JP2002336706A - Catalyst structure for cleaning exhaust gas and method for manufacturing the same - Google Patents

Catalyst structure for cleaning exhaust gas and method for manufacturing the same

Info

Publication number
JP2002336706A
JP2002336706A JP2001146865A JP2001146865A JP2002336706A JP 2002336706 A JP2002336706 A JP 2002336706A JP 2001146865 A JP2001146865 A JP 2001146865A JP 2001146865 A JP2001146865 A JP 2001146865A JP 2002336706 A JP2002336706 A JP 2002336706A
Authority
JP
Japan
Prior art keywords
catalyst
substrate
exhaust gas
catalyst component
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001146865A
Other languages
Japanese (ja)
Inventor
Eiji Miyamoto
英治 宮本
Yasuyoshi Kato
泰良 加藤
Koichi Yokoyama
公一 横山
Naomi Imada
尚美 今田
Tetsuo Hikino
哲郎 引野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2001146865A priority Critical patent/JP2002336706A/en
Publication of JP2002336706A publication Critical patent/JP2002336706A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/38Honeycomb supports characterised by their structural details flow channels with means to enhance flow mixing,(e.g. protrusions or projections)

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high performance catalyst structure for cleaning exhaust gas low in cost capable of more enhancing catalytic reaction efficiency. SOLUTION: In the catalyst structure 3 for cleaning exhaust gas constituted by laminating a large number of catalyst elements 1, each of which is obtained by supporting a catalyst component on a reticulated substrate having a large number of strip-like projections 5 provided thereto at a predetermined pitch so as to form an uneven shape having a stairs-shaped, corrugated board-shaped or U-shaped cross section, at a lamination pitch 2 so that the strip-like projections 5 cross each other between the adjacent catalyst elements 1, strip-like parts 4 not carrying catalyst component through which meshes pierce partially or entirely are provided to the parts opposed to the strip-like projections 5 of the adjacent catalyst elements 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス処理用触媒
構造体およびその製造方法に係り、特に、排ガス中の窒
素酸化物(以下、NOxという)を効率よくアンモニア
(NH3)で還元することができる、排ガス処理用触媒構
造体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas treatment catalyst structure and a method for producing the same, and more particularly to a method for efficiently reducing nitrogen oxides (hereinafter referred to as NOx) in exhaust gas with ammonia (NH 3 ). And a method for producing the same.

【0002】[0002]

【従来の技術】発電所などから排出される排煙中のNO
xは、酸性雨などの原因物質であり、その効果的な除去
方法として、例えばNH3 を還元剤として選択的接触還
元処理を行なう排煙脱硝法が挙げられる。
2. Description of the Related Art NO in smoke exhausted from power plants and the like
x is a causative substance such as acid rain, and as an effective method for removing it, for example, a flue gas denitration method in which selective catalytic reduction treatment is performed using NH 3 as a reducing agent.

【0003】このような選択的接触還元脱硝法に適用さ
れる脱硝触媒は通常ハニカム状、板状等に成形され、各
種製造法が提案されている。中でも、金属薄板をメタル
ラス加工した後アルミニウム溶射を施したもの、セラミ
ック繊維製織布または不織布等を基板として用い、これ
に触媒成分を塗布、圧着した板状触媒を波形を有するエ
レメント状に加工し、これを多数枚積層した触媒構造体
は、通風損失が小さく、煤塵や石炭の燃焼灰で閉塞され
にくいなどの優れた特長があり、現在火力発電ボイラ排
ガスの脱硝処理に多数用いられている。このような従来
技術に関するものとして、例えば特開昭54−7918
8号公報、特開昭59−73053号公報等が挙げられ
る。
[0003] A denitration catalyst applied to such a selective catalytic reduction denitration method is usually formed into a honeycomb shape, a plate shape or the like, and various production methods have been proposed. Among them, a metal thin plate is subjected to metal lath processing and then subjected to aluminum spraying, a woven or non-woven fabric made of ceramic fiber is used as a substrate, a catalyst component is applied thereto, and a pressed catalyst is processed into an element having a waveform. The catalyst structure formed by laminating a large number of such layers has excellent features such as low ventilation loss and is hardly clogged with dust and combustion ash of coal, and is currently used in many cases for denitration of exhaust gas from thermal power boilers. Japanese Patent Application Laid-Open No. 54-7918 discloses such a prior art.
8 and JP-A-59-73053.

【0004】また、被処理ガスの流れを乱して触媒反応
を促進させることができる技術として、本発明者の未公
知の、階段状または波板状に成形した触媒体と、平板状
の織布または表裏を貫通した穴を有する金属板等の網状
物とを交互に積層した触媒構造体や、表裏を貫通した穴
を有する板状の触媒体に階段状または波板状に帯状突起
を設け、該帯状突起が交叉するように互い違いに積層し
た触媒構造体があり、この触媒構造体は、被処理ガス流
が触媒体や網状物の目開き部を通って乱されることによ
り、触媒との接触が促進され反応速度が飛躍的に向上し
て高い触媒性能が得られるという特長がある。
As a technique capable of promoting the catalytic reaction by disturbing the flow of the gas to be treated, there are known a stepwise or corrugated shaped catalyst body of the present inventor, and a flat weave. A catalyst structure in which cloth or a net-like material such as a metal plate having a hole penetrating the front and back is alternately laminated, or a belt-like projection having a stepped or corrugated shape is provided on a plate-shaped catalyst having a hole penetrating the front and back. There is a catalyst structure which is alternately stacked so that the belt-like projections intersect, and the catalyst structure has a structure in which the gas to be treated is disturbed through the openings of the catalyst and the mesh to form a catalyst structure. Is promoted, the reaction rate is dramatically improved, and high catalytic performance is obtained.

【0005】[0005]

【発明が解決しようとする課題】ところで近年、排ガス
脱硝装置の高性能化を図るため触媒の板厚を薄くして、
通風損失や原料費を低減しようとする努力が多くの分野
でなされている。また、これまで触媒間ピッチの大きい
触媒を低ガス流速で使用していた石炭焚きボイラからの
排ガスを脱硝処理する分野でも、ガス流速を高めると同
時に触媒ピッチを狭くしたコンパクトな脱硝装置の需要
が高まっている。
In recent years, in order to improve the performance of an exhaust gas denitration apparatus, the thickness of a catalyst has been reduced.
Efforts have been made in many areas to reduce ventilation losses and raw material costs. In the field of denitrification of exhaust gas from coal-fired boilers, which used to use a catalyst with a large pitch between catalysts at a low gas flow rate, the demand for compact denitration equipment that increased the gas flow rate and narrowed the catalyst pitch was also increasing. Is growing.

【0006】上述した本発明者の未公知の技術は、ガス
流を乱して反応を促進させる点において近年の動向にマ
ッチするものであるが、被処理ガスと触媒との接触効率
をより高くし、しかも低コストかつ簡易な方法によって
製造することができる、排ガス処理用触媒構造体および
その製造方法の開発が望まれていた。
[0006] The above-mentioned unknown technique of the present inventor matches recent trends in that the reaction is promoted by disturbing the gas flow, but the contact efficiency between the gas to be treated and the catalyst is increased. However, there has been a demand for the development of a catalyst structure for exhaust gas treatment and a method for producing the same, which can be produced by a low-cost and simple method.

【0007】本発明の課題は、上記要望に応え、被処理
ガスの流れを乱して触媒反応をより促進させることがで
きる高性能、かつ低コストの排ガス処理用触媒構造体お
よびその製造方法を提供することにある。
An object of the present invention is to provide a high-performance, low-cost exhaust gas treatment catalyst structure capable of disturbing the flow of a gas to be treated and further promoting a catalytic reaction, and a method for producing the same. To provide.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明者は、触媒基材への触媒成分の担持方法、板
状触媒の積層方法等について種々検討したところ、触媒
基材への触媒成分の担持方法を従来の塗布、圧延方法に
代えて触媒成分を含むスラリへの浸漬方法を採用するこ
とにより、工数低減による低コスト化、および使用触媒
量を、例えば700g/m2から400g/m2に低減できるこ
と、ならびにCU(Cross Undulated )形状では触媒エ
レメントに規則的な目開き部分が形成され、ガスの乱れ
による高性能化が図れるという知見を得、この知見に基
いて鋭意研究した結果、断面が階段状、波板状、コの字
状のような凹凸状となるように所定ピッチで帯状の突起
を設けた網状基板を、前記帯状突起が隣接する基板相互
間で互いに交叉するように多数積層して基板構造体と
し、例えば該基板構造体の前記網状基板の長辺方向の網
目幅を1.0〜4.5mm、短辺方向の網目幅を1.0
〜2.5mm、網状基板相互の積層ピッチを2.0〜
5.0mmとしたとき、粘度1.5〜2.3Pa・s
(1500〜2300cP)に調整した触媒成分含有ス
ラリに浸漬することにより、前記網状基板の、隣接する
網状基板の帯状突起に対向する部分に、網目の一部また
は全部が貫通する、触媒成分未担持部分が形成されるこ
と、およびこれを所定条件で乾燥、焼成することによ
り、必要触媒担持量および製造工数が低減し、低質量、
低コストで、しかもガス流の三次元的な乱れにより触媒
接触効率が著しく向上する触媒構造体が得られることを
見出し、本発明に到達した。
Means for Solving the Problems To solve the above problems, the present inventor conducted various studies on a method for supporting a catalyst component on a catalyst substrate, a method for laminating a plate-like catalyst, and the like. By adopting a method of supporting the catalyst component instead of the conventional coating and rolling method and employing a dipping method in a slurry containing the catalyst component, cost reduction by reducing the number of steps, and the amount of catalyst used, for example, from 700 g / m 2 to 400 g / m 2 , and in the case of CU (Cross Undulated) shape, regular openings are formed in the catalyst element, and high performance can be achieved by turbulence of gas. As a result, a net-like substrate provided with band-shaped protrusions at a predetermined pitch so that the cross section becomes a stepped shape, a corrugated plate shape, and a U-shaped shape crosses each other between adjacent substrates where the band-shaped protrusions are adjacent to each other. like A substrate structure with several stacked, for example 1.0~4.5mm the longitudinal direction of the mesh size of the mesh substrate of the substrate structure, the short-side direction of the mesh width 1.0
~ 2.5mm, the laminating pitch between the reticulated substrates is 2.0 ~
When it is 5.0 mm, the viscosity is 1.5 to 2.3 Pa · s.
By immersing in a catalyst component-containing slurry adjusted to (1500 to 2300 cP), a part or all of a mesh penetrates a portion of the mesh substrate facing a belt-like projection of an adjacent mesh substrate. By forming a portion and drying and baking it under predetermined conditions, the required amount of supported catalyst and the number of manufacturing steps are reduced,
The inventors have found that a catalyst structure can be obtained at low cost and in which the catalyst contact efficiency is remarkably improved by three-dimensional turbulence of the gas flow, and have reached the present invention.

【0009】すなわち、本願で特許請求する発明は、以
下のとおりである。 (1)断面が階段状、波板状、コの字状のような凹凸状
となるように所定ピッチで帯状の突起を多数設けた網状
基板に触媒成分を担持させた触媒エレメントを、前記帯
状の突起が隣接する触媒エレメント相互間で互いに交叉
するように多数積層した排ガス処理用触媒構造体におい
て、前記触媒エレメントの、前記隣接する触媒エレメン
トの帯状突起と対向する部分に、網目の一部または全部
が貫通する、帯状の触媒成分未担持部分を設けたことを
特徴とする排ガス処理用触媒構造体。 (2)前記網状基板がメタルラス基板であり、前記触媒
成分がチタン、バナジウム、モリブデンおよびタングス
テンの酸化物のうち少なくとも1種を含有することを特
徴とする上記(1)に記載の排ガス処理用触媒構造体。
That is, the invention claimed in the present application is as follows. (1) A catalyst element in which a catalyst component is carried on a net-like substrate provided with a large number of band-shaped projections at a predetermined pitch so as to have a step-like, corrugated, or U-shape cross section, In an exhaust gas treatment catalyst structure in which a large number of protrusions intersect each other between adjacent catalyst elements, the catalyst element has a portion of a mesh or a mesh at a portion opposed to the band-shaped protrusion of the adjacent catalyst element. A catalyst structure for exhaust gas treatment, comprising a strip-shaped catalyst component-unsupported portion which is entirely penetrated. (2) The exhaust gas treatment catalyst according to (1), wherein the mesh substrate is a metal lath substrate, and the catalyst component contains at least one of oxides of titanium, vanadium, molybdenum, and tungsten. Structure.

【0010】(3)断面が階段状、波板状、コの字状の
ような凹凸状となるように所定ピッチで帯状の突起を多
数設けた網状基板に触媒成分を担持させた触媒エレメン
トを前記帯状の突起が隣接する触媒エレメント相互間で
互いに交叉するように多数積層する排ガス処理用触媒構
造体の製造方法において、前記所定ピッチで設けられた
帯状突起の基板端辺に対する角度をそれぞれ異ならせた
2種類の網状基板を、該網状基板の前記帯状突起が隣接
する基板相互間で互いに交叉するように一つ置きに多数
積層して基板構造体とし、該基板構造体を所定の粘度に
調整した触媒成分含有スラリに浸漬し、各網状基板の、
前記隣接する網状基板の帯状突起に対向する部分に、網
目の一部または全部が貫通する、帯状の触媒成分未担持
部分を残すように触媒成分を担持させたのち、乾燥、焼
成することを特徴とする排ガス処理用触媒構造体の製造
方法。
(3) A catalyst element in which a catalyst component is carried on a net-like substrate provided with a large number of band-shaped projections at a predetermined pitch so as to have a step-like, corrugated or U-shaped cross section. In the method for manufacturing a catalyst structure for exhaust gas treatment in which a plurality of strip-shaped projections are stacked so as to cross each other between adjacent catalyst elements, the angles of the strip-shaped projections provided at the predetermined pitch with respect to a substrate edge are respectively different. The two types of reticulated substrates are stacked on each other so that the strip-shaped protrusions of the reticulated substrate cross each other between adjacent substrates to form a substrate structure, and the substrate structure is adjusted to a predetermined viscosity. Immersed in the slurry containing the catalyst component,
In a portion opposed to the band-shaped projection of the adjacent net-like substrate, part or all of the mesh penetrates, and after supporting the catalyst component so as to leave a band-shaped catalyst component unsupported portion, drying and firing are performed. A method for producing a catalyst structure for treating exhaust gas.

【0011】(4)前記基板構造体における網状基板の
長辺方向の網目幅を1.0〜4.5mm、短辺方向の網
目幅を1.0〜2.5mm、網状基板相互の積層ピッチ
を2.0〜5.0mmとしたとき、前記触媒成分含有ス
ラリの粘度を1.5〜2.3Pa・s(1500〜23
00cP)とすることを特徴とする上記(3)に記載の
排ガス処理用触媒構造体の製造方法。
(4) The mesh width of the mesh substrate in the long side direction of the above-mentioned board structure is 1.0 to 4.5 mm, the mesh width of the short side direction is 1.0 to 2.5 mm, and the lamination pitch between the mesh substrates. Is 2.0 to 5.0 mm, the viscosity of the catalyst component-containing slurry is 1.5 to 2.3 Pa · s (1500 to 23 Pa).
00cP). The method for producing a catalyst structure for exhaust gas treatment according to (3) above, wherein

【0012】(5)前記網状基板としてメタルラス基板
を用い、前記触媒成分含有スラリとしてチタン、バナジ
ウム、モリブデンおよびタングステンの酸化物のうち少
なくとも1種を含有するスラリを用いることを特徴とす
る上記(3)または(4)に記載の排ガス処理用触媒構
造体の製造方法。 (6)前記触媒成分含有スラリの粘度を調整することに
より、前記帯状の触媒成分未担持部分における貫通孔の
割合を調節することを特徴とする上記(3)〜(5)の
何れかに記載の排ガス処理用触媒構造体の製造方法。
(5) A metal lath substrate is used as the reticulated substrate, and a slurry containing at least one of titanium, vanadium, molybdenum and tungsten oxides is used as the catalyst component-containing slurry. ) Or (4), a method for producing a catalyst structure for treating exhaust gas. (6) The method according to any one of (3) to (5), wherein the viscosity of the catalyst component-containing slurry is adjusted to adjust the ratio of through holes in the belt-shaped catalyst component-unsupported portion. Method for producing a catalyst structure for treating exhaust gas.

【0013】[0013]

【発明の実施の形態】図1は、本発明の一実施例である
触媒構造体を示す説明図、図2は、本発明に適用される
網状基板としてのメタルラス基板を示す一部拡大図、図
3は、基板構造体の、網状基板としてのメタルラス基板
に触媒成分未担持部分を残して触媒成分が担持される状
況を示す説明図である。
FIG. 1 is an explanatory view showing a catalyst structure according to one embodiment of the present invention. FIG. 2 is a partially enlarged view showing a metal lath substrate as a mesh substrate applied to the present invention. FIG. 3 is an explanatory diagram showing a situation in which a catalyst component is supported on a metal lath substrate as a net-like substrate of the substrate structure, leaving a catalyst component unsupported portion.

【0014】図1において、この排ガス処理用触媒構造
体は、断面が凹凸状になるように所定ピッチで帯状の突
起5を設けたメタルラス基板に触媒成分を担持させた触
媒エレメント1を、前記帯状の突起5が隣接する触媒エ
レメント1相互間で互いに交叉するように多数積層した
排ガス処理用触媒構造体であって、前記触媒エレメント
1の、隣接する触媒エレメントの帯状突起5と対向する
部分に、網目の一部または全部が貫通する、帯状の触媒
成分未担持部分4を設けたものであり、6は、被処理ガ
ス流である。
In FIG. 1, the catalyst structure for exhaust gas treatment comprises a catalyst element 1 in which a catalyst component is carried on a metal lath substrate provided with strip-shaped projections 5 at a predetermined pitch so that the cross section becomes uneven. Is a catalyst structure for exhaust gas treatment, wherein a number of the protrusions 5 are stacked so as to cross each other between the adjacent catalyst elements 1, and a portion of the catalyst element 1 facing the strip-shaped protrusion 5 of the adjacent catalyst element, This is provided with a strip-shaped catalyst component-unsupported portion 4 penetrating part or all of the mesh, and 6 is a gas flow to be treated.

【0015】このような排ガス処理用触媒構造体は、次
のようにして製造される。すなわち、図2に示したラス
長方向の網目幅8が4.0mm、短方向の網目幅9が
2.0mmのメタルラス基板を多数積層した際に積層ピ
ッチが、例えば4.0mmとなるような高さの帯状突起
5を、該メタルラス基板の端辺に対してそれぞれ角度を
異ならせて2種類設け、該2種類のメタルラス基板を前
記帯状突起5が隣接する基板相互間で相互に交叉するよ
うに一つ置きに多数積層して基板構造体とし、この基板
構造体を所定粘度、例えば1.8Pa・s(1800c
P)に調整した触媒成分を含むスラリに浸漬することに
より、図3に示したように、メタルラス基板1の、これ
と隣接するメタルラス基板1の帯状突起5に対向した部
分との間の触媒スラリが表面張力により球形になろうと
するため、その上下両側に位置した帯状突起5(図3で
は上側の帯状突起み記載)からの張力により、そのメタ
ルラス基板の、挟まれた部分の網目を覆うスラリが上下
に引っ張られ、その部分のスラリが網目を覆うだけの表
面張力を保てなくなって網目の一部または全部が表裏に
貫通する、触媒成分未担持部分が形成され、その他の部
分には触媒成分が網目を塞ぐように担持される。従っ
て、この触媒担持構造体を所定の条件で乾燥、焼成する
ことにより、触媒エレメントの、前記隣接する触媒エレ
メントの帯状突起と対向する部分に、網目の一部または
全部が貫通する、帯状の触媒成分未担持部分を設けた排
ガス処理用触媒構造体が得られる。なお、図2に示した
メタルラス基板1のメタルラスの送りピッチ7は0.4
7mmである。
[0015] Such a catalyst structure for treating exhaust gas is manufactured as follows. That is, when a large number of metal lath substrates each having a mesh length 8 in the lath length direction of 4.0 mm and a mesh width 9 in the short direction shown in FIG. 2 of 2.0 mm are stacked, the stacking pitch becomes, for example, 4.0 mm. Two kinds of strip-shaped projections 5 having different heights are provided at different angles with respect to the edges of the metal lath substrate, and the two kinds of metal lath boards are crossed between adjacent boards. The substrate structure is formed by laminating a large number of every other substrate structure, and this substrate structure has a predetermined viscosity, for example, 1.8 Pa · s (1800 c
By immersing in the slurry containing the catalyst component adjusted in P), as shown in FIG. 3, the catalyst slurry between the metal lath substrate 1 and the portion of the metal lath substrate 1 facing the strip-shaped projection 5 adjacent thereto. Slurry that covers the mesh of the sandwiched portion of the metal lath substrate by the tension from the band-shaped projections 5 (upper band-shaped projections shown in FIG. 3) located on both upper and lower sides of the metal lath substrate because the metal lath substrate tends to become spherical due to surface tension. Is pulled up and down, and the slurry at that part cannot maintain the surface tension enough to cover the mesh, and a part or all of the mesh penetrates from the front to the back, forming a catalyst component unsupported part, and the other part of the catalyst The components are supported so as to close the mesh. Therefore, by drying and calcining the catalyst-supporting structure under predetermined conditions, a strip-shaped catalyst in which part or all of the mesh penetrates a portion of the catalyst element facing the strip-shaped projection of the adjacent catalyst element. An exhaust gas treatment catalyst structure provided with a component-unsupported portion is obtained. The metal lath substrate 1 shown in FIG.
7 mm.

【0016】本実施例によれば、メタルラス基板の粗面
化処理や触媒成分塗布後、圧縮空気を用いて網目を貫通
させる等の工程を経ることなく、メタルラス基板の網目
寸法および積層条件に応じて調製した所定粘度のスラリ
に基板構造体を浸漬するだけで、メタルラス基板の、隣
接する帯状突起部に対向する部分に網目の一部または全
部が貫通する、触媒成分未担持部分を有する触媒構造体
が得られる。この触媒構造体は、従来の触媒構造体に比
べて触媒表面積を保ったまま、網目の開いた部分を通る
三次元的なガス流の乱れを起こすことができるので、触
媒反応効率が著しく向上する。また、メタルラス基板へ
の触媒成分の担持方法として基板構造体の触媒成分含有
スラリへの浸漬法を採用したことにより、担持触媒成分
量を従来の塗布または圧延法と比べて大幅に低減できる
ので、低質量および低コストの触媒構造体が得られる。
According to this embodiment, after the metal lath substrate is subjected to surface roughening treatment or application of a catalyst component, the mesh size and the laminating conditions of the metal lath substrate can be adjusted without passing through a step of penetrating the mesh using compressed air. A catalyst structure having a catalyst component-unsupported portion, in which part or all of a mesh penetrates a portion of a metal lath substrate facing an adjacent strip-shaped projection simply by immersing the substrate structure in a slurry having a predetermined viscosity prepared as described above. The body is obtained. This catalyst structure can cause a three-dimensional gas flow turbulence through an open mesh portion while maintaining the catalyst surface area as compared with the conventional catalyst structure, so that the catalytic reaction efficiency is significantly improved. . In addition, by adopting the method of immersing the catalyst component-containing slurry in the substrate structure as a method of supporting the catalyst component on the metal lath substrate, the amount of the supported catalyst component can be significantly reduced as compared with the conventional coating or rolling method. A low mass and low cost catalyst structure is obtained.

【0017】本発明において、網状基板としては、例え
ば金属薄板をメタルラス加工したメタルラス基板、セラ
ミックス繊維製織布または不織布等からなる基板が用い
られる。メタルラス基板はローラ掛けまたはプレスなど
により圧延されていてもよい。触媒成分としてはチタ
ン、バナジウム、モリブデンおよびタングステンの酸化
物のうち少なくとも1種を含有するものが用いられる
が、好適には、例えば酸化チタンを主成分にし、これに
バナジウム(V)、モリブデン(Mo)および/または
タングステン(W)の酸化物を含有したものが用いられ
る。
In the present invention, as the net-like substrate, for example, a metal lath substrate obtained by processing a metal lath into a metal lath, or a substrate made of a woven or nonwoven fabric made of ceramic fibers is used. The metal lath substrate may be rolled by rolling or pressing. As the catalyst component, one containing at least one of oxides of titanium, vanadium, molybdenum and tungsten is used. Preferably, for example, titanium oxide is used as a main component, and vanadium (V), molybdenum (Mo) ) And / or those containing an oxide of tungsten (W).

【0018】本発明において、メタルラス基板の断面形
状としては、例えば図4(a)〜(e)に示したように
階段型、波板状、コの字状等の凹凸型状が挙げられる
が、その他の凹凸形状であってもよい。本発明におい
て、基板構造体を構成する網状基板としては、所定ピッ
チで設けられた帯状突起の該基板端辺に対する角度をそ
れぞれ異ならせた2種類のものが使用される。ただし、
同一角度のものを多数調製し、1枚置きに表裏反転させ
て積層し、これによって基板構造体を構成することもで
きる。
In the present invention, as the cross-sectional shape of the metal lath substrate, for example, as shown in FIGS. 4A to 4E, an uneven shape such as a stepped shape, a corrugated shape, and a U-shape is exemplified. , And other uneven shapes. In the present invention, two types of net-like substrates constituting the substrate structure are used, in which the angles of the strip-like projections provided at a predetermined pitch with respect to the edge of the substrate are different. However,
A plurality of substrates having the same angle may be prepared, and alternately turned upside down and stacked, thereby forming a substrate structure.

【0019】本発明においては基板の積層ピッチ、網目
幅、触媒成分含有スラリの粘度を適正化することによ
り、網状基板の、隣接する網状基板の帯状突起と対向す
る部分に網目の一部または全部が貫通する、帯状の触媒
成分未担持部分を有する触媒構造体が調製される。
In the present invention, by adjusting the laminating pitch of the substrate, the mesh width, and the viscosity of the slurry containing the catalyst component, a part or all of the mesh is formed on the portion of the mesh substrate facing the band-like projection of the adjacent mesh substrate. A catalyst structure having a belt-shaped unsupported portion of the catalyst component through which is penetrated is prepared.

【0020】本発明において、基板構造体を構成するメ
タルラス基板の長方向の網目幅を1.0〜4.5mm、
短方向の網目幅を1.0〜2.5mm、基板相互の積層
ピッチを2.0〜5.0mmとしたとき触媒成分含有ス
ラリの粘度は1.5〜2.3Pa・sとすることが好ま
しく、より好ましくは、1.8〜2.1Pa・sであ
る。スラリの粘度が2.4Pa・s以上では全ての網目
が塞がるかまたは浸漬できなくなり、1.4Pa・s以
下では必要な触媒担持量を確保することができなくな
る。
In the present invention, the mesh width of the metal lath substrate constituting the substrate structure in the longitudinal direction is 1.0 to 4.5 mm,
When the mesh width in the short direction is 1.0 to 2.5 mm and the lamination pitch between the substrates is 2.0 to 5.0 mm, the viscosity of the catalyst component-containing slurry may be 1.5 to 2.3 Pa · s. It is preferably, and more preferably, 1.8 to 2.1 Pa · s. When the viscosity of the slurry is 2.4 Pa · s or more, all the meshes cannot be closed or immersed, and when the viscosity is 1.4 Pa · s or less, the required amount of supported catalyst cannot be secured.

【0021】本発明において、触媒成分スラリの粘度を
1.5〜2.3Pa・sの間で調整することによって、
表裏に貫通する網目、すなわち触媒成分未担持部分の貫
通孔の割合を調節することができる。スラリの粘性を増
加させるものとして、例えば消泡剤、酸化チタン、無機
繊維などが挙げられ、粘性を減少させるものとしては、
例えば界面活性剤、シリカゾル、蓚酸などが挙げられ
る。これらの成分は、1種類単独で使用しても、2種類
以上を同時に使用してもよい。本発明において、触媒成
分が担持された基板構造体の乾燥条件は、例えば大気中
常温で20〜30時間であり、乾燥後の焼成条件は、例
えば500℃、2時間である。
In the present invention, by adjusting the viscosity of the catalyst component slurry between 1.5 and 2.3 Pa · s,
The ratio of the mesh penetrating the front and back, that is, the ratio of the through holes in the catalyst component unsupported portion can be adjusted. Examples of those that increase the viscosity of the slurry include antifoaming agents, titanium oxide, and inorganic fibers.
For example, a surfactant, silica sol, oxalic acid and the like can be mentioned. These components may be used alone or in combination of two or more. In the present invention, the drying conditions of the substrate structure supporting the catalyst component are, for example, at room temperature in the air for 20 to 30 hours, and the firing conditions after drying are, for example, 500 ° C. for 2 hours.

【0022】[0022]

【実施例】以下、本発明の具体的実施例を説明する。 実施例1 メタバナジン酸アンモン306.5g 、および三酸化モ
リブデン275.9gを2759g の水に混ぜ、約20
時間撹拌した後、シリカゾル1432g を混ぜた溶液
に、長さ100μm の無機繊維製ミルドファイバー11
23g 、および酸化チタン2625g を加えて粘度1.
8Pa・s(1800cP)の触媒成分スラリを得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described. Example 1 306.5 g of ammonium metavanadate and 275.9 g of molybdenum trioxide were mixed in 2759 g of water and mixed with about 20
After stirring for 1 hour, 100 μm length of inorganic fiber milled fiber 11 was added to a solution containing 1432 g of silica sol.
23 g and 2625 g of titanium oxide were added to obtain a viscosity of 1.
A catalyst component slurry of 8 Pa · s (1800 cP) was obtained.

【0023】一方、板厚0.64mm、開孔率74.0
%、ラスの長方向網目幅が4.0mm、短方向網目幅が
2.0mmのメタルラスを金型の間に挟み、図4(b)
に示したような断面を有する帯状突起であって、基板を
積層した際の積層ピッチが4.0mmとなるような帯状
突起を、該メタルラス基板の対向する一対の二端辺と3
0°の角度をつけて多数成形し、幅498mm、長さ5
00mmのメタルラス基板を得た。これを一枚おきに表
裏反転させて積層した後、400℃で10分間焼成する
ことによって脱脂処理して基板構造体とした。
On the other hand, the plate thickness is 0.64 mm, and the opening ratio is 74.0.
%, A metal lath having a mesh length of 4.0 mm and a mesh width of 2.0 mm in the short direction was sandwiched between the molds, and FIG.
And a band-shaped protrusion having a lamination pitch of 4.0 mm when laminating the substrates is formed by a pair of two opposite sides of the metal lath substrate.
Molded in large numbers at an angle of 0 °, width 498 mm, length 5
A 00 mm metal lath substrate was obtained. This was turned upside down on every other sheet, laminated, and then baked at 400 ° C. for 10 minutes to obtain a substrate structure by degreasing.

【0024】この基板構造体を上記触媒成分スラリに浸
漬してメタルラス基板の、隣接するメタルラス基板の帯
状突起に対向する部分に網目の一部または全部が貫通す
る、触媒成分の未担持部分を残して触媒成分が担持され
た触媒担持構造体を得、これを大気中常温で25時間乾
燥したのち、500℃で2時間焼成して排ガス処理用触
媒構造体を得た。
This substrate structure is immersed in the catalyst component slurry to leave an unsupported portion of the catalyst component, in which a part or all of the mesh penetrates a portion of the metal lath substrate facing the band-shaped projection of the adjacent metal lath substrate. Thus, a catalyst-carrying structure carrying a catalyst component was obtained. The structure was dried in the air at room temperature for 25 hours, and then calcined at 500 ° C. for 2 hours to obtain a catalyst structure for exhaust gas treatment.

【0025】比較例1 比表面積270m2 /gの酸化チタン1.2kgにモリ
ブデン酸アンモニウム((NH4)6 ・Mo7 24・4H2
O)を0.25kg、メタバナジン酸アンモン0.23
kg、および蓚酸0.3kg、および水を加えながら混
練してペースト状態にした。これにカオリン系無機繊維
(商品名カオウール)15wt%を加えてさらに混練
し、水分30.5%のペーストを得た。
[0025] Titanium oxide 1.2kg of ammonium molybdate in Comparative Example 1 specific surface area of 270m 2 / g ((NH 4 ) 6 · Mo 7 O 24 · 4H 2
O) 0.25 kg, ammonium metavanadate 0.23
kg, 0.3 kg of oxalic acid, and water were added to form a paste. To this was added 15 wt% of kaolin-based inorganic fiber (trade name: kao wool), and the mixture was further kneaded to obtain a paste having a water content of 30.5%.

【0026】上記ペーストを実施例1と同様のメタルラ
ス基材に、一対の圧延ローラを用いてその目開き部およ
び基材表面に塗布して触媒エレメントとした。この触媒
エレメントを金型の間に挟んで実施例1と同形状とし、
一枚おきに反転させて積層し、500℃で2時間焼成し
て、触媒構造体を得た。
The above paste was applied to the same metal lath base material as in Example 1 using a pair of rolling rollers on the openings and the surface of the base material to form a catalyst element. This catalyst element was sandwiched between molds to have the same shape as in Example 1,
Every other sheet was turned upside down, laminated, and fired at 500 ° C. for 2 hours to obtain a catalyst structure.

【0027】比較例2 実施例1の触媒成分スラリに、酸化チタン131g、界
面活性剤0.85gを加え、粘度2.4Pa・s(24
00cP)のスラリを得た。これに実施例1と同様にし
て得た基板構造体を浸漬し、25時間常温で乾燥した後
500℃で2時間焼成し、触媒エレメントの網目が全部
塞がった触媒構造体を得た。実施例1、比較例1および
2の触媒構造体について、表1に示す条件で脱硝性能を
測定した。この試験結果と触媒構造体の質量比率を表2
に併せて示す。表中、活性比率は、体積基準総括反応速
度定数の比であり、比較例1の値を1とした。
Comparative Example 2 To the catalyst component slurry of Example 1, 131 g of titanium oxide and 0.85 g of a surfactant were added, and the viscosity was 2.4 Pa · s (24
00cP) was obtained. The substrate structure obtained in the same manner as in Example 1 was immersed therein, dried at room temperature for 25 hours, and fired at 500 ° C. for 2 hours to obtain a catalyst structure in which the mesh of the catalyst element was completely closed. For the catalyst structures of Example 1, Comparative Examples 1 and 2, the denitration performance was measured under the conditions shown in Table 1. Table 2 shows the test results and the mass ratio of the catalyst structure.
Are shown together. In the table, the activity ratio is a ratio of the volume-based overall reaction rate constant, and the value of Comparative Example 1 was set to 1.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 表2の結果から、実施例1の触媒構造体は、比較例1の
触媒構造体に比べて使用触媒量が低減し、しかも触媒活
性が著しく向上していることが分かる。これに対して比
較例1の触媒構造体は実施例1に比べて質量が大きく、
しかも触媒活性が低いことが分かる。
[Table 2] From the results in Table 2, it can be seen that the catalyst structure of Example 1 uses a smaller amount of catalyst than the catalyst structure of Comparative Example 1, and the catalyst activity is significantly improved. In contrast, the catalyst structure of Comparative Example 1 has a larger mass than that of Example 1,
Moreover, it can be seen that the catalytic activity is low.

【0030】実施例1の触媒構造体が比較例1に比べて
触媒活性が向上した理由としては、触媒エレメントの、
帯状突起と対向する部分に網目の一部または全部が貫通
する帯状の触媒成分未担持部分を設けたことにより、被
処理ガス流が前記触媒成分の未担持部分を流通して乱れ
を生じ、これによって触媒との接触効率が向上したため
と考えられる。また、実施例1の触媒構造体の質量が比
較例1に比べて低減された理由としては、比較例1の触
媒構造体(メタルラス基板)への触媒の担持方法が塗
布、圧延方法であり、触媒成分が基板の網目を全て塞い
だ構造であるのに対し、実施例1は、基板構造体を触媒
スラリへ浸漬することによって触媒成分を担持したこと
によるものと考えられる。
The reason why the catalyst structure of Example 1 has improved catalytic activity as compared with Comparative Example 1 is as follows.
By providing a belt-shaped catalyst component unsupported portion through which a part or all of the mesh penetrates at a portion facing the belt-shaped projection, the gas to be processed flows through the catalyst component unsupported portion and is disturbed. This is probably because the contact efficiency with the catalyst was improved. The reason why the mass of the catalyst structure of Example 1 was reduced as compared with Comparative Example 1 is that the method of loading the catalyst on the catalyst structure (metal lath substrate) of Comparative Example 1 was a coating and rolling method. In contrast to the structure in which the catalyst component closed the entire mesh of the substrate, Example 1 is considered to be due to supporting the catalyst component by immersing the substrate structure in the catalyst slurry.

【0031】また比較例2は、実施例1と同様触媒担持
量は低減されているが、触媒スラリの粘度が適正ではな
いために、網目の一部または全部が貫通する触媒成分未
担持部分が形成されず、全ての網目が塞がっているため
に活性比率の上昇が実施例1に比べて不充分になったも
のと考えられる。
In Comparative Example 2, the amount of supported catalyst was reduced as in Example 1. However, since the viscosity of the catalyst slurry was not appropriate, the unsupported portion of the catalyst component penetrating part or all of the mesh was used. It is considered that the activity ratio was not sufficiently increased as compared with Example 1 because no network was formed and all the meshes were closed.

【0032】[0032]

【発明の効果】本願の請求項1に記載の発明によれば、
触媒成分の必要使用量が低減し、しかも被処理ガス流が
三次元的に乱れて触媒との接触効率が改善されるので、
低質量、低コストの排ガス処理用触媒構造体が得られ、
触媒反応効率が著しく向上する。本願の請求項2に記載
の発明によれば、上記発明の効果に加え、必要触媒使用
量が少なく、脱硝活性に優れた排ガス脱硝用触媒構造体
が得られる。本願の請求項3に記載の発明によれば、触
媒使用量および製造工数が低減し、低コストで高活性の
排ガス処理用触媒構造体を製造することができる。
According to the invention described in claim 1 of the present application,
Since the required amount of catalyst component is reduced, and the gas stream to be treated is three-dimensionally disturbed to improve the contact efficiency with the catalyst,
A low-mass, low-cost exhaust gas treatment catalyst structure is obtained,
The catalytic reaction efficiency is significantly improved. According to the invention as set forth in claim 2 of the present application, in addition to the effects of the above invention, a catalyst structure for exhaust gas denitration, which requires a small amount of catalyst and has excellent denitration activity, can be obtained. According to the invention described in claim 3 of the present application, the amount of catalyst used and the number of manufacturing steps are reduced, and a low-cost and highly active catalyst structure for exhaust gas treatment can be manufactured.

【0033】本願の請求項4に記載の発明によれば、各
網状基板の、隣接する網状基板の帯状突起に対向する部
分に帯状の触媒成分未担持部分が形成され、被処理ガス
流が三次元的な流れとなるので、上記発明と同様、触媒
反応効率が高い排ガス処理用触媒構造体が得られる。本
願の請求項5に記載の発明によれば、上記発明の効果に
加え、低コストで脱硝活性に優れた排ガス脱硝用触媒構
造体を製造することができる。本願の請求項6に記載の
発明によれば、上記発明の効果に加え、ガスの三次元的
な乱れの程度を調整して処理条件に見合った排ガス処理
用触媒構造体が得られる。
According to the invention described in claim 4 of the present application, a strip-shaped catalyst component-unsupported portion is formed at a portion of each net-like substrate facing the strip-like projection of an adjacent net-like substrate, and the gas flow to be processed is tertiary. Because of the original flow, an exhaust gas treatment catalyst structure having high catalytic reaction efficiency can be obtained as in the above invention. According to the invention described in claim 5 of the present application, in addition to the effects of the above invention, a catalyst structure for exhaust gas denitration that is excellent in denitration activity at low cost can be manufactured. According to the invention as set forth in claim 6 of the present application, in addition to the effects of the above invention, a catalyst structure for exhaust gas treatment that meets the processing conditions by adjusting the degree of three-dimensional turbulence of gas can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である排ガス処理用触媒構造
体の説明図。
FIG. 1 is an explanatory view of an exhaust gas treatment catalyst structure according to an embodiment of the present invention.

【図2】本発明に用いられるメタルラス基板の一部拡大
説明図。
FIG. 2 is a partially enlarged explanatory view of a metal lath substrate used in the present invention.

【図3】触媒成分の未担持部分が形成される状況を示す
説明図。
FIG. 3 is an explanatory diagram showing a situation where an unsupported portion of a catalyst component is formed.

【図4】本発明に適用される網状基板の断面形状を示す
説明図。
FIG. 4 is an explanatory diagram showing a cross-sectional shape of a mesh substrate applied to the present invention.

【符号の説明】[Explanation of symbols]

1…メタルラス基板(触媒エレメント)、2…触媒ピッ
チ、3…触媒構造体、4…触媒成分未担持部分(網目の
貫通孔)、5…帯状の突起、6…被処理ガス流、7…ラ
ス送りピッチ、8…ラスの長方向網目幅、9…ラスの短
方向網目幅。
DESCRIPTION OF SYMBOLS 1 ... Metal lath substrate (catalyst element), 2 ... catalyst pitch, 3 ... catalyst structure, 4 ... catalyst component unsupported portion (through-hole of mesh), 5 ... belt-like projection, 6 ... gas flow to be treated, 7 ... lath Feed pitch, 8: Lath long mesh width, 9: Lath short mesh width.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 37/02 301 B01J 37/02 301D F01N 3/10 A F01N 3/10 3/28 301P 3/28 301 B01D 53/36 102D (72)発明者 横山 公一 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 今田 尚美 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 引野 哲郎 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内 Fターム(参考) 3G091 AB01 GA09 GA16 GA18 GA20 GB01X GB10W 4D048 AA06 AB02 AC04 BA07Y BA10X BA13Y BA23X BA26X BA27Y BA39Y BA41X BB02 BB12 BB16 4G069 AA03 AA08 AA11 BA13A BA13B BA17 BB04A BC50A BC54A BC54B BC59A BC59B BC60A CA02 CA08 CA13 EA20 EA23 EA25 EB04 EB10 EB12X EB12Y EB14Y EC29 FA03 FA04 FA06 FB15 FB16──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 37/02 301 B01J 37/02 301D F01N 3/10 A F01N 3/10 3/28 301P 3/28 301 B01D 53/36 102D (72) Inventor Koichi Yokoyama 3-36 Takara-cho, Kure-shi, Hiroshima Pref. Inside Bureok Hitachi Kure Research Institute (72) Inventor Naomi Imada 3-36 Takara-cho, Kure-shi Hiroshima Pref. Inside the laboratory (72) Inventor Tetsuro Hikino 6-9 Takara-cho, Kure-shi, Hiroshima Babcock Hitachi Kure Works F-term (reference) 3G091 AB01 GA09 GA16 GA18 GA20 GB01X GB10W 4D048 AA06 AB02 AC04 BA07Y BA10X BA13Y BA23X BA26X BA27Y BA39Y BA41X BB02 BB12 BB16 4G069 AA03 AA08 AA11 BA13A BA13B BA17 BB04A BC50A BC54A BC54B BC59A BC59B BC60A CA02 CA08 CA13 EA20 EA23 EA25 EB04 EB10 EB12X EB12Y EB14Y EC29 FA03 FA04 FA06 FB15 FB16

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 断面が階段状、波板状、コの字状のよう
な凹凸状となるように所定ピッチで帯状の突起を多数設
けた網状基板に触媒成分を担持させた触媒エレメント
を、前記帯状の突起が隣接する触媒エレメント相互間で
互いに交叉するように多数積層した排ガス処理用触媒構
造体において、前記触媒エレメントの、前記隣接する触
媒エレメントの帯状突起と対向する部分に、網目の一部
または全部が貫通する、帯状の触媒成分未担持部分を設
けたことを特徴とする排ガス処理用触媒構造体。
1. A catalyst element in which a catalyst component is carried on a net-like substrate provided with a large number of band-shaped projections at a predetermined pitch so as to have a step-like, corrugated, and U-shaped cross section. In an exhaust gas treatment catalyst structure in which a large number of the belt-shaped projections are stacked so as to intersect with each other between adjacent catalyst elements, a portion of the catalyst element facing the belt-shaped projection of the adjacent catalyst element has a mesh. A catalyst structure for exhaust gas treatment, comprising a strip-shaped catalyst component-unsupported portion that penetrates all or part of the catalyst structure.
【請求項2】 前記網状基板がメタルラス基板であり、
前記触媒成分がチタン、バナジウム、モリブデンおよび
タングステンの酸化物のうち少なくとも1種を含有する
ことを特徴とする請求項1に記載の排ガス処理用触媒構
造体。
2. The net-like substrate is a metal lath substrate,
The exhaust gas treatment catalyst structure according to claim 1, wherein the catalyst component contains at least one of oxides of titanium, vanadium, molybdenum, and tungsten.
【請求項3】 断面が階段状、波板状、コの字状のよう
な凹凸状となるように所定ピッチで帯状の突起を多数設
けた網状基板に触媒成分を担持させた触媒エレメントを
前記帯状の突起が隣接する触媒エレメント相互間で互い
に交叉するように多数積層する排ガス処理用触媒構造体
の製造方法において、前記所定ピッチで設けられた帯状
突起の基板端辺に対する角度をそれぞれ異ならせた2種
類の網状基板を、該網状基板の前記帯状突起が隣接する
基板相互間で互いに交叉するように一つ置きに多数積層
して基板構造体とし、該基板構造体を所定の粘度に調整
した触媒成分含有スラリに浸漬し、各網状基板の、前記
隣接する網状基板の帯状突起に対向する部分に、網目の
一部または全部が貫通する、帯状の触媒成分未担持部分
を残すように触媒成分を担持させたのち、乾燥、焼成す
ることを特徴とする排ガス処理用触媒構造体の製造方
法。
3. A catalyst element in which a catalyst component is carried on a net-like substrate provided with a large number of belt-like projections at a predetermined pitch so as to have a step-like, corrugated, or U-shape in cross section. In the method for manufacturing a catalyst structure for exhaust gas treatment in which a plurality of strip-shaped projections are stacked so as to cross each other between adjacent catalyst elements, angles of the strip-shaped projections provided at the predetermined pitch with respect to a substrate edge are respectively different. Two types of net-like substrates were stacked in a row so that the strip-shaped projections of the net-like substrate crossed each other between adjacent substrates to form a substrate structure, and the substrate structure was adjusted to a predetermined viscosity. The catalyst component is immersed in the slurry containing the catalyst component, and the catalyst component is formed so as to leave a strip-shaped catalyst component-unsupported portion through which a part or all of the mesh penetrates in a portion of each mesh substrate facing the strip projection of the adjacent mesh substrate. A method for producing a catalyst structure for exhaust gas treatment, comprising drying, calcining, and drying after carrying the components.
【請求項4】 前記基板構造体における網状基板の長辺
方向の網目幅を1.0〜4.5mm、短辺方向の網目幅
を1.0〜2.5mm、網状基板相互の積層ピッチを
2.0〜5.0mmとしたとき、前記触媒成分含有スラ
リの粘度を1.5〜2.3Pa・s(1500〜230
0cP)とすることを特徴とする請求項3に記載の排ガ
ス処理用触媒構造体の製造方法。
4. The mesh width of the mesh substrate in the long side direction of the board structure in the long side direction is 1.0 to 4.5 mm, the mesh width in the short side direction is 1.0 to 2.5 mm, and the laminating pitch between the mesh substrates is 4. When the viscosity is 2.0 to 5.0 mm, the viscosity of the slurry containing the catalyst component is 1.5 to 2.3 Pa · s (1500 to 230 Pa).
0 cP). The method for producing a catalyst structure for exhaust gas treatment according to claim 3, wherein the pressure is 0 cP).
【請求項5】 前記網状基板としてメタルラス基板を用
い、前記触媒成分含有スラリとしてチタン、バナジウ
ム、モリブデンおよびタングステンの酸化物のうち少な
くとも1種を含有するスラリを用いることを特徴とする
請求項3または4に記載の排ガス処理用触媒構造体の製
造方法。
5. A metal lath substrate as the reticulated substrate, and a slurry containing at least one of titanium, vanadium, molybdenum and tungsten oxides is used as the catalyst component-containing slurry. 5. The method for producing a catalyst structure for exhaust gas treatment according to item 4.
【請求項6】 前記触媒成分含有スラリの粘度を調整す
ることにより、前記帯状の触媒成分未担持部分における
貫通孔の割合を調節することを特徴とする請求項3〜5
の何れかに記載の排ガス処理用触媒構造体の製造方法。
6. The ratio of through-holes in the belt-shaped portion not carrying a catalyst component is adjusted by adjusting the viscosity of the slurry containing the catalyst component.
The method for producing a catalyst structure for exhaust gas treatment according to any one of the above.
JP2001146865A 2001-05-16 2001-05-16 Catalyst structure for cleaning exhaust gas and method for manufacturing the same Pending JP2002336706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001146865A JP2002336706A (en) 2001-05-16 2001-05-16 Catalyst structure for cleaning exhaust gas and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001146865A JP2002336706A (en) 2001-05-16 2001-05-16 Catalyst structure for cleaning exhaust gas and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002336706A true JP2002336706A (en) 2002-11-26

Family

ID=18992439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001146865A Pending JP2002336706A (en) 2001-05-16 2001-05-16 Catalyst structure for cleaning exhaust gas and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002336706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076938A1 (en) * 2012-11-13 2014-05-22 バブコック日立株式会社 Catalyst structure for exhaust gas cleaning

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076938A1 (en) * 2012-11-13 2014-05-22 バブコック日立株式会社 Catalyst structure for exhaust gas cleaning
JP2014097438A (en) * 2012-11-13 2014-05-29 Babcock-Hitachi Co Ltd Catalyst structure for purifying exhaust gas
US9694318B2 (en) 2012-11-13 2017-07-04 Mitsubishi Hitachi Power Systems, Ltd. Catalyst structure for exhaust gas cleaning

Similar Documents

Publication Publication Date Title
JP4544465B2 (en) Catalyst structure and gas purification device
JP2003512150A (en) Nitrogen oxide conversion in the presence of a catalyst supported on a mesh-like structure
US6667017B2 (en) Process for removing environmentally harmful compounds
KR100674348B1 (en) Exhaust emission control catalyst structure and device
JP5140243B2 (en) Catalyst base material, catalyst, and production method thereof
JP4309046B2 (en) Exhaust gas purification catalyst element, catalyst structure, manufacturing method thereof, exhaust gas purification device, and exhaust gas purification method using the same
JP3354587B2 (en) Catalyst structure and method for producing the same
JPH105591A (en) Catalyst for cleaning of waste gas and device for cleaning waste gas with same
JP2002336706A (en) Catalyst structure for cleaning exhaust gas and method for manufacturing the same
JP2002119868A (en) Catalytic structural body for purifying waste gas
JP2020044508A (en) Catalyst structure for purifying exhaust gas
JP4020354B2 (en) Manufacturing method of plate-like catalyst structure
JP2004267969A (en) Exhaust gas purification equipment, catalyst for purifying exhaust gas as well as its manufacturing method
JP3285206B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2001252574A (en) Catalyst structure for cleaning exhaust gas and reticulated material used for this
JP3066040B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3762159B2 (en) Coal-fired boiler exhaust gas purification catalyst structure
JP2014046299A (en) Manufacturing method of denitration catalyst
JP2001104801A (en) Catalyst structure for cleaning exhaust gas
JP4864231B2 (en) Denitration catalyst structure and exhaust gas denitration method using the same
JP2020044509A (en) Catalyst structure for purifying exhaust gas
JP2014050824A (en) Catalyst element for cleaning exhaust gas and catalyst structure for cleaning exhaust gas
JP2002191986A (en) Catalyst structure for cleaning exhaust gas and metal lath plate used in formation thereof
JP2000117120A (en) Catalyst structure body
JP2013107046A (en) Exhaust emission control catalyst structure and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519