JP2002198625A - Method for manufacturing copper foil with resin - Google Patents

Method for manufacturing copper foil with resin

Info

Publication number
JP2002198625A
JP2002198625A JP2000393052A JP2000393052A JP2002198625A JP 2002198625 A JP2002198625 A JP 2002198625A JP 2000393052 A JP2000393052 A JP 2000393052A JP 2000393052 A JP2000393052 A JP 2000393052A JP 2002198625 A JP2002198625 A JP 2002198625A
Authority
JP
Japan
Prior art keywords
copper foil
resin
pair
copper
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000393052A
Other languages
Japanese (ja)
Inventor
Hajime Sasaki
元 佐々木
Masahiro Kiyofuji
雅宏 清藤
Noboru Hagiwara
登 萩原
Muneo Kodaira
宗男 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2000393052A priority Critical patent/JP2002198625A/en
Publication of JP2002198625A publication Critical patent/JP2002198625A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a copper foil with resin of uniform thickness at a low cost. SOLUTION: A 9 μm-thick copper foil with resin is obtained by forming a 20 to 200 nm-thick oxide film in a surface wherein at least one copper foil of a pair of copper foils is in contact with the other copper foil, performing cold rolling so that one copper foil is 9 μm or less thick with a pair of copper foils laminated, applying a thermosetting resin composition to a surface of a 9 μm-thick copper foil, making a thermosetting resin composition a half-setting B stage mode as required, and peeling off a pair of copper foils. A copper foil of a uniform thickness can be obtained by carrying out cold rolling with a pair of copper foils laminated. Peeling property is improved by forming a 20 to 200 nm-thick oxide film in an interface between a pair of copper foils before cold rolling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プリント配線板に
使用される樹脂付き銅箔の製造方法に関し、特に、銅箔
の厚さが均一な樹脂付き銅箔を安価に製造することがで
きる樹脂付き銅箔の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a resin-coated copper foil used for a printed wiring board, and more particularly to a resin capable of inexpensively producing a resin-coated copper foil having a uniform thickness of the copper foil. The present invention relates to a method for producing a coated copper foil.

【0002】[0002]

【従来の技術】従来の樹脂付き銅箔の製造方法として、
例えば、特開平10−146915号公報に示されるも
のがある。
2. Description of the Related Art As a conventional method for producing a copper foil with a resin,
For example, there is one disclosed in JP-A-10-146915.

【0003】この方法は、アルミニウム,銅等のキャリ
ア(補強材)の上に厚さ9μm以下の極薄銅箔をめっき
により形成し、このキャリア付き銅箔の表面に光と熱に
よって硬化する硬化性樹脂組成物を塗工し、必要に応じ
てその樹脂組成物を熱によってBステージ化した樹脂付
き銅箔を製造するものである。その後、プリント配線板
の片面あるいは両面に樹脂付き銅箔を配置し、加圧、加
熱下で連続的あるいは不連続的に貼り合わせて使用する
ことにより、プリント配線板が作製される。
In this method, an ultra-thin copper foil having a thickness of 9 μm or less is formed on a carrier (reinforcing material) such as aluminum or copper by plating, and the surface of the copper foil with the carrier is cured by light and heat. The present invention is to produce a resin-coated copper foil in which a conductive resin composition is applied and the resin composition is B-staged by heat as required. Thereafter, a copper foil with a resin is arranged on one or both sides of the printed wiring board, and the printed wiring board is manufactured by being continuously or discontinuously bonded under pressure and heating.

【0004】この方法によれば、キャリアに銅箔を形成
しているので、極薄の銅箔でも塗工工程への移動が容易
となる。また、厚さ9μm以下の銅箔を用いているの
で、銅箔に回路パターンを形成する際のエッチング時間
を短縮でき、また、エッチング精度が良好となるため、
プリント配線板の高密度化を図ることができる。
According to this method, since the copper foil is formed on the carrier, the transfer to the coating step becomes easy even with an extremely thin copper foil. In addition, since a copper foil having a thickness of 9 μm or less is used, an etching time for forming a circuit pattern on the copper foil can be reduced, and the etching accuracy is improved.
The density of the printed wiring board can be increased.

【0005】また、l2μm以上の銅箔を使用しこれを
エッチングして厚さ9μm以下の銅箔を得る方法が知ら
れている。
There is also known a method of using a copper foil having a thickness of 12 μm or more and etching the same to obtain a copper foil having a thickness of 9 μm or less.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の樹脂付
き銅箔の製造方法によると、めっきにより極薄の銅箔を
形成するため、厚みのバラツキや微小なピンホールが避
けられないという問題がある。また、めっきという手法
を用いるため、化学薬品を多量に使用することとなり、
廃液処理に多大の設備費を投入する必要がある。
However, according to the conventional method for producing a resin-coated copper foil, since a very thin copper foil is formed by plating, there is a problem that variations in thickness and minute pinholes cannot be avoided. is there. In addition, the use of a technique called plating requires the use of a large amount of chemicals.
It is necessary to invest a large amount of equipment costs for waste liquid treatment.

【0007】また、12μm以上の銅箔を使用しこれを
エッチングする方法では、均一なエッチングが技術的に
難しいばかりでなく、余分な工程が増えることとなり、
コスト的にも極めて不利となる。
Further, in the method of using a copper foil of 12 μm or more and etching the same, not only is it technically difficult to perform uniform etching, but also an extra step is required.
It is extremely disadvantageous in terms of cost.

【0008】従って、本発明の目的は、銅箔の厚さが均
一な樹脂付き銅箔を安価に製造することができる樹脂付
き銅箔の製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a method for producing a resin-coated copper foil, which can produce a resin-coated copper foil having a uniform thickness of the copper foil at low cost.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するため、一対の銅箔の少なくとも一方の銅箔の他方
の銅箔に接触する面に厚さ20〜200nmの酸化膜を
形成し、前記一対の銅箔を重ね合わせた状態で冷間圧延
し、前記一対の銅箔のうち少なくとも一方の銅箔の表面
に熱硬化性樹脂を塗工し、前記一対の銅箔を引き剥がす
ことを特徴とする樹脂付き銅箔の製造方法を提供する。
一対の銅箔を重ね合わせた状態で冷間圧延することによ
り、均一な厚さの銅箔が得られる。冷間圧延する前に、
一対の銅箔の界面に厚さ20〜200nmの酸化膜を形
成しておくことにより、引き剥がし性が向上する。
According to the present invention, in order to achieve the above object, an oxide film having a thickness of 20 to 200 nm is formed on a surface of at least one of a pair of copper foils in contact with the other copper foil. Then, the pair of copper foils are cold-rolled in a stacked state, a thermosetting resin is applied to a surface of at least one of the copper foils of the pair of copper foils, and the pair of copper foils is peeled off. A method for producing a resin-coated copper foil is provided.
By cold rolling in a state where a pair of copper foils are overlapped, a copper foil having a uniform thickness can be obtained. Before cold rolling,
By forming an oxide film having a thickness of 20 to 200 nm on the interface between the pair of copper foils, the peelability is improved.

【0010】[0010]

【発明の実施の形態】本発明の第1の実施の形態に係る
樹脂付き銅箔の製造方法を説明する。まず、一対の銅箔
のうち少なくとも一方の銅箔の他方の銅箔に接触する面
に厚さ20〜200nmの酸化膜を形成する。次に、一
対の銅箔を重ね合わせて少なくとも一方の銅箔の厚さが
9μm以下となるように冷間圧延を行う。次に、9μm
以下となった銅箔の表面に熱硬化性樹脂組成物を塗工
し、その熱硬化性樹脂組成物を必要に応じて半硬化状態
のBステージ化する。次に、一対の銅箔を剥がす。これ
により、9μm以下の銅箔に樹脂層が形成された樹脂付
き銅箔が製造される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a resin-coated copper foil according to a first embodiment of the present invention will be described. First, an oxide film having a thickness of 20 to 200 nm is formed on a surface of at least one of the pair of copper foils that contacts the other copper foil. Next, a pair of copper foils are overlapped and cold-rolled so that at least one of the copper foils has a thickness of 9 μm or less. Next, 9 μm
A thermosetting resin composition is applied to the surface of the copper foil as described below, and the thermosetting resin composition is converted into a semi-cured B stage as needed. Next, the pair of copper foils is peeled off. Thus, a resin-coated copper foil in which a resin layer is formed on a copper foil of 9 μm or less is manufactured.

【0011】銅箔は、電解銅箔あるいは圧延銅箔等を用
いることができる。電解銅箔を用いる場合は、表面粗さ
Rzが6μm程度のものを圧延の素材として用いると、
圧延加工度にもよるが、冷間圧延後に表面粗さRzが3
μm以下の適度の粗さが残り、樹脂と良好な接着性が得
られる。圧延銅箔を用いる場合は、その表面は圧延ロー
ルの表面が転写された平滑な面となる。もしこの平滑な
面では接着性が不足するようであれば、樹脂を塗工する
前に通常の電着粗化やショットブラストのような機械的
な粗化を行うか、あるいは圧延ロールの表面を適当な粗
化面にして圧延するなどして表面粗化を行ってもよい。
As the copper foil, an electrolytic copper foil or a rolled copper foil can be used. When using an electrolytic copper foil, if the surface roughness Rz is about 6 μm as a material for rolling,
Although it depends on the degree of rolling, the surface roughness Rz is 3 after cold rolling.
A moderate roughness of not more than μm remains, and good adhesion to the resin is obtained. When a rolled copper foil is used, its surface is a smooth surface to which the surface of the roll is transferred. If this smooth surface does not have sufficient adhesiveness, perform normal electrodeposition roughening or mechanical roughing such as shot blasting before applying the resin, or remove the surface of the rolling roll. The surface may be roughened by rolling to an appropriate roughened surface.

【0012】一対の銅箔を重ね合わせる前に、一方の銅
箔の面に厚さ20〜200nmの酸化膜を形成したの
は、重ね合わされた面が清浄な銅表面であると、圧延後
に冷間で圧接された状態となり、引き剥がし性が極端に
悪くなってしまうからである。酸化膜の厚さは20nm
未満では効果がなく、逆に200nmを超えると、酸化
膜が剥離してしまい効果がなくなってしまう。なお、酸
化膜の厚さは文献(日本伸銅協会編;伸銅品データブッ
ク(1997)125)に示されているカソード還元法
による測定値で表す。これは以下の実施例で示す値につ
いても同様である。酸化膜を形成する方法としては、大
気中のような酸化雰囲気で加熱する方法、黒化処理のよ
うな化学薬品で処理する方法等特に限定されるものでは
ない。また、銅箔の上に樹脂として例えばポリイミド樹
脂を直接塗工する場合は、接着温度が高くなるため、銅
箔の酸化が進行し接着性に悪影響を及ぼす。従って、こ
のような場合は、予め銅箔にNi,Zn,Sn等の単層
あるいは多層めっきやさらにクロメート処理などを施す
のが好ましい。
An oxide film having a thickness of 20 to 200 nm is formed on one copper foil surface before the pair of copper foils are stacked, because if the stacked surface is a clean copper surface, it is cooled after rolling. This is because they are pressed against each other, and the peelability is extremely deteriorated. Oxide film thickness is 20nm
If it is less than 200 nm, there is no effect. On the contrary, if it exceeds 200 nm, the oxide film is peeled off, and the effect is lost. The thickness of the oxide film is represented by a value measured by a cathode reduction method described in a document (edited by the Japan Copper and Brass Association; copper product data book (1997) 125). This is the same for the values shown in the following embodiments. The method for forming the oxide film is not particularly limited, such as a method of heating in an oxidizing atmosphere such as the air, a method of treating with a chemical such as a blackening treatment, and the like. Further, when a resin such as a polyimide resin is directly applied as a resin on the copper foil, the bonding temperature increases, so that oxidation of the copper foil progresses and adversely affects the adhesiveness. Therefore, in such a case, it is preferable to apply a single-layer or multi-layer plating of Ni, Zn, Sn, or the like to the copper foil in advance, or further perform a chromate treatment.

【0013】塗工する樹脂組成物としては、特に限定さ
れるものではないが、エポキシ樹脂、ポリイミド樹脂、
多官能性シアン酸エステル化合物等を含む樹脂組成物が
適当である。塗工方法としては、ワニス状の樹脂組成物
をロールコータやカーテンコータのような塗工機を使用
して塗工してもよいし、フィルム状とした樹脂組成物で
あれば通常のいわゆるラミネータを用いて貼り合わせる
ことにより簡単に塗工可能である。塗工した樹脂は完全
にキュアし単層のプリント配線板用として使用してもよ
いし、半硬化のいわゆるBステージの状態にとどめれ
ば、多層プリント配線板用として使用することができ
る。
The resin composition to be coated is not particularly limited, but may be an epoxy resin, a polyimide resin,
A resin composition containing a polyfunctional cyanate compound or the like is suitable. As a coating method, the varnish-shaped resin composition may be coated using a coating machine such as a roll coater or a curtain coater, or a film-shaped resin composition may be used as a usual so-called laminator. It can be easily applied by bonding using The coated resin may be completely cured and used for a single-layer printed wiring board, or it may be used for a multilayer printed wiring board if it is kept in a so-called semi-cured B stage.

【0014】上記第1の実施の形態によれば、一対の銅
箔のうち一方の銅箔がキャリアとなるため、そのまま樹
脂の塗工工程へ持って行くことにより、極めて作業性の
良い製造工程とすることができる。キャリアとして利用
し引き剥がした銅箔は、再資源用のスクラップとしても
よい。また、2枚重ね圧延という手法を採ったため、極
めて均一な厚さの銅箔を得ることができる。銅めっきに
よる方法では、特に面積が大きくなると面内での厚み均
一性を保つことは技術的に困難であるが、圧延による方
法では、X線あるいは放射線厚み計を使用することによ
り容易に均一性を維持することができる。また、重ね合
わせる前に、片側の銅表面に酸化処理を施してあるた
め、圧延後の引き剥がし性が極めて良好となる。さら
に、圧延後に重ね合わせた状態で樹脂を接着するとき、
加熱を圧力とともに受けた後でも良好に引き剥がすこと
ができる。また、単独でファインパタン用のプリント配
線板としても、コアとなるプリント配線板の上に多層に
積層して形成されるビルドアップ多層プリント配線板の
積層材としても使用することができる。
According to the first embodiment, one of the pair of copper foils serves as a carrier. Therefore, by taking the copper foil directly to the resin coating process, the manufacturing process with extremely high workability can be achieved. It can be. The copper foil used and peeled off as a carrier may be used as scrap for recycling. In addition, since the method of double rolling is employed, a copper foil having an extremely uniform thickness can be obtained. In the copper plating method, it is technically difficult to maintain in-plane thickness uniformity, particularly when the area is large, but in the rolling method, uniformity can be easily achieved by using an X-ray or radiation thickness gauge. Can be maintained. In addition, since the copper surface on one side has been subjected to an oxidation treatment before overlapping, the peelability after rolling is extremely good. Furthermore, when bonding the resin in the state of overlapping after rolling,
It can be peeled off well even after receiving the heating together with the pressure. In addition, it can be used alone as a fine pattern printed wiring board, or as a laminated material of a build-up multilayer printed wiring board formed by multilayering on a printed wiring board serving as a core.

【0015】次に、本発明の第2の実施の形態に係る樹
脂付き銅箔の製造方法を説明する。まず、一対の銅箔の
うち少なくとも一方の銅箔の表面に厚さ20〜200n
mの酸化膜を形成する。次に、一対の銅箔を重ね合わせ
て両方の銅箔の厚さがそれぞれ9μm以下となるように
冷間加工を行う。次に、両方の銅箔の表面に熱硬化性樹
脂組成物を塗工し、その熱硬化性樹脂組成物を必要に応
じて半硬化状態のBステージ化する。次に、一対の銅箔
を剥がす。これにより、9μm以下の銅箔に樹脂層が形
成された一対の樹脂付き銅箔が製造される。
Next, a method for manufacturing a resin-attached copper foil according to a second embodiment of the present invention will be described. First, a thickness of 20 to 200 n is applied to the surface of at least one of the pair of copper foils.
An oxide film of m is formed. Next, a pair of copper foils are overlapped and cold worked so that the thickness of each of the copper foils is 9 μm or less. Next, a thermosetting resin composition is applied to the surfaces of both copper foils, and the thermosetting resin composition is converted into a semi-cured B stage as needed. Next, the pair of copper foils is peeled off. As a result, a pair of resin-coated copper foils each having a resin layer formed on a copper foil of 9 μm or less is manufactured.

【0016】上記第2の実施の形態によれば、一対の銅
箔をそれぞれ樹脂付き銅箔とすることができるので、第
1の実施の形態よりも製造コストを下げることができ
る。
According to the second embodiment, each of the pair of copper foils can be made of resin-coated copper foil, so that the manufacturing cost can be lower than that of the first embodiment.

【0017】[0017]

【実施例】本発明の実施例1および2について説明す
る。 <実施例1>表1は、実施例1における引き剥がし性の
試験結果を示す。
Embodiments Embodiments 1 and 2 of the present invention will be described. <Example 1> Table 1 shows the test results of the peelability in Example 1.

【表1】 厚さが100μmと15μmの2枚の銅箔を準備し、厚
さ100μmの銅箔に大気酸化加熱を施し、表1に示し
た膜厚を有する酸化膜を形成した後、厚さ15μmの銅
箔と重ね合わせ、厚さ15μmの銅箔が厚さ5μmにな
るように冷間圧延を行った。冷間圧延を終えた状態での
両者の引き剥がし性の結果を表1に示す。冷間圧延後の
銅箔の表面の脱脂清浄化を行った後、熱硬化性樹脂組成
物(例えばタムラ製作所製層間絶縁材TBR−27)を
ロールコータにより、板厚5μmの銅箔の表面のwet
の状態で70μmの厚さに塗布し、120℃の乾燥炉で
溶剤成分を揮発乾燥させ、樹脂付き銅箔を得た。次に、
樹脂付き銅箔を引き剥がした。この時の引き剥がし性の
結果を表1に示す。うまく引き剥がせたもの(表1のN
o.3,4,5)については両面に所定の回路が形成さ
れた米国電気製造業者協会の耐熱性グレードFR−4を
有する基材の両面に、樹脂付き銅箔の樹脂面が基材回路
面と接するように重ね、圧力1kg/cm2、温度18
0℃の条件下で1時間の熱プレスを行い、多層配線板を
得た。
[Table 1] Two copper foils having a thickness of 100 μm and 15 μm were prepared. The copper foil having a thickness of 100 μm was subjected to atmospheric oxidation heating to form an oxide film having a film thickness shown in Table 1, and then a copper foil having a thickness of 15 μm was formed. The foil was superimposed and cold rolled so that a copper foil having a thickness of 15 μm became 5 μm. Table 1 shows the results of the peelability of both after the cold rolling was completed. After performing the degreasing and cleaning of the surface of the copper foil after the cold rolling, a thermosetting resin composition (for example, an interlayer insulating material TBR-27 manufactured by Tamura Corporation) is roll-coated on the surface of the copper foil having a thickness of 5 μm. wet
Was applied to a thickness of 70 μm, and the solvent component was volatilized and dried in a drying oven at 120 ° C. to obtain a copper foil with resin. next,
The copper foil with resin was peeled off. Table 1 shows the results of the peelability at this time. What was successfully peeled off (N in Table 1)
o. With respect to (3, 4, 5), the resin surface of the resin-coated copper foil is the same as the substrate circuit surface on both surfaces of the substrate having the heat resistance grade FR-4 of the American Electrical Manufacturers Association in which the predetermined circuit is formed on both surfaces. Layered so that it touches, pressure 1 kg / cm 2 , temperature 18
Hot pressing was performed for 1 hour at 0 ° C. to obtain a multilayer wiring board.

【0018】本発明の実施例1によれば、2枚重ねの界
面に20〜200nmの酸化膜が形成されているとき、
圧延後および加熱を受けた後でも引き剥がし性が極めて
良好となることが分かった。また、2枚重ねの冷間圧延
によるため、簡単に9μm以下の厚さの銅箔を得ること
ができ、しかも片側の銅箔がキャリアとして働くため、
樹脂塗工工程においてもその取り扱いは容易で、従来の
12μm以上の銅箔で構成する樹脂付き銅箔となんら変
わらない作業性を達成することができた。
According to the first embodiment of the present invention, when an oxide film having a thickness of 20 to 200 nm is formed
It was found that the peelability was extremely good even after rolling and after being heated. Further, since the two sheets are cold-rolled, a copper foil having a thickness of 9 μm or less can be easily obtained, and the copper foil on one side serves as a carrier.
In the resin coating step, the handling was easy, and workability equivalent to that of a conventional copper foil with resin composed of a copper foil of 12 μm or more could be achieved.

【0019】<実施例2>厚さ15μmの2枚の銅箔の
内1枚の銅箔に大気加熱により厚さ100nmの酸化膜
を形成した後、2枚の銅箔を重ね合わせ、各々の銅箔が
7μmになるように冷間圧延を行った。両方の銅箔の表
面の脱脂清浄化を行った後、実施例1に示した樹脂組成
物をロールコータにより2枚の銅箔の表面にwetの状
態で70μmの厚さにそれぞれ塗布し、120℃の乾燥
炉で溶剤成分を揮発乾燥させ、一対の樹脂付き銅箔を得
た。次に、重ね合わされている一対の銅箔を引き剥がし
た。引き剥がし性は、実施例1と同様に極めて良好であ
った。引き剥がしたそれぞれの樹脂付き銅箔を実施例1
と同様の方法で米国電気製造業者協会の耐熱性グレード
FR−4を有する基材に積層し、多層配線板を得た。
Example 2 An oxide film having a thickness of 100 nm was formed on one of the two copper foils having a thickness of 15 μm by heating in air, and then the two copper foils were overlapped. Cold rolling was performed so that the copper foil became 7 μm. After the surfaces of both copper foils were degreased and cleaned, the resin composition shown in Example 1 was applied to the surfaces of the two copper foils in a wet state to a thickness of 70 μm using a roll coater, and then 120 The solvent component was volatilized and dried in a drying oven at ℃ to obtain a pair of resin-attached copper foils. Next, the pair of superposed copper foils was peeled off. Peelability was extremely good as in Example 1. Example 1 was used to peel off each of the resin-coated copper foils.
Was laminated on a substrate having heat-resistant grade FR-4 from the American Electrical Manufacturers Association to obtain a multilayer wiring board.

【0020】本発明の実施例2によれば、2枚重ねの界
面に20〜200nmの酸化膜が形成されているとき、
実施例1と同様に、引き剥がし性は良好であった。
According to the second embodiment of the present invention, when an oxide film having a thickness of 20 to 200 nm is formed at the interface of two sheets,
As in Example 1, the peelability was good.

【0021】[0021]

【発明の効果】以上説明した通り、本発明の樹脂付き銅
箔の製造方法によれば、一対の銅箔の界面に厚さ20〜
200nmの酸化膜を形成し、一対の銅箔を重ね合わせ
た状態で冷間圧延しているので、安価に作業性良く銅箔
の厚さが9μm以下の樹脂付き銅箔を製造することがで
きる。しかも圧延によるため、銅箔の板厚は均一であ
り、めっきによるピンホールもなく、これ単独でプリン
ト配線板として使用しても、またフォトレジスト法によ
り配線パターンを形成した後、アディティブ法によりプ
リント配線板として使用しても、ファインパタンのプリ
ント配線板を得ることができる。また、ビルドアップ多
層プリント配線板の積層材として使用しても同様にファ
インパタンのプリント配線板を得ることができる。
As described above, according to the method for producing a resin-coated copper foil of the present invention, the thickness of the copper foil with a thickness of 20 to
Since a 200-nm-thick oxide film is formed and cold-rolled in a state where a pair of copper foils are superposed, a copper foil with a resin having a thickness of 9 μm or less can be manufactured at low cost with good workability. . Moreover, the thickness of the copper foil is uniform because it is rolled, there is no pinhole due to plating, and it can be used alone as a printed wiring board, or after forming a wiring pattern by the photoresist method and printing it by the additive method. Even when used as a wiring board, a printed wiring board having a fine pattern can be obtained. Further, a printed wiring board having a fine pattern can be obtained similarly even when used as a laminate material of a build-up multilayer printed wiring board.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 萩原 登 茨城県日立市日高町5丁目1番1号 日立 電線株式会社総合技術研究所内 (72)発明者 小平 宗男 茨城県日立市日高町5丁目1番1号 日立 電線株式会社総合技術研究所内 Fターム(参考) 4D075 AE19 BB05X BB27Z CA48 DA04 DB06 DC19 EA19 EB33 EB35 EB39 4E351 AA01 AA03 AA04 BB01 DD04 GG20 4F100 AA17C AB17B AB33B AK01A BA03 BA07 BA10A BA10C BA25 EC012 EH112 EH462 EJ082 EJ121 EJ172 EJ312 EJ372 GB43 JB13A JL02 JL05 JL14 JM02C YY00B YY00C  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Noboru Hagiwara 5-1-1, Hidakacho, Hitachi City, Ibaraki Prefecture Within Hitachi Cable Research Institute, Ltd. (72) Muneo Kodaira 5, Hidakacho, Hitachi City, Ibaraki Prefecture No. 1-1 F-term in Hitachi Cable, Ltd. R & D Laboratory (Reference) 4D075 AE19 BB05X BB27Z CA48 DA04 DB06 DC19 EA19 EB33 EB35 EB39 4E351 AA01 AA03 AA04 BB01 DD04 GG20 4F100 AA17C AB17B AB33B AK01ABABABABAE BABAE BABAE BABA BAH EJ082 EJ121 EJ172 EJ312 EJ372 GB43 JB13A JL02 JL05 JL14 JM02C YY00B YY00C

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一対の銅箔の少なくとも一方の銅箔の他方
の銅箔に接触する面に厚さ20〜200nmの酸化膜を
形成し、 前記一対の銅箔を重ね合わせた状態で冷間圧延し、 前記一対の銅箔のうち少なくとも一方の銅箔の表面に熱
硬化性樹脂を塗工し、 前記一対の銅箔を引き剥がすことを特徴とする樹脂付き
銅箔の製造方法。
1. An oxide film having a thickness of 20 to 200 nm is formed on a surface of at least one of a pair of copper foils that contacts the other copper foil, and the pair of copper foils is cold-laminated. Rolling, coating a thermosetting resin on the surface of at least one of the copper foils, and peeling off the pair of copper foils.
【請求項2】前記熱硬化性樹脂の塗工は、前記熱硬化性
樹脂を半硬化状態のBステージ化する工程を含むことを
特徴とする請求項1記載の樹脂付き銅箔の製造方法。
2. The method for producing a resin-coated copper foil according to claim 1, wherein the step of applying the thermosetting resin includes a step of converting the thermosetting resin into a semi-cured B-stage.
【請求項3】前記冷間圧延は、前記一対の銅箔のうち少
なくとも一方の銅箔が9μm以下の厚さとなるように行
うことを特徴とする請求項1記載の樹脂付き銅箔の製造
方法。
3. The method according to claim 1, wherein the cold rolling is performed so that at least one of the pair of copper foils has a thickness of 9 μm or less. .
【請求項4】前記冷間圧延は、前記一対の銅箔がそれぞ
れ9μm以下の厚さとなるように行い、 前記熱硬化性樹脂の塗工は、前記一対の銅箔の両方の表
面に塗工することを特徴とする請求項1記載の樹脂付き
銅箔の製造方法。
4. The cold rolling is performed so that each of the pair of copper foils has a thickness of 9 μm or less, and the thermosetting resin is coated on both surfaces of the pair of copper foils. The method for producing a resin-coated copper foil according to claim 1, wherein:
JP2000393052A 2000-12-25 2000-12-25 Method for manufacturing copper foil with resin Pending JP2002198625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000393052A JP2002198625A (en) 2000-12-25 2000-12-25 Method for manufacturing copper foil with resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000393052A JP2002198625A (en) 2000-12-25 2000-12-25 Method for manufacturing copper foil with resin

Publications (1)

Publication Number Publication Date
JP2002198625A true JP2002198625A (en) 2002-07-12

Family

ID=18858932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000393052A Pending JP2002198625A (en) 2000-12-25 2000-12-25 Method for manufacturing copper foil with resin

Country Status (1)

Country Link
JP (1) JP2002198625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019196516A (en) * 2018-05-09 2019-11-14 Jx金属株式会社 Copper foil, laminate and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019196516A (en) * 2018-05-09 2019-11-14 Jx金属株式会社 Copper foil, laminate and electronic apparatus

Similar Documents

Publication Publication Date Title
TW507510B (en) Method of manufacturing multi layered printed circuit board using adhesive film
TWI450817B (en) Metal foil laminated polyimide resin substrate
WO2002007487A1 (en) Production method for copper-clad laminated sheet
JPH1075053A (en) Method for manufacturing flexible metal foil laminated board
JP2002506121A (en) Electrolytic copper foil with improved glossy surface
JP3392066B2 (en) Composite copper foil, method for producing the same, copper-clad laminate and printed wiring board using the composite copper foil
US4421608A (en) Method for stripping peel apart conductive structures
JPH05102630A (en) Manufacture of copper foil with carrier and copper laminated plate using same
JP2002198625A (en) Method for manufacturing copper foil with resin
JPH08281866A (en) Production of flexible metal foil laminated sheet
JPH07202417A (en) Flexible printed wiring board
JPS58153390A (en) Substrate material for printed circuit and method of producing same
JP2000049440A (en) Manufacture of printed wiring multilayer board
JPH1110791A (en) Joining material for manufacture of single metal-applied laminated plate
JP2006100395A (en) Aluminum substrate for printed circuits and its manufacturing method
JP2005044880A (en) Flexible metal lamination and its manufacturing method
JP4099681B2 (en) Manufacturing method of multilayer printed wiring board
JP2003001753A (en) Method for manufacturing heat-resistant flexible laminated sheet
JP6349641B2 (en) Film with transfer copper foil, method for producing laminated copper foil laminate, film intermediate with transfer copper foil
WO2003032701A1 (en) Method for manufacturing multilayer wiring board, and multilayer wiring board manufactured by the same
JP2892222B2 (en) Manufacturing method of flexible printed circuit board
JP4460719B2 (en) Manufacturing method of prepreg
JP2000071386A (en) Production of laminated sheet
JP4918310B2 (en) Metal support for printed wiring board manufacture
JP3280604B2 (en) Method of manufacturing metal-clad laminate, method of manufacturing printed wiring board, and method of manufacturing multilayer board