JP2002191987A - Catalyst structure - Google Patents

Catalyst structure

Info

Publication number
JP2002191987A
JP2002191987A JP2000398647A JP2000398647A JP2002191987A JP 2002191987 A JP2002191987 A JP 2002191987A JP 2000398647 A JP2000398647 A JP 2000398647A JP 2000398647 A JP2000398647 A JP 2000398647A JP 2002191987 A JP2002191987 A JP 2002191987A
Authority
JP
Japan
Prior art keywords
metal lath
catalyst
rolled
lath
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000398647A
Other languages
Japanese (ja)
Inventor
Eiji Miyamoto
英治 宮本
Yasuyoshi Kato
泰良 加藤
Koichi Yokoyama
公一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000398647A priority Critical patent/JP2002191987A/en
Publication of JP2002191987A publication Critical patent/JP2002191987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst structure having gas flow channels of opening ratio and free from strain or the like. SOLUTION: In the catalyst structure wherein a large number of plate-shaped catalysts having a catalyst component supported thereon are laminated on a reticulated base material, a rolled metal lath 3, which is obtained by successively introducing a metal latch into the nip between rolling rollers 13 in the same direction as a stretching direction at the time of lathing processing from the end part where lathing processing is started of the metal lath, is used as the reticulated base material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、触媒構造体に係
り、特に、ガス流路の開孔率が高く、圧力損失が小さい
触媒構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst structure, and more particularly, to a catalyst structure having a high gas passage opening ratio and a small pressure loss.

【0002】[0002]

【従来の技術】触媒構造体は、例えば板状触媒を多数積
層し、ユニット枠に収容して構成される。板状触媒とし
ては、例えば無機繊維織布等の網状基材に触媒成分を担
持させたものが広く用いられており、網状基材としてメ
タルラスを用いたものも知られている。
2. Description of the Related Art A catalyst structure is, for example, formed by stacking a large number of plate-like catalysts and storing them in a unit frame. As a plate-like catalyst, for example, a catalyst in which a catalyst component is supported on a mesh base such as an inorganic fiber woven fabric is widely used, and a catalyst using a metal lath as the mesh base is also known.

【0003】このようにメタルラスは触媒製造時の網状
基材として用いられ、例えばメタルラスの表面および開
孔部に脱硝用触媒成分を塗布した板状触媒を多数積層し
てユニット枠に収容した脱硝用触媒構造体は、排ガス処
理装置として有用されている。このような触媒構造体に
おいては、ガス流路の開孔率が大きく圧力損失が小さい
こと、および板状触媒が残留応力に起因する歪み等の変
形を生じないこと等が要求される。このため、網状基材
としてのメタルラスをあらかじめ圧延してその厚みを薄
くし、これによって触媒構造体の開孔率を向上させよう
とする試みがなされている。
As described above, a metal lath is used as a net-like base material for the production of a catalyst. For example, a large number of plate-like catalysts having a catalyst component for denitration coated on the surface and opening of the metal lath are stacked and housed in a unit frame. The catalyst structure is used as an exhaust gas treatment device. In such a catalyst structure, it is required that the gas flow path has a large porosity and a small pressure loss, and that the plate-shaped catalyst does not undergo deformation such as distortion due to residual stress. For this reason, attempts have been made to reduce the thickness of a metal lath as a net-like base material by rolling in advance, thereby improving the porosity of the catalyst structure.

【0004】[0004]

【発明が解決しようとする課題】ところでメタルラス
は、金属平板に刃で刻み部を作り、そこに力を加えて引
伸ばし、これによって扇形に近い開孔部を多数形成する
ことによって製造される。このため、メタルラスは全て
の方向に対して方向性を有し、圧延後のメタルラス形状
は圧延時の方向によって変動する。すなわち、メタルラ
スを圧延ローラを用いて圧延する際、同様のメタルラス
および圧延ローラを用いても、圧延ローラへの導入方向
の相違によって圧延後のメタルラスの板厚等が変動し、
一定品質の圧延済みメタルラスを得ることができず、こ
れを基材として用いた触媒構造体も開孔率等の面で必ず
しも満足できるものではなかった。本発明の課題は、上
記従来技術の問題点を解決し、ガス流路開孔率の大き
な、ひずみ等のない触媒構造体を提供することにある。
By the way, a metal lath is manufactured by forming a notch in a metal flat plate with a blade and applying a force to the cut, thereby forming a large number of openings close to a fan shape. For this reason, the metal lath has directionality in all directions, and the shape of the metal lath after rolling varies depending on the direction during rolling. That is, when the metal lath is rolled using the rolling roller, even if the same metal lath and the rolling roller are used, the thickness of the metal lath after rolling varies due to a difference in the introduction direction to the rolling roller,
A rolled metal lath of constant quality could not be obtained, and the catalyst structure using this as a base material was not always satisfactory in terms of porosity and the like. An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a catalyst structure having a large gas passage porosity and no distortion.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明者は、金属平板に刃物で、例えば千鳥状に刻
み部を作り、これを引き延ばして扇型に近い開孔部を多
数形成したメタルラスを、圧延ローラに導入して所定厚
さに圧延する際の前記メタルラスの圧延ローラへの導入
方向と圧延済みメタルラスの厚さ、強度等との関係につ
いて鋭意研究した結果、メタルラスのラス加工を開始し
た端部から順に、ラス加工時の引伸し方向と同一方向で
圧延ローラに導入することにより、板厚が薄くて均一な
圧延済みメタルラスが得られること、この方向で圧延し
たメタルラスは残留応力によるひずみを容易に除くこと
ができること、およびこの方法によって得られた圧延済
みメタルラスに触媒成分を塗布した板状触媒は積層方法
が単純化され、得られた触媒構造体のガス開孔率が大き
く、残留応力に起因するひずみ等がないこと等を見出
し、本発明に到達した。
In order to solve the above-mentioned problems, the present inventor made a notch in a metal flat plate with a blade, for example, in a zigzag pattern, and then stretched the cut portion to form a large number of openings close to a fan shape. As a result of earnestly studying the relationship between the direction of introduction of the metal lath into the rolling roller and the thickness, strength, etc. of the rolled metal lath when the rolled metal lath is introduced into the rolling roller and rolled to a predetermined thickness, lath processing of the metal lath In order from the starting end, the metal lath is rolled in the same direction as the stretching direction at the time of lathing, so that a thin and uniform rolled metal lath can be obtained. And the plate-like catalyst obtained by applying the catalyst component to the rolled metal lath obtained by this method has a simplified lamination method, and the obtained Large gas porosity of the catalyst structure was, found such that there is no such distortion due to residual stress, have reached the present invention.

【0006】すなわち、本願で特許請求する発明は、以
下のとおりである。 (1)網状基材に触媒成分を担持させた板状触媒を多数
積層した触媒構造体において、前記網状基材としてラス
加工を開始した端部から順に、ラス加工時の引伸し方向
と同一方向で圧延ローラに導入して圧延した圧延済みメ
タルラスを用いたことを特徴とする触媒構造体。
That is, the invention claimed in the present application is as follows. (1) In a catalyst structure in which a large number of plate-like catalysts in which a catalyst component is supported on a net-like base material are stacked in the same direction as the stretching direction at the time of lathing, in order from the end where lathing is started as the net-like base material. A catalyst structure using a rolled metal lath that has been introduced into a rolling roller and rolled.

【0007】[0007]

【発明の実施の形態】図1(a)、(b)は、本発明に
適用する網状基材(圧延済みメタルラス)の製造工程を
示す説明図である。図1において、金属平板12にラス
加工用の刃11で刻み部を形成し、これを圧延ローラ1
3で矢印2の方向に引き延ばしてラス加工を施し、メタ
ルラス1を形成したのち、該メタルラス1をラス加工を
開始した端部から順に図1(b)の矢印2の方向、すな
わちラス加工時の引伸し方向と同一方向で圧延ローラ1
3に導入して圧延し、圧延済みメタルラス3が製造され
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 (a) and 1 (b) are explanatory views showing the steps of manufacturing a net-like base material (rolled metal lath) applied to the present invention. In FIG. 1, a notch is formed on a metal flat plate 12 by a lath processing blade 11, and this is
After the metal lath 1 is formed by extending the metal lath 1 in the direction of arrow 2 by 3 and forming the metal lath 1, the metal lath 1 is sequentially arranged in the direction of arrow 2 in FIG. Roller 1 in the same direction as the stretching direction
3 and rolled to produce a rolled metal lath 3.

【0008】得られた圧延済みメタルラスは、板厚が薄
くしかも均一厚さであり、ラス加工時の残留応力による
ひずみは解消されていた。従って、この圧延済みメタル
ラスを網状基材として用い、これに触媒成分を塗布して
板状触媒とし、該板状触媒を多数積層して触媒構造体と
することにより、ガス流路の開孔率が高くて圧力損失が
小さい、ひずみ等を生じることのない形状的にも安定し
た触媒構造体が得られる。図2〜図4を用いて本発明に
適用する圧延済みメタルラスが薄くて均一な厚さを有す
る理由について説明する。
The obtained rolled metal lath has a small thickness and a uniform thickness, and the distortion due to residual stress during lathing is eliminated. Accordingly, the rolled metal lath is used as a mesh-shaped base material, and a catalyst component is applied thereto to form a plate-shaped catalyst. Thus, a catalyst structure which is high in shape, has small pressure loss, and is stable in shape without causing distortion or the like can be obtained. The reason why the rolled metal lath applied to the present invention has a thin and uniform thickness will be described with reference to FIGS.

【0009】図2は、ラス加工したメタルラスの開孔部
の形状を示す図である。図2において、ラス加工時に矢
印6の方向に引っ張られた金属平板には、符号4で示し
た部分に力が加わって扇型に近い開孔部が多数形成さ
れ、その断面は、階段状になる。このような断面形状を
有するメタルラス1を、図3に示したように、ラス加工
を開始した端から順に、ラス加工時の引伸し方向と同一
方向で圧延ローラ13に導入して圧延すると、圧延ロー
ラ13からメタルラス1に符号7で示した方向の力が掛
かり、この力によりその後方部分には符号8で示したよ
うな、板厚を薄くする力が加わる。従って、圧延効率が
高くなり、より薄く均一な板厚の圧延済みメタルラスが
得られる。
FIG. 2 is a diagram showing the shape of the opening of a metal lath which has been lathed. In FIG. 2, a metal plate pulled in the direction of arrow 6 at the time of lath processing has a large number of openings close to a fan shape formed by applying a force to a portion indicated by reference numeral 4, and its cross section is stepwise. Become. As shown in FIG. 3, when the metal lath 1 having such a cross-sectional shape is introduced into the rolling roller 13 in the same direction as the stretching direction at the time of lathing and rolled in order from the end where lathing is started, the rolling roller From 13, a force in the direction indicated by reference numeral 7 is applied to the metal lath 1, and a force for reducing the plate thickness as indicated by reference numeral 8 is applied to the rear portion of the metal lath 1. Therefore, the rolling efficiency is increased, and a rolled metal lath having a thinner and uniform thickness can be obtained.

【0010】これに対して、図4は、ラス加工を開始し
た端部とは逆方向から順に圧延ローラに導入して圧延し
た場合を示す説明図である。図4において、メタルラス
をラス加工時の引伸し方向(ラス加工時の金属平板の進
行方向6)とは逆方向から順に圧延ローラ13に導入し
て圧延すると、メタルラス1には、図中符号7で示した
ような板厚を薄くしようとする力がかかるが、この力が
かかると、その後方部分には図中符号8で示したような
板厚を逆に増加させる方向に力がはたらくことになる。
このため圧延効率は低下し、全体としての相対的な圧延
力が弱くなるので、十分に圧延された板厚の薄い圧延済
みメタルラスは得られない。
On the other hand, FIG. 4 is an explanatory view showing a case where rolling is performed by sequentially introducing the roll into the rolling rollers from the direction opposite to the end where lathing is started. In FIG. 4, when the metal lath is rolled by being introduced into the rolling roller 13 in the reverse direction to the stretching direction during lathing (the traveling direction 6 of the metal flat plate during lathing), the metal lath 1 is denoted by reference numeral 7 in the figure. A force for reducing the plate thickness as shown is applied, but when this force is applied, a force acts on the rear portion in a direction to increase the plate thickness as indicated by reference numeral 8 in the figure. Become.
For this reason, the rolling efficiency is reduced and the relative rolling force as a whole is weakened, so that a sufficiently rolled metal lath having a small thickness is not obtained.

【0011】一方、上記図3および図4以外の方向、例
えば符号6で示した方向に直角の方向で圧延ローラ13
に導入して圧延すると、圧延ローラ13とメタルラス1
との接触点が多くなり、圧延ローラ13からメタルラス
1に伝わる圧延力が分散されるので、圧延力は上記図4
の場合よりもさらに弱まり、やはり十分に圧延された圧
延済みメタルラスは得られない。従って、本発明におい
ては、ラス加工を開始した端部から順に、ラス加工時の
引伸し方向と同一方向で圧延ローラに導入して圧延した
圧延済みメタルラスを網状基材として用いる。なお、圧
延方法としては、例えばプレスによる方法等があげられ
るが、本発明においては、メカルラスを連続的、かつ効
率よく圧延するために、圧延ローラを用いる方法が適用
される。
On the other hand, the rolling roller 13 is moved in a direction other than the directions shown in FIGS.
Roller 13 and metal lath 1
And the rolling force transmitted from the rolling roller 13 to the metal lath 1 is dispersed.
Therefore, a sufficiently rolled metal lath cannot be obtained. Therefore, in the present invention, a rolled metal lath that has been introduced into a rolling roller and rolled in the same direction as the stretching direction during lathing in order from the end where lathing has begun is used as the net-like base material. In addition, as a rolling method, for example, a method using a press and the like can be mentioned. In the present invention, a method using a rolling roller is applied in order to continuously and efficiently roll the mecarous.

【0012】本発明において、圧延時のメタルラスの表
裏は、圧延後のメタルラス形状に影響を与えることがな
いので、圧延ローラへ導入する際のメタルラスの表裏の
上下は、特に限定されない。本発明において、圧延済み
メタルラスに担持される触媒成分としては、例えば、酸
化チタンを主成分とし、これにモリブデン、バナジウ
ム、タングステン等の酸化物のうち1種または2種以上
を添加したものが好適に用いられる。触媒成分の担持方
法は、特に限定されるものではなく、例えばスラリ状触
媒成分を圧延済みメタルラスにコーティングする方法、
ペースト状の触媒成分を圧延済みメタルラスに圧延、塗
布する方法等公知の方法が採用される。図5は、本発明
に適用する板状触媒の断面形状の一例を示す説明図であ
る。図において、階段状、波板状、断面コの字形状等が
示されている。本発明において、板状触媒の積層方法も
特に限定されるものではない。
In the present invention, since the front and back of the metal lath during rolling do not affect the shape of the metal lath after rolling, the top and bottom of the front and back of the metal lath when introduced into the rolling roller are not particularly limited. In the present invention, as the catalyst component supported on the rolled metal lath, for example, a material obtained by adding one or more of oxides such as molybdenum, vanadium, and tungsten to titanium oxide as a main component is preferable. Used for The method of supporting the catalyst component is not particularly limited, for example, a method of coating a slurry-like catalyst component on a rolled metal lath,
A known method such as a method of rolling and applying a paste-like catalyst component to a rolled metal lath is employed. FIG. 5 is an explanatory diagram showing an example of a cross-sectional shape of a plate catalyst applied to the present invention. In the figure, a step shape, a corrugated plate shape, a U-shaped cross section and the like are shown. In the present invention, the method for laminating the plate catalyst is not particularly limited.

【0013】[0013]

【実施例】次に、本発明の具体的実施例を説明する。 実施例1 板厚0.2mmのSUS430の平板を、刻み幅0.47
mmでラス加工し、板厚0.789mm、開孔率53.1%
のメタルラスを得た。これを図1に示す方向、すなわち
メタルラスにおけるラス加工開始端から順にラス加工時
の引伸し方向と同一方向で圧延ローラに導入して圧延し
たことろ、板厚0.302mmの圧延済みメタルラス(網
状基材)が得られた。
Next, specific examples of the present invention will be described. Example 1 A SUS430 flat plate having a thickness of 0.2 mm was cut with a step width of 0.47.
Lath processing with mm, plate thickness 0.789mm, aperture ratio 53.1%
Got a metal lath. This was introduced into a rolling roller in the direction shown in FIG. 1, that is, in the same direction as the stretching direction during lathing from the lathing start end of the metal lath, and was rolled. Material) was obtained.

【0014】これとは別に、比表面積270m2/gの酸化
チタン1.2kgにモリブデン酸アンモニウム((NH4)6
・Mo7 24・4H2 O)を0.25kg、メタバナジン
酸アンモニウム0.23kg、および蓚酸0.3kgおよび
水を加えながら混練してペースト状態にした。これにカ
オリン系無機繊維(商品名カオウール)15wt%を加え
て、さらに混練し水分30.5%のペーストを得た。
Separately, 1.2 kg of titanium oxide having a specific surface area of 270 m 2 / g is added to ammonium molybdate ((NH 4 ) 6
· And Mo 7 O 24 · 4H the 2 O) 0.25 kg, the kneaded to a paste state while adding ammonium metavanadate 0.23 kg, and oxalic 0.3kg and water. To this was added 15 wt% of kaolin-based inorganic fiber (trade name: kao wool), and the mixture was further kneaded to obtain a paste having a water content of 30.5%.

【0015】得られたペーストを一対の圧延ローラを用
い、上記圧延済みメタルラスの目開き部および基材表面
に塗布し、これを金型の間に挟んで図5(b)の断面と
なるように成形した後、500℃で2時間焼成し、幅4
98mm、長さ500mm、板厚0.66mmの触媒体を得
た。得られた触媒体を1枚おきに表裏反転させて多数積
層し、ユニット枠に収容して触媒構造体としたところ、
容易に積層することができたうえ、ガス流路開孔率が大
きくて圧力損失が小さい、触媒体のひずみ等による変形
がない触媒構造体が得られた。
The obtained paste is applied to the opening of the above-mentioned rolled metal lath and the surface of the base material using a pair of rolling rollers, and this is sandwiched between molds so that the cross section shown in FIG. After sintering at 500 ° C for 2 hours, width 4
A catalyst having a thickness of 98 mm, a length of 500 mm and a thickness of 0.66 mm was obtained. When the obtained catalyst body was turned upside down for every other sheet, a large number of the stacked bodies were stacked, and housed in a unit frame to form a catalyst structure.
In addition to being able to be easily laminated, a catalyst structure having a large gas passage porosity and a small pressure loss, and having no deformation due to a strain or the like of the catalyst body was obtained.

【0016】比較例1 メタルラスを圧延ローラに導入する方向を、実施例1と
は90度回転させた以外は実施例1と同様にして圧延済
みメタルラスを得、実施例1と同様にして触媒構造体を
構成したところ、ガス流路開孔率が十分に増加せず、ま
た板状触媒に網状基材であるメタルラスのラス加工時の
残留応力に起因するとみられるひずみが認められた。な
お、このときの圧延済みメタルラスの板厚は0.367
mmであった。
Comparative Example 1 A rolled metal lath was obtained in the same manner as in Example 1 except that the direction in which the metal lath was introduced into the rolling roller was rotated 90 degrees from that in Example 1, and a catalyst structure was obtained in the same manner as in Example 1. When the body was formed, the gas flow path porosity did not increase sufficiently, and the plate-like catalyst was found to have a strain that was considered to be caused by residual stress during lath processing of a metal lath as a net-like base material. The thickness of the rolled metal lath at this time was 0.367.
mm.

【0017】比較例2 メタルラスを圧延ローラに導入する方向を、実施例1と
は180度回転させた以外は上記実施例1と同様にして
圧延済みメタルラスを得、実施例1と同様にして触媒構
造体を構成したところ、ガス流路開孔率は比較例1より
は増加したが、十分とは言えず、また板状触媒にラス加
工時の残留応力に起因するとみられるひずみが認められ
た。なお、このときの圧延済みメタルラスの板厚は0.
324mmであった。実施例1、比較例1および2におけ
る圧延済みメタルラスの製造条件および得られた基材厚
さを表1にまとめて示した。
Comparative Example 2 A rolled metal lath was obtained in the same manner as in Example 1 except that the direction in which the metal lath was introduced into the rolling roller was rotated by 180 degrees from that in Example 1, and a catalyst was obtained in the same manner as in Example 1. When the structure was formed, the gas flow path porosity increased compared to Comparative Example 1, but was not sufficient, and the plate-like catalyst was found to have a strain that was considered to be caused by residual stress during lath processing. . The thickness of the rolled metal lath at this time was 0.1 mm.
It was 324 mm. Table 1 summarizes the production conditions of the rolled metal lath and the obtained substrate thickness in Example 1 and Comparative Examples 1 and 2.

【0018】[0018]

【表1】 表1から、ラス加工を開始した端から順に、ラス加工時
の引伸し方向と同一の方向で圧延ローラへ導入して圧延
した実施例1の圧延済みメタルラスの厚さが最も薄くな
っていることが分かる。
[Table 1] From Table 1, it is found that the thickness of the rolled metal lath of Example 1, which was introduced into the rolling roller in the same direction as the stretching direction during lathing and rolled in order from the end where lathing was started, was the thinnest. I understand.

【0019】この理由として、比較例1は圧延ローラと
メタルラスとの接触点が多いため圧延力が分散したこ
と、比較例2は、扇形の開孔部の固定されている弧の両
端を変形させるように弧の中心部分に力が掛かるため圧
延の効率が低下したこと等が挙げられる。これに対し、
実施例1では、扇形の開孔部の弧の両端に力を掛けて自
由度の高い弧の中心を変形させるため、圧延効率が高
く、全ての導入方向の中で最も薄い板厚のメタルラスが
得られるものと考えられる。従って、均一な薄さで、残
留応力によるひずみ等のない圧延済みメタルラスを触媒
基材として用いた実施例1の触媒構造体は、ガス流路開
孔率が高くて圧力損失が小さく、しかも残留応力に起因
するひずみ等のない安定な触媒構造体が得られる。
The reason is that the rolling force is dispersed in the comparative example 1 because there are many contact points between the rolling roller and the metal lath, and in the comparative example 2, both ends of the arc where the fan-shaped opening is fixed are deformed. As described above, the force is applied to the center portion of the arc, so that the rolling efficiency is reduced. In contrast,
In the first embodiment, since the center of the arc having a high degree of freedom is deformed by applying a force to both ends of the arc of the fan-shaped opening, the metal lath having the highest rolling efficiency and the thinnest metal lath in all the introduction directions is obtained. It is considered to be obtained. Therefore, the catalyst structure of Example 1 using a rolled metal lath having a uniform thickness and having no distortion due to residual stress or the like as the catalyst substrate has a high gas passage porosity, a small pressure loss, and a low residual pressure. As a result, a stable catalyst structure free of strain or the like due to stress can be obtained.

【0020】[0020]

【発明の効果】本発明によれば、全ての方向について薄
く、均一に圧延された、開孔率の高い圧延済みメタルラ
スを触媒基材として用いたことにより、ひずみ等の変形
のない、圧力損失の小さな触媒構造体が得られる。
According to the present invention, since a rolled metal lath having a high porosity, which is thin and uniformly rolled in all directions, is used as a catalyst substrate, the pressure loss without deformation such as strain is reduced. Is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に適用される圧延済みメタル
ラスの製造方法を示す説明図。
FIG. 1 is an explanatory view showing a method for manufacturing a rolled metal lath applied to one embodiment of the present invention.

【図2】メタルラスの断面および表面を示す説明図。FIG. 2 is an explanatory diagram showing a cross section and a surface of a metal lath.

【図3】圧延時のメタルラスへ作用する力を示す説明
図。
FIG. 3 is an explanatory diagram showing a force acting on a metal lath during rolling.

【図4】圧延時のメタルラスへ作用する力を示す説明
図。
FIG. 4 is an explanatory diagram showing a force acting on a metal lath during rolling.

【図5】本発明に適用する触媒体の断面形状の一例を示
す説明図。
FIG. 5 is an explanatory view showing an example of a cross-sectional shape of a catalyst body applied to the present invention.

【符号の説明】[Explanation of symbols]

1…メタルラス、2…圧延ローラへの進行方向を示す矢
印、3…圧延済みメタルラス(メタルラス製触媒基
材)、4…ラス加工時に力がかかった部分、6…ラス加
工時の金属平板の進行方向を示す矢印、7…圧延時に圧
延ローラからメタルラスにかかる力の方向を示す矢印、
8…7の力によりメタルラスが変形するために、その後
ろ側のメタルラスにかかる力の方向を示す矢印、11…
ラス加工用の刃、12…金属平板、13…圧延ローラ。
Reference numeral 1 denotes a metal lath, 2 denotes an arrow indicating a traveling direction to a rolling roller, 3 denotes a rolled metal lath (catalyst base material made of metal lath), 4 denotes a portion where a force is applied during lathing, and 6 denotes a progression of a flat metal plate during lath processing. Arrow indicating direction, 7 ... Arrow indicating direction of force applied from rolling roller to metal lath during rolling,
Arrows indicating the direction of the force applied to the metal lath behind it because the metal lath is deformed by the force of 8 ... 7, 11 ...
Blade for lath processing, 12: metal flat plate, 13: rolling roller.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横山 公一 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 Fターム(参考) 3G091 GA02 GA03 GA04 GB02W GB10W 4D048 BA39X BA39Y BB07 BB12 CA06 4G069 AA01 AA11 BB02A BB02B CA03 DA05 EA12 EE06 FB70 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Koichi Yokoyama 3-36 Takara-cho, Kure-shi, Hiroshima Babcock Hitachi Kure Research Laboratory F-term (reference) 3G091 GA02 GA03 GA04 GB02W GB10W 4D048 BA39X BA39Y BB07 BB12 CA06 4G069 AA01 AA11 BB02A BB02B CA03 DA05 EA12 EE06 FB70

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 網状基材に触媒成分を担持させた板状触
媒を多数積層した触媒構造体において、前記網状基材と
してラス加工を開始した端部から順に、ラス加工時の引
伸し方向と同一方向で圧延ローラに導入して圧延した圧
延済みメタルラスを用いたことを特徴とする触媒構造
体。
1. In a catalyst structure in which a large number of plate-like catalysts in which a catalyst component is supported on a reticulated base material are arranged in the same order as the stretching direction during the lathing process, in order from the end where lathing is started as the reticulated base material. A catalyst structure characterized by using a rolled metal lath that has been introduced into a rolling roller in a direction and rolled.
JP2000398647A 2000-12-27 2000-12-27 Catalyst structure Pending JP2002191987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000398647A JP2002191987A (en) 2000-12-27 2000-12-27 Catalyst structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000398647A JP2002191987A (en) 2000-12-27 2000-12-27 Catalyst structure

Publications (1)

Publication Number Publication Date
JP2002191987A true JP2002191987A (en) 2002-07-10

Family

ID=18863571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000398647A Pending JP2002191987A (en) 2000-12-27 2000-12-27 Catalyst structure

Country Status (1)

Country Link
JP (1) JP2002191987A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031479A1 (en) * 2007-09-07 2009-03-12 Toyota Shatai Kabushiki Kaisha Separator for fuel cell and method for forming collector constituting the separator
US8206865B2 (en) 2005-09-22 2012-06-26 Toyota Shatai Kabushiki Kaisha Separator for fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8206865B2 (en) 2005-09-22 2012-06-26 Toyota Shatai Kabushiki Kaisha Separator for fuel cell
WO2009031479A1 (en) * 2007-09-07 2009-03-12 Toyota Shatai Kabushiki Kaisha Separator for fuel cell and method for forming collector constituting the separator

Similar Documents

Publication Publication Date Title
WO2019031080A1 (en) Exhaust-gas-purifying metal substrate and exhaust gas purification device using same
TWI363448B (en) Battery electrode plate and method for producing the same
WO2014076938A1 (en) Catalyst structure for exhaust gas cleaning
JP2002191987A (en) Catalyst structure
US6994902B2 (en) Metallic porous body
US20070119828A1 (en) Plasma generating electrode, its manufacturing method, and plasma reactor
JP6742457B1 (en) Metal base material for exhaust gas purification and exhaust gas purification apparatus using the same
JPH03188925A (en) Apparatus for cleaning waste gas
JP7195094B2 (en) Exhaust gas purification catalyst structure
JP2020044508A (en) Catalyst structure for purifying exhaust gas
WO2019082553A1 (en) Exhaust gas purging device using metallic base material and method for manufacturing exhaust gas purging device
JP3673073B2 (en) Method and apparatus for producing spread mesh sheet
JP5804909B2 (en) Exhaust gas purification catalyst structure and manufacturing method thereof
JP2001070805A (en) Plate type catalyst structure and its production
JP2001104801A (en) Catalyst structure for cleaning exhaust gas
JP4351524B2 (en) Molding method of plate catalyst
JP2001232216A (en) Catalyst structure, sheetlike catalyst used therein and method of manufacturing the same
JP2002336706A (en) Catalyst structure for cleaning exhaust gas and method for manufacturing the same
JPH11319583A (en) Plate-like catalyst element and catalyst structure
JPH1028871A (en) Plate-like catalyst, plate-like catalyst structure body, preparation thereof, and waste-gas treatment method using the catalyst
JP2003284924A (en) Catalyst structure for treatment of exhaust gas
JP2002191986A (en) Catalyst structure for cleaning exhaust gas and metal lath plate used in formation thereof
JPH10180122A (en) Method and apparatus for preparing catalyst for purifying exhaust gas
JPH07289916A (en) Production of plate-shaped catalyst and base material for plate-shaped catalyst
JPH1170336A (en) Manufacturing device for plate-shaped catalyst