JP2002189303A - Method of evaluating heat treating effect and method of evaluating resist baking apparatus - Google Patents

Method of evaluating heat treating effect and method of evaluating resist baking apparatus

Info

Publication number
JP2002189303A
JP2002189303A JP2000385859A JP2000385859A JP2002189303A JP 2002189303 A JP2002189303 A JP 2002189303A JP 2000385859 A JP2000385859 A JP 2000385859A JP 2000385859 A JP2000385859 A JP 2000385859A JP 2002189303 A JP2002189303 A JP 2002189303A
Authority
JP
Japan
Prior art keywords
temperature
resist
film
baking
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000385859A
Other languages
Japanese (ja)
Inventor
Hideo Kobayashi
英雄 小林
Takashi Asakawa
敬司 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2000385859A priority Critical patent/JP2002189303A/en
Publication of JP2002189303A publication Critical patent/JP2002189303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of evaluating a heat treating effect by which the heat treating effect which a resist film receives actually through the whole of a baking step can be actualized and can be appropriately evaluated and to provide a method of evaluating a baking apparatus. SOLUTION: On a resist baking temperature-residual film rate curve, a region A in which the relation between the residual film rate and baking temperature of a resist film subjected to excessive film reduction treatment is represented by a steep and linear slope is present, and the dispersion in heat treating effect can be actualized as dispersion in residual film rate by using the region A as a working curve, and the heat treating effect which the resist film receives actually through the whole of a baking step can be appropriately evaluated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、レジスト膜焼成(ベー
ク)工程において実際にレジスト膜が受けた熱処理効果
を顕在化し、評価する方法、及び焼成装置の評価方法等
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for realizing and evaluating a heat treatment effect actually applied to a resist film in a resist film baking step, and a method for evaluating a baking apparatus.

【0002】[0002]

【従来の技術】例えば、LSIやフォトマスク等を製造
するにはフォトリソグラフィー法による微細パターン加
工が必要であるが、この微細パターン加工を行う過程
で、エッチングする部分以外の部分を保護(マスキン
グ)する目的でレジストパターンが形成される。このレ
ジストパターン形成工程は、レジスト膜形成工程、レジ
スト膜焼成(ベーク)工程(焼成後のレジスト膜の冷却
工程を含む)、露光工程及び現像工程からなる。
2. Description of the Related Art For example, in order to manufacture an LSI or a photomask, a fine pattern processing by a photolithography method is necessary. In the process of performing the fine pattern processing, portions other than a portion to be etched are protected (masking). For this purpose, a resist pattern is formed. The resist pattern forming step includes a resist film forming step, a resist film baking (baking) step (including a step of cooling the resist film after baking), an exposing step, and a developing step.

【0003】具体的には、まず、被処理基板上に、例え
ば、回転塗布(スピンコート)法によって、所望の膜厚
となるようレジストを塗布する。次に、レジスト膜中の
溶媒を蒸発させる目的で、レジストの種類に応じた指定
の温度及び時間で、基板を熱風循環炉(オーブン)やホ
ットプレートなどの焼成装置(ベーク装置)を用いて焼
成(ベーク)する。レジスト膜焼成後、清浄な大気中で
自然放置すること等によって、レジスト膜付き被処理基
板を室温に達するまで冷却する。その後、レジスト膜付
き被処理基板を、レジストの種類に応じた所定の波長域
の電磁波(例えば、紫外線、X線、レーザ光など)、あ
るいは所定のエネルギーの粒子線(例えば、電子線、荷
電粒子線など)を所定の照射量で選択的に照射して露光
する。その後、現像処理によって、露光部分あるいは未
露光部分のレジストを除去して所望のレジストパターン
を形成する。
[0003] Specifically, first, a resist is applied on a substrate to be processed to a desired film thickness by, for example, spin coating (spin coating). Next, in order to evaporate the solvent in the resist film, the substrate is fired using a firing device such as a hot-air circulating furnace (oven) or a hot plate (baking device) at a specified temperature and time according to the type of the resist. (Bake). After baking the resist film, the substrate to be treated with the resist film is cooled until it reaches room temperature, for example, by being left naturally in a clean atmosphere. Thereafter, the target substrate with the resist film is irradiated with an electromagnetic wave (for example, ultraviolet ray, X-ray, laser beam, or the like) in a predetermined wavelength range or a particle beam of a predetermined energy (for example, an electron beam or a charged particle) according to the type of the resist. (A line or the like) at a predetermined irradiation amount. After that, the exposed or unexposed portion of the resist is removed by a developing process to form a desired resist pattern.

【0004】[0004]

【発明が解決しようとする課題】ところで、焼成温度の
測定は、一般に熱電対を用いて行われる。熱電対による
測定は、熱電対を基板表面に直接貼り付けて、あるいは
熱電対を埋め込んだ測温基板を用いて測定を行うのであ
るが、接触抵抗があること、接触状態(完全に接触して
いるかどうか)によって測定値が異なること、補償電線
の発熱の影響があること、などが原因で、正確な温度を
測定できない(測定精度、特に再現精度が悪い)。ま
た、熱電対による測定では、熱電対を基板に多数貼り付
けて測定を行うのは困難であるので、面内温度分布の情
報量が少ない(多くともせいぜい100点以下)。ま
た、赤外線カメラ(サーモビュアー)は、相対温度差は
わかるが絶対温度は測定できない。さらに、密閉型の焼
成装置の場合は、ホットプレート上のように基板が露出
していないので、赤外線カメラでは測定できない。
Incidentally, the measurement of the firing temperature is generally performed using a thermocouple. The measurement using a thermocouple is performed by directly attaching the thermocouple to the substrate surface or using a temperature measuring board with the thermocouple embedded. Or not), it is not possible to measure an accurate temperature (measurement accuracy, especially reproducibility is poor) due to the fact that the measured value differs depending on whether or not the compensation wire generates heat. Also, in measurement using a thermocouple, it is difficult to perform measurement by attaching a large number of thermocouples to a substrate, and thus the amount of information on the in-plane temperature distribution is small (at most 100 points or less). An infrared camera (thermoviewer) can measure the relative temperature difference but cannot measure the absolute temperature. Furthermore, in the case of a closed-type baking apparatus, the substrate cannot be exposed as on a hot plate, so that it cannot be measured with an infrared camera.

【0005】最も大きな問題は、仮に、焼成工程全体の
任意の点(例えば焼成直後、冷却中)において、焼成温
度の面内分布を精密に測定可能であったとしても、実際
にレジスト膜が受けた熱処理効果の目安にしかならず、
焼成工程全体を通して実際にレジスト膜が受けた熱処理
効果は、わからないことである。例えば、焼成直後の焼
成温度が測定できたとしても、実際にレジスト膜が受け
た熱処理効果は冷却工程等、例えば自然放冷か強制冷却
かによって、あるいは冷却位置までの搬送系の影響など
によって左右されるので、焼成工程全体を通して実際に
レジスト膜が受けた熱処理効果は、わからない。また、
例えば、焼成工程全体の任意の点(例えば焼成直後)
で、1℃の面内温度バラツキ(不均一性)があることが
わかったとしても、実際のレジスト性能としてどの程度
のバラツキになるのか全く見当がつかない。これは、現
像工程の方がパターン精度に与える影響が大きく、現像
すると差がでないためである。同様に、図5に示すよう
にベークプロファイルE(点線)、F(実線)(Eは基
板周辺、Fは基板中心)を精密に測定したとしても、ベ
ークプロファイルE、Fの違いが、実際のレジスト性能
としてどの程度のバラツキになるのか全く見当がつかな
い。
The biggest problem is that even if the in-plane distribution of the baking temperature can be measured accurately at any point in the entire baking process (for example, immediately after baking, during cooling), the resist film is not actually received. Heat treatment effect,
The effect of the heat treatment actually applied to the resist film throughout the baking process is unknown. For example, even if the sintering temperature immediately after sintering can be measured, the heat treatment effect actually received by the resist film depends on the cooling process or the like, for example, whether it is natural cooling or forced cooling, or the influence of the transport system to the cooling position, etc. Therefore, the effect of the heat treatment actually applied to the resist film throughout the baking process is unknown. Also,
For example, any point in the entire firing process (for example, immediately after firing)
However, even if it is found that there is a 1 ° C. in-plane temperature variation (non-uniformity), there is no idea what the actual resist performance will be. This is because the development step has a greater effect on pattern accuracy, and there is no difference after development. Similarly, even if the bake profiles E (dotted line) and F (solid line) (E is the periphery of the substrate and F is the center of the substrate) are precisely measured as shown in FIG. I have no idea how much the resist performance will vary.

【0006】焼成処理後に、実際にレジスト膜が受けた
熱処理効果に応じてレジスト自体に生じる何らかの差を
見て熱処理効果が評価できればよいのであるが、従来は
このような差を顕在化できなかったため、焼成工程全体
を通して実際にレジスト膜が受けた熱処理効果を適切に
評価することはできなかった。
[0006] After the baking treatment, it is only necessary to be able to evaluate the heat treatment effect by looking at some difference occurring in the resist itself according to the heat treatment effect actually received by the resist film. However, conventionally, such a difference could not be realized. However, the effect of the heat treatment actually applied to the resist film throughout the firing process could not be properly evaluated.

【0007】本発明は、焼成工程全体を通して実際にレ
ジスト膜が受けた熱処理効果を顕在化でき、適切に評価
できる熱処理効果の評価方法、及び焼成装置の評価方法
等の提供を目的とする。
It is an object of the present invention to provide a method for evaluating a heat treatment effect, which can make the heat treatment effect actually received by a resist film throughout the entire baking process and which can be appropriately evaluated, and a method for evaluating a baking apparatus.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に鋭意研究した結果、以下のことがわかった。基板上に
レジスト膜を形成した基板を複数枚用意して、それぞれ
を異なる焼成温度(焼成時間、冷却条件は固定)で焼成
し、焼成後のレジスト膜を、露光処理を施すことなく、
著しく過剰に減膜(溶解)処理を施すことによって、図
1に示すように、レジスト焼成温度に対してレジスト膜
の溶解速度すなわち残膜率が大きく変化し、残膜率の
差、すなわち単なる温度計による測定差でなくレジスト
自体に生じる差を、可視化できる。ここで、各焼成温度
における焼成時間、冷却条件は同一であるから、異なる
焼成温度で焼成したときの焼成温度の違いは、焼成工程
全体を通して実際にレジスト膜が受けた熱処理効果の差
として大きく現れると考えられる。したがって、上記残
膜率の差によって、焼成工程全体を通して実際にレジス
ト膜が受けた熱処理効果を可視化できる。そして、図1
に示すように、レジスト焼成温度−残膜率曲線におい
て、著しく過剰に減膜処理したレジスト膜の残膜率と焼
成温度との関係には、両者に急峻かつ直線的な関係が見
られる領域Aがあり、この領域Aを検量線として使うこ
とで、焼成工程全体を通して実際にレジスト膜が受けた
熱処理効果を顕在化でき、適切に評価できることを見い
出した。つまり、検量線内のある温度Yで焼成したレジ
スト膜を、著しく過剰に減膜処理した場合、残膜率はX
となるはずであるが、実際には面内の熱処理効果にバラ
ツキがあるため面内の残膜率にバラツキが生じ、この残
膜率のバラツキとして熱処理効果のバラツキを定量化で
きる。なお、図1において、焼成温度の変化に対する残
膜率の変化が小さい領域Bは、面内温度バラツキの影響
が小さい領域であり、特に両者の関係が極値を示す点C
において面内温度バラツキの影響が最も小さく、この温
度を実際のプロセス焼成温度として採用することで、良
好なレジストパターンを形成する方法について先に提案
(特開平7−264726号公報(特許第303814
1号))を行っているが、この領域Bでは、識別感度が
悪く、熱処理効果のバラツキを顕在化できないので、検
量線として適さない。このように、本発明は、実際のプ
ロセス焼成温度として適した温度領域で、熱処理効果を
評価するものではない。これに対し、本発明のように、
焼成温度変化に対し残膜率が大きく変化する温度領域A
を使うことで、熱処理効果の識別感度が増大し、実際に
レジスト膜が受けた熱処理効果のバラツキを顕在化でき
る。したがって、焼成装置の加熱性能や、焼成工程全体
の実体を把握することが容易となる。そして、レジスト
パターン形成条件の一つである焼成装置の評価を簡便に
行うことができ、この評価結果に基づいて最適焼成装置
を選択、決定し、この最適焼成装置を用いてレジスト膜
の焼成を行うことによって、パターン寸法精度及びパタ
ーン形状精度の面内均一性等が良好なレジストパターン
の形成が可能となる。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the following has been found. A plurality of substrates having a resist film formed on the substrate are prepared, each of which is fired at a different firing temperature (fixing time and cooling conditions are fixed), and the resist film after firing is not subjected to an exposure treatment,
As shown in FIG. 1, the dissolution rate of the resist film, that is, the residual film ratio greatly changes with respect to the resist baking temperature, and the difference between the residual film ratios, that is, the The difference generated in the resist itself, not the difference measured by the meter, can be visualized. Here, since the baking time and the cooling conditions at each baking temperature are the same, the difference in baking temperature when baking at different baking temperatures appears largely as a difference in the heat treatment effect actually received by the resist film throughout the baking process. it is conceivable that. Therefore, the effect of the heat treatment actually applied to the resist film throughout the baking process can be visualized by the difference in the remaining film ratio. And FIG.
As shown in the figure, in the resist baking temperature-residual film ratio curve, the relationship between the remaining film ratio and the baking temperature of the resist film subjected to a remarkably excessive thinning treatment is a region A where a steep and linear relationship is observed between the two. It has been found that by using this region A as a calibration curve, the effect of the heat treatment actually applied to the resist film throughout the entire baking process can be realized and appropriately evaluated. That is, when the resist film baked at a certain temperature Y in the calibration curve is subjected to a remarkably excessive thinning treatment, the residual film ratio becomes X
However, in practice, the in-plane heat treatment effect varies, so that the in-plane residual film ratio varies, and the variation in the heat treatment effect can be quantified as the residual film ratio variation. In FIG. 1, a region B where the change in the residual film ratio is small with respect to a change in the firing temperature is a region where the influence of the in-plane temperature variation is small, and particularly a point C where the relationship between the two shows an extreme value.
In Japanese Patent Application Laid-Open No. Hei 7-264726 (Japanese Patent No. 303814), a method of forming a good resist pattern by adopting this temperature as an actual process firing temperature has been proposed.
No. 1)) is performed, but in this region B, the discrimination sensitivity is poor, and the variation in the heat treatment effect cannot be manifested, so that it is not suitable as a calibration curve. As described above, the present invention does not evaluate the heat treatment effect in a temperature range suitable as the actual process firing temperature. In contrast, as in the present invention,
Temperature range A in which the residual film ratio changes greatly with the change in firing temperature
By using the method, the sensitivity of discriminating the heat treatment effect is increased, and the variation in the heat treatment effect actually received by the resist film can be made obvious. Therefore, it becomes easy to grasp the heating performance of the firing device and the substance of the entire firing process. Then, it is possible to easily evaluate the baking apparatus which is one of the resist pattern forming conditions, select and determine the optimum baking apparatus based on the evaluation result, and use the optimum baking apparatus to bake the resist film. By doing so, it is possible to form a resist pattern with good pattern dimensional accuracy and pattern shape accuracy in-plane uniformity and the like.

【0009】本発明は以下の構成を有する。 (構成1) 基板上にレジスト膜を形成した基板を複数
枚用意して、それぞれを異なる焼成温度(焼成時間、冷
却条件は固定)で焼成し、これらに露光処理を施すこと
なく、各焼成温度で焼成したレジスト膜のそれぞれをレ
ジスト膜が一部溶解する所定の処理条件で溶解(減膜)
処理を施して、レジスト焼成温度−残膜率曲線を求め、
この曲線において焼成温度の変化に対し前記残膜率が所
定の関係で変化する所定の領域を予め検量線として意図
的に選ぶ工程と、基板上に上記と同じレジスト膜を形成
した基板を新たに用意し、この基板を前記検量線の温度
領域内で残膜率がXとなる温度Yで焼成(焼成時間、冷
却条件は上記と同じ条件とする)する工程と、前記温度
Yで焼成後のレジスト膜を、レジスト膜が一部溶解する
上記と同じ処理条件で溶解(減膜)処理を施す工程と、
溶解処理後のレジスト膜の膜厚を測定する工程と、この
溶解処理後のレジスト膜の膜厚を用いて熱処理効果を評
価することを特徴とする熱処理効果の評価方法。
The present invention has the following configuration. (Structure 1) A plurality of substrates each having a resist film formed on the substrate are prepared and fired at different firing temperatures (fixing time and cooling conditions are fixed). Dissolve each of the resist films baked in step under predetermined processing conditions where the resist film partially dissolves (thin film reduction)
By performing the treatment, a resist baking temperature-residual film rate curve is obtained,
A step of intentionally selecting a predetermined region in which the residual film ratio changes in a predetermined relationship with respect to a change in the firing temperature with respect to a change in the baking temperature as a calibration curve in advance, and newly adding a substrate having the same resist film as described above on the substrate. Preparing and firing the substrate at a temperature Y at which the residual film rate becomes X in the temperature range of the calibration curve (the firing time and cooling conditions are the same as those described above); A step of subjecting the resist film to a dissolving (thinning) process under the same processing conditions as above in which the resist film partially dissolves;
A method for evaluating a heat treatment effect, comprising: a step of measuring the thickness of a resist film after a dissolution treatment; and evaluating the heat treatment effect by using the thickness of the resist film after the dissolution treatment.

【0010】(構成2) 前記温度Yで焼成後のレジス
ト膜について、溶解(減膜)処理する前後の膜厚の測定
値から残膜率xを求める工程と、この残膜率xを用いて
熱処理効果を評価することを特徴とする構成1記載の熱
処理効果の評価方法。
(Structure 2) A step of obtaining a residual film ratio x from a measured value of the film thickness before and after the dissolving (thinning) process for the resist film baked at the temperature Y, and using the residual film ratio x The method for evaluating a heat treatment effect according to Configuration 1, wherein the heat treatment effect is evaluated.

【0011】(構成3) 前記残膜率xを、前記焼成温
度−残膜率曲線(検量線)にあてはめて、対応する焼成
温度yを求め、この焼成温度yを用いて熱処理効果を評
価することを特徴とする構成2記載の熱処理効果の評価
方法。
(Configuration 3) The residual film ratio x is applied to the firing temperature-remaining film ratio curve (calibration curve) to determine a corresponding firing temperature y, and the heat treatment effect is evaluated using the firing temperature y. 3. The method for evaluating a heat treatment effect according to Configuration 2, wherein:

【0012】(構成4) 高温で焼成できるレジストを
用いて評価を行うことを特徴とする構成1〜3のいずれ
かに記載の熱処理効果の評価方法。
(Structure 4) The method according to any one of Structures 1 to 3, wherein the evaluation is performed using a resist that can be fired at a high temperature.

【0013】(構成5) 前記所定の温度領域を、評価
に用いるレジストのプロセス上の最適焼成温度より低温
側に取ることを特徴とする構成1〜4のいずれかに記載
の熱処理効果の評価方法。
(Structure 5) The method according to any one of structures 1 to 4, wherein the predetermined temperature range is set to a temperature lower than an optimum firing temperature in the process of the resist used for the evaluation. .

【0014】(構成6) 構成1〜5のいずれかに記載
の熱処理効果の評価方法を用いた焼成装置の評価方法。
(Structure 6) An evaluation method for a firing apparatus using the heat treatment effect evaluation method according to any one of Structures 1 to 5.

【0015】(構成7) 構成6記載の焼成装置の評価
方法を用いて最適焼成装置を選択、決定し、この焼成装
置を用いてレジスト膜の焼成を行う工程を有することを
特徴とするレジストパターン形成方法。
(Structure 7) A resist pattern characterized by comprising a step of selecting and determining an optimum firing device by using the firing device evaluation method described in Structure 6, and firing the resist film using the firing device. Forming method.

【0016】[0016]

【作用】構成1によれば、検量線の温度領域内で残膜率
がXとなる温度Yで焼成したレジスト膜を、レジスト膜
が一部溶解する処理条件で溶解(減膜)処理を施し、こ
の溶解処理後のレジスト膜の膜厚を測定することによっ
て、検量線内のある温度Yで焼成したレジスト膜を、著
しく過剰に減膜処理した場合、残膜率はXとなる(減膜
量はX’となる)はずであるが、実際には面内の熱処理
効果にバラツキがあるため面内の減膜量にバラツキが生
じ、この減膜量すなわち膜厚のバラツキとして基板に及
ぼす熱処理効果のバラツキを顕在化し、定量化できる。
構成1では、レジストの塗布膜厚のバラツキに比べ熱処
理効果のバラツキによる膜厚の変化量の方が大きい(レ
ジストの塗布膜厚のバラツキは無視できる)ので、上述
した残膜率の代わりに溶解処理後のレジスト膜の膜厚を
用いて熱処理効果を評価できる。構成1では、例えば、
溶解処理後のレジスト膜の残膜厚均一性を用いて、熱処
理効果の均一性を評価することができる。この場合、膜
厚の測定は1オンク゛ストローム単位で面内の多数点(例えば測
定エリア内3000点)について精密に測定可能である
ので、測定点数の限られた(多くともせいぜい100点
以下)、かつ測定再現性の悪い熱電対等による測定に比
べ、より正確な情報が得られる。構成1において、レジ
スト膜が一部溶解する所定の溶解処理条件とは、パター
ン精度及び形状が悪化するため通常では使用しない減膜
量が大きい溶解処理条件(レジストパターンを形成する
際の現像条件として適当とされる残膜率よりも、残膜率
が小さくなる溶解処理条件)である。例えば、通常の現
像処理ではパターン精度及び形状を良好に保つため残膜
率90%(減膜量10%)となる弱い溶解処理条件であ
るのに対し、本発明では、例えば、通常では使用しない
残膜率40〜50%(減膜量50〜60%)と著しく過
剰に減膜処理される強い溶解処理条件で処理することが
好ましい。また、構成1において、レジスト焼成温度−
残膜率曲線における焼成温度の変化に対し残膜率が所定
の関係で変化する所定の領域とは、焼成温度に対し残膜
率の変化が小さい領域(例えば、図1の領域B)を除く
領域である。所定の領域は、焼成温度−残膜率曲線にお
いて、熱処理効果の識別感度が高い温度領域が好まし
く、具体的には、焼成温度の変化に対し残膜率の変化が
大きい温度領域が好ましく、焼成温度の変化に対し残膜
率の変化が大きくかつ直線的に変化する温度領域がさら
に好ましい。なお、この焼成温度−残膜率曲線は、例え
ば図1の点線にあるように、レジストの材料によって変
化する。従って、レジストに対する実際の焼成温度付近
で、残膜率の変化が大きくかつ直線的に変化するレジス
ト材料を選定して熱処理効果を評価することもできる。
もちろん、実際の焼成温度の領域を除く付近で、残膜率
の変化が大きくかつ直線的に変化するレジスト材料を選
定して熱処理効果を評価しても良い。構成1において、
焼成温度−残膜率曲線(検量線を含む)における「焼成
温度」は、焼成装置の設定温度、実際の測定温度のいず
れでもよい。また、焼成温度−残膜率曲線(検量線を含
む)を作成する際には、面内多数点の平均をとること
で、加熱装置の温度むら、減膜処理むらの影響を無視で
きるので好ましい。
According to the constitution 1, the resist film fired at the temperature Y at which the residual film ratio becomes X in the temperature range of the calibration curve is subjected to a dissolving (thinning) process under a processing condition in which the resist film partially dissolves. By measuring the thickness of the resist film after the dissolution treatment, if the resist film baked at a certain temperature Y in the calibration curve is significantly reduced excessively, the residual film ratio becomes X (reduced film thickness). Although the amount should be X '), in practice, there is variation in the in-plane heat treatment effect, resulting in variation in the in-plane film reduction amount, and this heat reduction effect on the substrate as this reduction in film thickness, that is, variation in film thickness. Variations in the effects can be clarified and quantified.
In the configuration 1, the variation in the film thickness due to the variation in the heat treatment effect is larger than the variation in the coating thickness of the resist (the variation in the coating thickness of the resist is negligible). The heat treatment effect can be evaluated using the thickness of the resist film after the treatment. In the configuration 1, for example,
The uniformity of the heat treatment effect can be evaluated using the uniformity of the remaining thickness of the resist film after the dissolution treatment. In this case, the film thickness can be measured precisely at many points in the plane (for example, 3000 points in the measurement area) in units of 1 angstrom, so the number of measurement points is limited (at most 100 points or less), and More accurate information can be obtained as compared to measurement using a thermocouple or the like having poor measurement reproducibility. In the configuration 1, the predetermined dissolution processing conditions under which the resist film partially dissolves include the dissolution processing conditions (development conditions when forming a resist pattern, which are not usually used because the pattern accuracy and shape are deteriorated and the amount of film reduction is large). (Dissolution treatment conditions in which the residual film ratio becomes smaller than the appropriate residual film ratio). For example, in a normal developing process, a weak dissolving process condition in which a residual film ratio becomes 90% (a film reduction amount is 10%) in order to maintain good pattern accuracy and shape, whereas in the present invention, for example, a normal dissolving process is not used. It is preferable to carry out the treatment under strong dissolution treatment conditions in which the residual film ratio is 40 to 50% (the film reduction amount is 50 to 60%) and the film is extremely excessively reduced. In the configuration 1, the resist baking temperature-
The predetermined region in the remaining film ratio curve where the remaining film ratio changes in a predetermined relationship with respect to the change in the firing temperature excludes a region where the change in the remaining film ratio is small relative to the firing temperature (for example, region B in FIG. 1). Area. The predetermined region is preferably a temperature region where the sensitivity of the heat treatment effect is high in the firing temperature-residual film ratio curve. Specifically, a temperature region where the change in the residual film ratio is large relative to the change in the firing temperature is preferable. A temperature region in which the change in the residual film ratio is large and changes linearly with the change in temperature is more preferable. The baking temperature-residual film ratio curve changes depending on the resist material, for example, as indicated by the dotted line in FIG. Therefore, it is possible to evaluate the heat treatment effect by selecting a resist material in which the residual film ratio changes greatly and linearly around the actual firing temperature for the resist.
Of course, a resist material having a large change in the remaining film ratio and changing linearly near the actual firing temperature region may be selected to evaluate the heat treatment effect. In Configuration 1,
The “calcination temperature” in the calcination temperature-residual film ratio curve (including the calibration curve) may be either the set temperature of the calcination device or the actual measurement temperature. In addition, when creating a baking temperature-residual film rate curve (including a calibration curve), it is preferable to take the average of a large number of points in the plane, so that the influence of the temperature unevenness of the heating device and the unevenness of the film reducing treatment can be ignored. .

【0017】構成2によれば、温度Yで焼成した後のレ
ジストを、溶解(減膜)処理する前後の膜厚の測定値か
ら求めた残膜率xを用いることによって熱処理効果を評
価できる。このように、残膜率xを用いることによって
レジストの塗布膜厚のバラツキの影響を完全に排除でき
るので、構成1に比べ、より正確に熱処理効果を評価で
きる。構成2では、溶解(減膜)処理する前後の膜厚の
測定値から残膜率xを求めており、膜厚の測定は1オンク゛
ストローム単位で面内の多数点(例えば測定エリア内300
0点)について精密に測定可能であるので、熱電対等に
よる測定に比べ、より正確かつ多量な情報が得られる。
構成2では、例えば、残膜率xの均一性から、熱処理効
果の均一性を評価することができる。この場合、残膜率
の差すなわちレジスト自体に生じる差として、焼成工程
全体を通して実際にレジスト膜が受けた熱処理効果を顕
在化できるので、熱電対等による測定に比べ、より直接
的な情報が得られる。また、熱処理効果のバラツキ(焼
成処理のバラツキ)を残膜率のバラツキとして定量化で
きる。構成2では、例えば、残膜率xと残膜率Xとの差
から、熱処理効果の均一性を評価することもできる。
According to the second aspect, the effect of the heat treatment can be evaluated by using the remaining film ratio x obtained from the measured value of the film thickness before and after dissolving (thinning) the resist after baking at the temperature Y. As described above, by using the residual film ratio x, the influence of the variation in the coating thickness of the resist can be completely eliminated, so that the heat treatment effect can be more accurately evaluated as compared with the configuration 1. In the configuration 2, the residual film ratio x is obtained from the measured values of the film thickness before and after the dissolution (thinning) process, and the film thickness is measured at a number of points on the surface in units of 1 angstrom (for example, 300 in the measurement area).
(0 point) can be precisely measured, so that more accurate and more information can be obtained as compared with measurement using a thermocouple or the like.
In the configuration 2, for example, the uniformity of the heat treatment effect can be evaluated from the uniformity of the remaining film ratio x. In this case, as the difference in the residual film ratio, that is, the difference generated in the resist itself, the effect of the heat treatment actually applied to the resist film can be made obvious throughout the baking process, so that more direct information can be obtained as compared with measurement using a thermocouple or the like. . Further, the variation in the heat treatment effect (variation in the firing process) can be quantified as the variation in the remaining film ratio. In the configuration 2, for example, the uniformity of the heat treatment effect can be evaluated from the difference between the remaining film ratio x and the remaining film ratio X.

【0018】構成3によれば、残膜率xから、検量線を
介して、対応する焼成温度yを求めることによって、焼
成温度yの違いとして、熱処理効果の均一性を評価する
こともできる。
According to the configuration 3, the uniformity of the heat treatment effect can be evaluated as a difference in the firing temperature y by obtaining the corresponding firing temperature y from the remaining film ratio x via the calibration curve.

【0019】構成4によれば、高温で焼成できるレジス
ト用いて評価を行うことによって、焼成温度が高温にな
るほど、焼成装置の温度バラツキは大きくなり、焼成
(ベーク)の均一性はほぼ直線的に悪化する(焼成装置
のくせが強調される)ので、焼成装置の評価がしやすく
なるので好ましい。ここで、高温で焼成できるレジスト
とは 多くのレジストのプロセス上の最適焼成温度90
〜150℃に比べ、それ以上のプロセス上の最適焼成温
度、例えば180〜250℃を有するレジストをいう。
According to the fourth aspect, the evaluation is performed using a resist that can be fired at a high temperature. As the firing temperature increases, the temperature variation of the firing apparatus increases, and the uniformity of the firing (baking) is substantially linear. This is preferable because the deterioration is made (the habit of the firing device is emphasized), and the evaluation of the firing device becomes easy. Here, a resist that can be fired at a high temperature is an optimum firing temperature of 90 for many resist processes.
A resist having an optimum baking temperature in the process higher than that of -150 ° C, for example, 180-250 ° C.

【0020】構成5によれば、前記所定の温度領域を、
評価に用いるレジストのプロセス上の最適焼成温度より
低温側に取る(例えば図1において領域Aを検量線とし
て使う)ことによって、熱処理効果の評価が高精度にな
るので好ましい。一般に、レジストは、図1に示すレジ
スト焼成温度と減膜処理後の残膜率との関係において、
面内温度バラツキの最も小さい点Cよりも低い温度領域
Aの方が、点Cよりも高い温度領域Dよりも、検量線の
傾きが小さくなる傾向にあり、傾きが大きい領域Dより
も誤差が少なくなるからである。焼成温度が高くなるに
従い、焼成の均一性がほぼ直線的に悪化すると考えられ
るから、高温側で均一性が良ければ、その温度以下(実
際のプロセス上の焼成温度)においても均一性は良いこ
とが推測できるので好ましい。
According to the fifth aspect, the predetermined temperature range is defined by:
It is preferable to set the temperature lower than the optimum firing temperature in the process of the resist used for the evaluation (for example, use the region A in FIG. 1 as a calibration curve) because the evaluation of the heat treatment effect becomes highly accurate. In general, the resist has a relationship between the resist baking temperature shown in FIG.
The inclination of the calibration curve tends to be smaller in the temperature region A lower than the point C where the in-plane temperature variation is smallest than in the temperature region D higher than the point C, and the error is smaller than that in the region D where the inclination is large. It is because it becomes less. As the firing temperature increases, the uniformity of firing is considered to decrease almost linearly. Therefore, if the uniformity on the high temperature side is good, the uniformity is good even below that temperature (the firing temperature in the actual process). Is preferable because it can be estimated.

【0021】構成6によれば、構成1〜5記載の熱処理
効果の評価方法を用いて焼成装置の評価を行うことによ
って、焼成装置の加熱特性(装置のくせ=傾向や、焼成
の不均一性)が定量的にわかり、装置の適否の判定が高
い識別感度で判定可能となる。また、焼成装置による焼
成の再現性や、焼成装置の安定性の評価も可能となる。
さらに、焼成工程全体の実体を把握することが容易とな
る。これらのことから、焼成装置の設計の最適化や基板
搬送系の改良を図ることが可能となる。
According to the sixth aspect, the baking apparatus is evaluated by using the heat treatment effect evaluation method described in the first to fifth aspects. ) Can be quantitatively determined, and the determination of the suitability of the device can be made with high identification sensitivity. In addition, it becomes possible to evaluate the reproducibility of firing by the firing apparatus and the stability of the firing apparatus.
Further, it is easy to grasp the substance of the entire firing process. From these facts, it is possible to optimize the design of the baking apparatus and improve the substrate transfer system.

【0022】構成7によれば、構成6記載の焼成装置の
評価方法を用いることによって、均一性の高い最適焼成
装置を選択し使用することができ、この焼成装置を用い
てレジスト膜の焼成を行うことによって、パターン精度
やパターン形状等の向上に寄与できる。
According to the configuration 7, by using the evaluation method of the baking apparatus described in the configuration 6, an optimum baking apparatus having high uniformity can be selected and used, and the baking apparatus is used to bake the resist film. By doing so, it is possible to contribute to improvement in pattern accuracy, pattern shape, and the like.

【0023】[0023]

【実施例】(実施例1)検量線の作成 まず、厚さ0.25インチ、サイズ6インチ×6インチ
の正方形の適宜表面研磨処理した石英基板にクロム遮光
膜を成膜してなるフォトマスク製作用基板(ブランク
ス)を複数枚用意し、各基板を一枚づづ回転台に載置
し、高温で焼成できるレジスト(ZEP7000:日本
ゼオン社製)溶液を吐出ノズルより滴下して、回転塗布
法により、焼成及び冷却後の膜厚が約4000オングス
トロームとなるようにレジストを塗布した。
EXAMPLE 1 Preparation of Calibration Curve First, a photomask formed by forming a chromium light-shielding film on a quartz substrate 0.25 inch thick, 6 inch × 6 inch square and appropriately polished. A plurality of production substrates (blanks) are prepared, each substrate is placed on a turntable one by one, and a resist (ZEP7000: manufactured by Zeon Corporation) solution that can be fired at a high temperature is dropped from a discharge nozzle, and spin coating is performed. Thus, the resist was applied such that the film thickness after firing and cooling was about 4000 Å.

【0024】次に、レジストの焼成温度を100℃から
250℃までの間で10℃毎に変化させて、各基板を後
述する装置(ホットプレート大)を用いて、焼成時間1
2.5分で、焼成処理し、冷却工程の影響を排除するた
め自動搬送して冷却プレート上で均一に急速冷却した。
Next, the firing temperature of the resist was changed every 10 ° C. from 100 ° C. to 250 ° C., and each substrate was fired for one firing time using an apparatus (hot plate size) described later.
After 2.5 minutes, it was baked, and was automatically transported and rapidly cooled uniformly on a cooling plate to eliminate the influence of the cooling step.

【0025】次に、焼成後の各基板について、分光反射
曲線から光学膜厚を計測する方法を採用した分光干渉式
膜厚測定装置(ナノメトリクス社製:AFT6100)
を用いて、レジスト膜厚の測定(基板中央140mm角
領域内841点(29点×29点))を行い、レジスト
膜厚の平均値をそれぞれ算出した。
Next, for each of the fired substrates, a spectral interference type film thickness measuring apparatus (AFT6100, manufactured by Nanometrics) employing a method of measuring an optical film thickness from a spectral reflection curve.
Was used to measure the resist film thickness (841 points (29 points × 29 points) in a 140 mm square area at the center of the substrate), and the average value of the resist film thickness was calculated.

【0026】次に、焼成後の各基板を、有機溶媒のジグ
ライムで120秒間浸漬法で溶解(著しく過剰に減膜)
処理し、その後、有機溶媒のMIBK(メチルイソブチ
ルケトン)で30秒間中間リンスし、IPAで5秒間リ
ンスし、回転乾燥した。その後、膜厚測定精度を上げる
ため、表面に付着したレジスト残さを水中ハンドスクラ
ブにより物理的に除去し、自然乾燥させた。
Next, each of the fired substrates is dissolved in diglyme of an organic solvent by an immersion method for 120 seconds (remarkably excessively reduced film thickness).
After that, the resultant was subjected to intermediate rinsing with MIBK (methyl isobutyl ketone) as an organic solvent for 30 seconds, rinsed with IPA for 5 seconds, and spin-dried. Thereafter, in order to increase the accuracy of the film thickness measurement, the resist residue adhering to the surface was physically removed by an underwater hand scrub and dried naturally.

【0027】次に、減膜処理後に十分に乾燥した各レジ
スト膜について、上記と同様の方法で減膜処理後の膜厚
を測定し、減膜処理後のレジスト残膜厚の平均値を算出
した。
Next, the thickness of each resist film that has been sufficiently dried after the film-thinning treatment is measured in the same manner as described above, and the average value of the remaining resist thickness after the film-thinning treatment is calculated. did.

【0028】次に上記で求めた減膜処理前後のレジスト
膜厚の平均値の差から、残膜率を各焼成温度について算
出し、焼成温度−残膜率曲線を求めた(図1)。そし
て、この焼成温度−残膜率曲線において焼成温度の変化
に対し残膜率が直線的に大きく変化する温度領域(13
0℃から190℃)を意図的に選び、検量線とした。な
お、ZEP7000のプロセス上の最適焼成温度は22
0℃である。
Next, the residual film ratio was calculated for each firing temperature from the difference between the average values of the resist film thickness before and after the film-thinning treatment obtained above, and a firing temperature-remaining film ratio curve was obtained (FIG. 1). Then, in the firing temperature-residual film ratio curve, the temperature region (13) where the residual film ratio linearly largely changes with respect to the change in the firing temperature.
(0 ° C to 190 ° C) was intentionally selected and used as a calibration curve. The optimum firing temperature in the process of ZEP7000 is 22
0 ° C.

【0029】焼成装置の評価 まず、上記と同じ条件で作製した上記と同じレジスト膜
付き基板を複数枚用意した。具体的には、厚さ0.25
インチ、サイズ6インチ×6インチの正方形の適宜表面
研磨処理した石英基板にクロム遮光膜を成膜してなるフ
ォトマスク製作用基板(ブランクス)を複数枚用意し、
各基板を一枚づづ回転台に載置し、高温で焼成できるレ
ジスト(ZEP7000:日本ゼオン社製)溶液を吐出
ノズルより滴下して、回転塗布法により、塗布、焼成及
び冷却後の膜厚が約4000オングストロームとなるよ
うにレジストを塗布した。
Evaluation of Firing Apparatus First, a plurality of substrates having the same resist film as above prepared under the same conditions as above were prepared. Specifically, a thickness of 0.25
Prepare a plurality of photomask working substrates (blanks) in which a chromium light-shielding film is formed on a quartz substrate having an appropriate size of 6 inches x 6 inches and having a surface polished,
Each substrate is placed on a turntable one by one, and a resist (ZEP7000: manufactured by Zeon Corporation) solution that can be baked at a high temperature is dropped from a discharge nozzle. The resist was applied so as to have a thickness of about 4000 angstroms.

【0030】次に、表1に示す各焼成装置、焼成温度
で、焼成時間を上記と同じ12.5分として、焼成処理
した。ホットプレートの一例を図4(a)に、上下ホッ
トプレートの一例を図4(b)に、密閉型焼成装置の一
例を図4(c)に、それぞれ示す。図4において、1は
レジスト膜付き基板、2はホットプレート、3は周囲の
密閉を示す。表1で、「ホットプレート小」は195m
m角の大きさ(ヒーター容量0.6kW)、「ホットプ
レート大」は230mm角の大きさ(ヒーター容量1.
8kW)、「上下ホットプレート」はそれぞれ230m
m角の大きさ(ヒーター容量1.8kW)、のものを使
用した。「密閉型A」は基板の下部にヒーターを設け周
囲を密閉したタイプの装置、「密閉型B」は基板の下部
にヒーターを設けるとともに基板の上方に反射板を設け
周囲を密閉したタイプの装置である。また、焼成後は自
動搬送して冷却プレート上で急速冷却した。
Next, the sintering was performed at the respective sintering apparatuses and the sintering temperatures shown in Table 1 and the sintering time was set to 12.5 minutes, the same as above. FIG. 4A shows an example of a hot plate, FIG. 4B shows an example of an upper and lower hot plate, and FIG. In FIG. 4, reference numeral 1 denotes a substrate with a resist film, 2 denotes a hot plate, and 3 denotes a hermetic seal. In Table 1, "Hot plate small" is 195m
m square size (heater capacity 0.6 kW), "hot plate large" is 230 mm square size (heater capacity 1.
8 kW), the upper and lower hot plates are 230 m each
A m-sized one (heater capacity: 1.8 kW) was used. The "sealed type A" is a device of a type in which a heater is provided at the lower part of the substrate and the periphery is sealed, and the "sealed type B" is a device of a type in which a heater is provided at the lower part of the substrate and a reflector is provided above the substrate to seal the periphery. It is. After firing, it was automatically conveyed and rapidly cooled on a cooling plate.

【0031】次に、焼成後の各基板を、上記と同じ条件
で減膜処理した。具体的には、焼成後の各基板を、希釈
液であるZEP−Dで120秒間浸漬法で溶解(著しく
過剰に減膜)処理し、その後、有機溶媒のMIBK(メ
チルイソブチルケトン)で30秒間中間リンスし、IP
Aで5秒間リンスし、回転乾燥して静置した。
Next, each of the fired substrates was subjected to a film reduction treatment under the same conditions as described above. Specifically, each of the fired substrates is subjected to a dissolving (remarkably excessively thinning) treatment by a dip method for 120 seconds in ZEP-D, which is a diluent, and then to an organic solvent MIBK (methyl isobutyl ketone) for 30 seconds. Intermediate rinse, IP
Rinse with A for 5 seconds, spin dry and let stand.

【0032】次に、減膜処理後の膜厚を測定し、減膜処
理後のレジスト残膜厚の平均値、標準偏差値σ、レンジ
値を算出した。表1にこれらの結果を示し、図2、3に
減膜処理後の面内膜厚分布の鳥瞰図を示す。
Next, the film thickness after the film-thinning treatment was measured, and the average value, standard deviation σ, and range value of the remaining resist thickness after the film-thinning treatment were calculated. Table 1 shows these results, and FIGS. 2 and 3 show bird's-eye views of the in-plane film thickness distribution after the film-thinning treatment.

【0033】なお、減膜処理後の膜厚の測定は、減膜処
理後に十分に乾燥した各レジスト膜について、上記と同
じ分光干渉式膜厚測定装置(ナノメトリクス社製:AF
T6100)を用いて、レジスト膜厚の測定(表1に示
す測定エリア内841点(29点×29点))を行っ
た。表1で、レンジ値は減膜処理後の膜厚の最大値と最
小値の差、シグマ値は膜厚のバラツキの大きさを表す。
また、焼成温度の違いは焼成効果の違い(密閉系の方が
開放系に比べ焼成効果が高い)を考慮して定めた。な
お、レジストの塗布膜厚のバラツキは50オンク゛ストローム未
満であり減膜量に比べ小さいので無視できる。測定エリ
アに関しては6インチ基板の使用エリアは140mmで
ある。
The film thickness after the film-thinning treatment was measured using the same spectral interference-type film-thickness measuring apparatus (manufactured by Nanometrics: AF) for each resist film sufficiently dried after the film-thinning treatment.
T6100), the resist film thickness was measured (841 points (29 points × 29 points) in the measurement area shown in Table 1). In Table 1, the range value indicates the difference between the maximum value and the minimum value of the film thickness after the film-thinning treatment, and the sigma value indicates the magnitude of the film thickness variation.
Further, the difference in the firing temperature was determined in consideration of the difference in the firing effect (the closed system has a higher firing effect than the open system). The variation in the coating thickness of the resist is less than 50 angstroms, which is negligible because it is smaller than the film thickness reduction. Regarding the measurement area, the use area of the 6-inch substrate is 140 mm.

【0034】[0034]

【表1】 [Table 1]

【0035】表1から、レジストの塗布膜厚(4000オンク゛
ストローム)に対し減膜量は約50〜55%となっている。
ホットプレートに関しては、プレートの体積(ヒーター
容量)が大きい方が、減膜量の基板面内バラツキ(シグ
マ値、レンジ値)が小さく、さらに上下にプレートを配
した方が、より減膜量の基板面内バラツキ(シグマ値、
レンジ値)が小さくなることがわかる。また、密閉型装
置方が、減膜量の基板面内バラツキ(シグマ値、レンジ
値)がより小さいことがわかる。さらに、密閉型装置で
あっても、メーカー等によって、減膜量の基板面内バラ
ツキ(シグマ値、レンジ値)が異なることがわかる。ま
た、図3のグラフから、密閉型の装置は、基板周辺の減
膜量が大きく、基板周辺において熱処理効果に著しい差
異が生じていることがわかる。また、密閉型Aの装置で
は搬送系の治具跡が現れている。これらのことは従来の
温度測定による評価法ではわからなかったことである。
上記表1、図2、3の結果を比較検討し、最適焼成装置
として密閉型Bを決定した。
From Table 1, it is found that the amount of film reduction is about 50 to 55% with respect to the resist coating film thickness (4000 angstroms).
Regarding the hot plate, the larger the plate volume (heater capacity), the smaller the in-plane variation (sigma value, range value) of the film reduction amount, and the more the plates are arranged vertically, the smaller the film reduction amount. In-plane variation (sigma value,
(Range value) becomes smaller. In addition, it can be seen that in the closed type apparatus, the variation (sigma value, range value) in the substrate surface of the film reduction amount is smaller. Further, it can be seen that even in the case of the closed type apparatus, the variation (sigma value, range value) in the substrate surface of the film reduction amount differs depending on the maker or the like. Further, it can be seen from the graph of FIG. 3 that in the closed type apparatus, the amount of film reduction around the substrate is large, and a significant difference occurs in the heat treatment effect around the substrate. Also, in the closed type A apparatus, traces of the jig of the transport system appear. These facts were not understood by the conventional evaluation method based on temperature measurement.
The results of Table 1 and FIGS. 2 and 3 were compared and examined, and the closed type B was determined as the optimum firing apparatus.

【0036】(実施例2)実施例1の「焼成装置の評
価」工程において、減膜処理前の膜厚を上記と同様の方
法で測定し、減膜処理後の膜厚の測定値との差から、残
膜率を算出し、同様の評価を行った。その結果、塗布膜
厚のバラツキの影響を排除でき、評価精度がさらに向上
した。
(Embodiment 2) In the "Evaluation of firing apparatus" step of Embodiment 1, the film thickness before the film-thinning treatment was measured by the same method as described above, and the measured value of the film thickness after the film-thinning treatment was compared with the measured value. From the difference, the residual film ratio was calculated, and the same evaluation was performed. As a result, the influence of the variation in the coating film thickness was eliminated, and the evaluation accuracy was further improved.

【0037】(比較例1)ZEP7000を用い、21
0℃、220℃(プロセス上の最適焼成温度)、230
℃で、各装置を用いてそれぞれ焼成し、同様の評価を行
った。その結果、識別感度が悪く、熱処理効果のバラツ
キを顕在化できない焼成温度領域なので、著しく減膜処
理した後のレジスト残膜均一性(残膜厚、標準偏差値
σ、レンジ値)の違いが現れず、装置の適否の判断がで
きなかった。
Comparative Example 1 Using ZEP7000, 21
0 ° C, 220 ° C (optimal firing temperature in process), 230
It baked using each apparatus at ℃, and performed the same evaluation. As a result, the discrimination sensitivity is poor, and the sintering temperature range in which the variation in the heat treatment effect cannot be evident. And it was not possible to judge the suitability of the device.

【0038】(実施例3、比較例2)ZEP7000を
用い、220℃(プロセス上の最適焼成温度)で、各装
置を用いてそれぞれ焼成し、通常の現像、エッチングを
施し、パターン寸法精度及びパターン形状精度の評価を
行った。その結果、密閉型Bの精度が最も良好であっ
た。同様に、プロセス上の最適焼成温度が150℃であ
るレジストを用いて同様の評価を行った結果、同様の傾
向が認められた。
(Example 3, Comparative Example 2) Using ZEP7000, firing at 220 ° C. (optimal firing temperature in the process) using each apparatus, performing normal development and etching, and performing pattern dimension accuracy and pattern Evaluation of shape accuracy was performed. As a result, the accuracy of the closed mold B was the best. Similarly, the same evaluation was performed using a resist having an optimum firing temperature of 150 ° C. in the process, and as a result, the same tendency was recognized.

【0039】以上好ましい実施例をあげて本発明を説明
したが、本発明は上記実施例に限定されるものではな
い。例えば、レジスト材料や、検量線とする焼成温度領
域、減膜処理条件等は上記実施例のものに限定されな
い。また、基板材料は特に限定されず、シリコンウエハ
やその他の材料であっても熱処理効果の評価が可能であ
る。
Although the present invention has been described with reference to the preferred embodiments, the present invention is not limited to the above embodiments. For example, the resist material, the baking temperature range used as the calibration curve, the conditions for the film reduction, and the like are not limited to those in the above-described embodiment. The substrate material is not particularly limited, and the heat treatment effect can be evaluated even with a silicon wafer or another material.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
以下の効果を有する。 (1)焼成工程全体を通して実際にレジスト膜が受けた
熱処理効果を顕在化、定量化でき、熱処理効果を適切に
評価できる。 (2)膜厚の測定は1オンク゛ストローム単位で精密に測定可能
であるので、情報の精度が高い(分解能、識別感度が高
い)。 (3)膜厚の測定は面内の多数点について精密に測定可
能であるので、情報量が多く(例えば測定エリア内30
00点)、面内のあらゆる箇所における熱処理効果を容
易に測定、観察できる。 (4)他のプロセスファクターの影響を受けない。 (5)焼成装置の加熱特性(装置のくせ=傾向や、焼成
の不均一性)が定量的にわかり、装置の適否の判定が高
い識別感度で判定可となる。また、焼成装置による焼成
の再現性や、焼成装置の安定性の評価も可能となる。さ
らに、焼成工程全体の実体を把握することが容易とな
る。これらのことから、焼成装置の設計の最適化や基板
搬送系の改良を図ることが可能となる。 (6)均一性の高い焼成装置を選択し使用することで、
パターン精度やパターン形状等の向上に寄与できる。
As described above, according to the present invention,
It has the following effects. (1) The heat treatment effect actually received by the resist film throughout the baking process can be clarified and quantified, and the heat treatment effect can be appropriately evaluated. (2) Since the film thickness can be measured precisely in units of 1 angstrom, the accuracy of information is high (resolution and discrimination sensitivity are high). (3) Since the film thickness can be measured precisely at many points in the plane, the information amount is large (for example, 30 points in the measurement area).
00 point), the effect of the heat treatment at any point in the plane can be easily measured and observed. (4) Not affected by other process factors. (5) The heating characteristics of the baking apparatus (habit of the apparatus = tendency and non-uniformity of baking) can be quantitatively understood, and the applicability of the apparatus can be determined with high identification sensitivity. In addition, it becomes possible to evaluate the reproducibility of firing by the firing apparatus and the stability of the firing apparatus. Further, it is easy to grasp the substance of the entire firing process. From these facts, it is possible to optimize the design of the baking apparatus and improve the substrate transfer system. (6) By selecting and using a highly uniform firing apparatus,
It can contribute to improvement of pattern accuracy and pattern shape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】レジスト焼成温度と所定の減膜処理後の残膜率
との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a resist baking temperature and a remaining film ratio after a predetermined film-thinning process.

【図2】所定の減膜処理後の残膜厚の測定結果を示す図
である。
FIG. 2 is a diagram showing a measurement result of a remaining film thickness after a predetermined film-thinning process.

【図3】所定の減膜処理後の残膜厚の測定結果を示す図
である。
FIG. 3 is a diagram showing a measurement result of a remaining film thickness after a predetermined film-thinning treatment.

【図4】焼成装置を説明するための正面図である。FIG. 4 is a front view for explaining a baking apparatus.

【図5】焼成プロファイルを説明するための図である。FIG. 5 is a diagram for explaining a firing profile.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板上にレジスト膜を形成した基板を複
数枚用意して、それぞれを異なる焼成温度(焼成時間、
冷却条件は固定)で焼成し、これらに露光処理を施すこ
となく、各焼成温度で焼成したレジスト膜のそれぞれを
レジスト膜が一部溶解する所定の処理条件で溶解(減
膜)処理を施して、レジスト焼成温度−残膜率曲線を求
め、この曲線において焼成温度の変化に対し前記残膜率
が所定の関係で変化する所定の領域を予め検量線として
意図的に選ぶ工程と、 基板上に上記と同じレジスト膜を形成した基板を新たに
用意し、この基板を前記検量線の温度領域内で残膜率が
Xとなる温度Yで焼成(焼成時間、冷却条件は上記と同
じ条件とする)する工程と、 前記温度Yで焼成後のレジスト膜を、レジスト膜が一部
溶解する上記と同じ処理条件で溶解(減膜)処理を施す
工程と、 溶解処理後のレジスト膜の膜厚を測定する工程と、 この溶解処理後のレジスト膜の膜厚を用いて熱処理効果
を評価することを特徴とする熱処理効果の評価方法。
A plurality of substrates each having a resist film formed on the substrate are prepared, and each of the substrates has a different firing temperature (firing time,
Cooling conditions are fixed), and each of the resist films fired at each firing temperature is subjected to a dissolving (thinning) process under predetermined processing conditions in which the resist film partially dissolves without subjecting them to exposure processing. Obtaining a resist baking temperature-residual film rate curve, and intentionally selecting a predetermined region in which the remaining film rate changes in a predetermined relation with respect to a change in the baking temperature as a calibration curve in advance on the substrate; A substrate on which the same resist film as above was formed was newly prepared, and this substrate was fired at a temperature Y at which the residual film ratio was X in the temperature range of the calibration curve (the firing time and cooling conditions were the same as above). A) dissolving (thinning) the resist film after baking at the temperature Y under the same processing conditions as above in which the resist film partially dissolves; The step of measuring and after the dissolution treatment A method for evaluating a heat treatment effect, wherein the heat treatment effect is evaluated using the thickness of a resist film.
【請求項2】 前記温度Yで焼成後のレジスト膜につい
て、溶解(減膜)処理する前後の膜厚の測定値から残膜
率xを求める工程と、 この残膜率xを用いて熱処理効果を評価することを特徴
とする請求項1記載の熱処理効果の評価方法。
2. A step of obtaining a residual film ratio x from a measured value of a film thickness before and after a dissolution (thinning) process of the resist film after baking at the temperature Y, and a heat treatment effect using the residual film ratio x. The method for evaluating a heat treatment effect according to claim 1, wherein:
【請求項3】 前記残膜率xを、前記焼成温度−残膜率
曲線(検量線)にあてはめて、対応する焼成温度yを求
め、この焼成温度yを用いて熱処理効果を評価すること
を特徴とする請求項2記載の熱処理効果の評価方法。
3. Applying the remaining film rate x to the firing temperature-residual film rate curve (calibration curve) to obtain a corresponding firing temperature y, and evaluating the heat treatment effect using the firing temperature y. The method for evaluating the effect of heat treatment according to claim 2.
【請求項4】 高温で焼成できるレジストを用いて評価
を行うことを特徴とする請求項1〜3のいずれかに記載
の熱処理効果の評価方法。
4. The method according to claim 1, wherein the evaluation is performed using a resist that can be fired at a high temperature.
【請求項5】 前記所定の温度領域を、評価に用いるレ
ジストのプロセス上の最適焼成温度より低温側に取るこ
とを特徴とする請求項1〜4のいずれかに記載の熱処理
効果の評価方法。
5. The method for evaluating a heat treatment effect according to claim 1, wherein the predetermined temperature region is set at a temperature lower than an optimum baking temperature in a process of a resist used for evaluation.
【請求項6】 請求項1〜5のいずれかに記載の熱処理
効果の評価方法を用いた焼成装置の評価方法。
6. A method for evaluating a baking apparatus using the method for evaluating a heat treatment effect according to claim 1.
【請求項7】 請求項6記載の焼成装置の評価方法を用
いて最適焼成装置を選択、決定し、この焼成装置を用い
てレジスト膜の焼成を行う工程を有することを特徴とす
るレジストパターン形成方法。
7. A resist pattern forming method comprising the steps of selecting and determining an optimum baking apparatus using the baking apparatus evaluation method according to claim 6, and baking a resist film using the baking apparatus. Method.
JP2000385859A 2000-12-19 2000-12-19 Method of evaluating heat treating effect and method of evaluating resist baking apparatus Pending JP2002189303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000385859A JP2002189303A (en) 2000-12-19 2000-12-19 Method of evaluating heat treating effect and method of evaluating resist baking apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000385859A JP2002189303A (en) 2000-12-19 2000-12-19 Method of evaluating heat treating effect and method of evaluating resist baking apparatus

Publications (1)

Publication Number Publication Date
JP2002189303A true JP2002189303A (en) 2002-07-05

Family

ID=18853060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000385859A Pending JP2002189303A (en) 2000-12-19 2000-12-19 Method of evaluating heat treating effect and method of evaluating resist baking apparatus

Country Status (1)

Country Link
JP (1) JP2002189303A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303093A (en) * 2004-04-13 2005-10-27 Hoya Corp Heat treatment evaluating method and development processing evaluating method
JP2012047828A (en) * 2010-08-24 2012-03-08 Hoya Corp Resist processing method and method of manufacturing resist-attached substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303093A (en) * 2004-04-13 2005-10-27 Hoya Corp Heat treatment evaluating method and development processing evaluating method
JP4535242B2 (en) * 2004-04-13 2010-09-01 Hoya株式会社 Heat treatment evaluation method
JP2012047828A (en) * 2010-08-24 2012-03-08 Hoya Corp Resist processing method and method of manufacturing resist-attached substrate

Similar Documents

Publication Publication Date Title
JP4509820B2 (en) Heat treatment plate temperature setting method, heat treatment plate temperature setting device, program, and computer-readable recording medium recording the program
KR860002082B1 (en) Forming method and apparatus of resistor pattern
JP5610664B2 (en) Method for in-line monitoring and control of heat treatment of resist-coated wafers
JP5610665B2 (en) Real-time dynamic CD control method
JP3038141B2 (en) Resist pattern forming condition determining method and resist pattern forming method
JP2000082661A (en) Heating apparatus, estimating method of heating apparatus and pattern forming method
JP2008512003A (en) Control of critical dimensions of structures formed on wafers in semiconductor processes
KR20080049017A (en) Substrate-processing apparatus, substrate-processing method, substrate-processing program, and computer-readable recording medium recorded with such program
TWI305934B (en)
US7751025B2 (en) Scatterometric method of monitoring hot plate temperature and facilitating critical dimension control
KR101072330B1 (en) Substrate-processing apparatus, substrate-processing method, and computer-readable recording medium recorded with substrate-processing program
US20090042145A1 (en) Method for Detecting Light Intensity Distribution for Gradient Filter and Method for Improving Line Width Consistency
TW201005451A (en) Substrate processing method, computer-readable storage medium and substrate processing system
US7356380B2 (en) Process control method
JP2002189303A (en) Method of evaluating heat treating effect and method of evaluating resist baking apparatus
JPS6021522A (en) Formation of resist pattern
JP3719837B2 (en) Pattern formation method
JP2010074043A (en) Semiconductor manufacturing method and semiconductor manufacturing device
JP4535242B2 (en) Heat treatment evaluation method
JP3058541B2 (en) Resist pattern forming condition determining method and resist pattern forming method
JP5201761B2 (en) Development processing evaluation method
JPS60178626A (en) Formation of resist pattern and resist treater
JP2000305246A (en) Method for predicting pattern line width and method for correcting mask pattern using the method
JPS59132619A (en) Method and apparatus for forming resist pattern
JP2003197499A (en) Film quality evaluation method and device, line width variation evaluation method and device, and processing method and device having line width variation evaluation function