temperature is detected, and only the compressor having a higher refrigerating capacity at the detected temperature is operated alone.
JP2000402323A 2000-12-28 2000-12-28 Quick refrigeration cycle apparatus and quick refrigeration method using the same Expired - Fee Related JP4528436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000402323A JP4528436B2 (en) 2000-12-28 2000-12-28 Quick refrigeration cycle apparatus and quick refrigeration method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000402323A JP4528436B2 (en) 2000-12-28 2000-12-28 Quick refrigeration cycle apparatus and quick refrigeration method using the same

Publications (2)

Publication Number Publication Date
JP2002206814A true JP2002206814A (en) 2002-07-26
JP4528436B2 JP4528436B2 (en) 2010-08-18

Family

ID=18866644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000402323A Expired - Fee Related JP4528436B2 (en) 2000-12-28 2000-12-28 Quick refrigeration cycle apparatus and quick refrigeration method using the same

Country Status (1)

Country Link
JP (1) JP4528436B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007351A (en) * 2009-06-23 2011-01-13 Sanyo Electric Co Ltd Refrigerating device
JP2013069390A (en) * 2011-09-26 2013-04-18 Dainippon Printing Co Ltd Suspension substrate, suspension, suspension with head, and hard disk drive
JP2013170797A (en) * 2012-02-22 2013-09-02 Hitachi Appliances Inc Refrigeration device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177735U (en) * 1974-12-13 1976-06-19
JPS53133257U (en) * 1977-03-29 1978-10-21
JPS61191839A (en) * 1985-02-20 1986-08-26 株式会社 東洋製作所 Refrigerator unit functioning as f class and c3 class refrigerating facility in combination
JPH0791765A (en) * 1993-09-27 1995-04-04 Toshiba Corp Heat source controller
JP2000088368A (en) * 1998-09-14 2000-03-31 Mitsubishi Electric Corp Refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177735U (en) * 1974-12-13 1976-06-19
JPS53133257U (en) * 1977-03-29 1978-10-21
JPS61191839A (en) * 1985-02-20 1986-08-26 株式会社 東洋製作所 Refrigerator unit functioning as f class and c3 class refrigerating facility in combination
JPH0791765A (en) * 1993-09-27 1995-04-04 Toshiba Corp Heat source controller
JP2000088368A (en) * 1998-09-14 2000-03-31 Mitsubishi Electric Corp Refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007351A (en) * 2009-06-23 2011-01-13 Sanyo Electric Co Ltd Refrigerating device
JP2013069390A (en) * 2011-09-26 2013-04-18 Dainippon Printing Co Ltd Suspension substrate, suspension, suspension with head, and hard disk drive
JP2013170797A (en) * 2012-02-22 2013-09-02 Hitachi Appliances Inc Refrigeration device

Also Published As

Publication number Publication date
JP4528436B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
US9909786B2 (en) Refrigerant distribution apparatus and methods for transport refrigeration system
JP3630632B2 (en) refrigerator
US6986259B2 (en) Refrigerator
US6370892B1 (en) Batch process and apparatus optimized to efficiently and evenly freeze ice cream
JPH08219567A (en) Method of operating refrigerator means
WO2013073065A1 (en) Refrigeration unit
KR101220741B1 (en) Freezing device
KR20110074706A (en) Freezing device
US20100326125A1 (en) Refrigeration system
JP4211847B2 (en) Refrigeration equipment
JP3576040B2 (en) Cooling systems and refrigerators
JP2000121178A (en) Cooling cycle and refrigerator
JP3527592B2 (en) Freezer refrigerator
JP2002206814A (en) Rapid freezing cycle device and rapid freezing method using the same
JP3714348B2 (en) Refrigeration equipment
JP3788309B2 (en) Refrigeration equipment
JPH0996476A (en) Manufacture of supercooling water type chilled water
JP2008014560A (en) Refrigeration system
JP3410408B2 (en) refrigerator
JPH09210515A (en) Refrigerating device
JP3430159B2 (en) refrigerator
JP4845560B2 (en) Cooling system
US20230251003A1 (en) Refrigeration apparatus
US20230251004A1 (en) Refrigeration apparatus
JP2013036682A (en) Refrigerator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4528436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees