JP2002188011A - Molding material - Google Patents

Molding material

Info

Publication number
JP2002188011A
JP2002188011A JP2000388017A JP2000388017A JP2002188011A JP 2002188011 A JP2002188011 A JP 2002188011A JP 2000388017 A JP2000388017 A JP 2000388017A JP 2000388017 A JP2000388017 A JP 2000388017A JP 2002188011 A JP2002188011 A JP 2002188011A
Authority
JP
Japan
Prior art keywords
gelatin
water
powder
urea resin
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000388017A
Other languages
Japanese (ja)
Inventor
Haruo Motoyoshi
治雄 元吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakayama Prefecture
Original Assignee
Wakayama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakayama Prefecture filed Critical Wakayama Prefecture
Priority to JP2000388017A priority Critical patent/JP2002188011A/en
Publication of JP2002188011A publication Critical patent/JP2002188011A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a molding material consisting of a molding composition having improved productivity and usability. SOLUTION: The molding material contains gelatin powder containing a water-soluble plasticizer and produced by drying an aqueous solution containing dissolved gelatin and the water-soluble plasticizer and powder of a precondensate of urea resin produced by drying a liquid obtained by the reaction of urea with formaldehyde.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、生分解
性、ならびに吸湿能ないし吸水能を有する成形体組成物
の成形材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding material for a molded article composition having, for example, biodegradability and having a moisture absorbing or water absorbing ability.

【0002】[0002]

【従来の技術】一般に、ゼラチンは動物の結合組織、
皮、腱、筋膜、骨などに広く分布する硬タンパク質コラ
ーゲンを熱加水分解して得られる天然高分子として知ら
れ、水易溶性、ゲル形成性、吸湿性、吸水性、膨潤性、
接着性といった諸特性を有している。かかるゼラチン
は、種々の原料を直接精製して得られるために純度が高
く、食品、化粧品、医薬品などの分野でゲル化剤、起泡
剤、結着剤、カプセル剤、増粘剤などとして広く利用さ
れている。
2. Description of the Related Art Generally, gelatin is used in animal connective tissue,
Known as a natural polymer obtained by thermally hydrolyzing hard protein collagen widely distributed in skin, tendon, fascia, bone, etc., it is easily soluble in water, gel-forming, hygroscopic, water-absorbing, swelling,
It has various properties such as adhesiveness. Such gelatin has a high purity because it can be obtained by directly purifying various raw materials, and is widely used as a gelling agent, a foaming agent, a binder, a capsule, a thickener and the like in the fields of food, cosmetics, and pharmaceuticals. It's being used.

【0003】一方、皮革製造工程で副生する皮革屑は精
製が困難で、これから得られる工業用ゼラチン(膠とも
称する)は鞣し剤などの不純物を含有しているため、上
記以外の分野で主にマッチ、ガムテープ、研磨紙、繊維
用糊材などの材料として利用されている。しかしながら
近年、一部用途の合成高分子による代替およびこれらの
製品そのものの消費減少などにより、皮革製造副生物か
らの工業用ゼラチンが余剰となっており、新しい用途の
開発が求められている。
[0003] On the other hand, leather waste produced as a by-product in the leather manufacturing process is difficult to purify, and the industrial gelatin (also referred to as glue) obtained therefrom contains impurities such as tanning agents. It is used as a material for match, gum tape, abrasive paper, fiber sizing material and the like. However, in recent years, there has been a surplus of industrial gelatin from by-products of leather production due to substitution by synthetic polymers for some uses and reduction in consumption of these products themselves, and development of new uses is required.

【0004】そこで、本発明者等は、図3の概略工程図
に示すように、ゼラチン水溶液、尿素樹脂初期縮合物の
反応液、または、ゼラチン水溶液と尿素樹脂初期縮合物
反応液の混合物のいずれかに、あるいはゼラチン水溶液
および尿素樹脂初期縮合物反応液の双方それぞれに、水
溶性可塑剤を加えたのち、前記の混合液を乾燥させて得
られる吸水性組成物の成形材料およびその製造方法を提
案した(特願2000−15249号)。かかる提案技
術では、乾燥物中のゼラチンに流動性が付与されて吸水
性組成物の成形が可能となり、耐水性を有し、且つ、計
画的に生分解性と吸水性を制御された吸水性組成物が得
られるように企図されている。
Therefore, as shown in the schematic process diagram of FIG. 3, the inventors of the present invention have proposed either an aqueous solution of gelatin, a reaction solution of a precondensate of urea resin, or a mixture of an aqueous solution of gelatin and a reaction solution of precondensate of urea resin. A molding material for a water-absorbing composition obtained by adding a water-soluble plasticizer to each of a crab or a gelatin aqueous solution and a urea resin precondensate reaction solution, and then drying the mixture, and a method for producing the same. It was proposed (Japanese Patent Application No. 2000-15249). In such a proposed technique, the gelatin in the dried product is given fluidity to enable molding of a water-absorbing composition, has water resistance, and has a deliberately controlled biodegradability and water absorption. It is contemplated that a composition is obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
提案技術においては、ゼラチン水溶液と尿素樹脂初期縮
合物とを均一に混合する上でゼラチン水溶液のゼラチン
濃度を希薄にして粘度を下げておく必要があること、ゼ
ラチン水溶液のゲル化を防ぐために保温を継続する必要
があること、液中でゼラチンとの架橋反応を引き起こす
未反応のホルムアルデヒドを除去するためには尿素樹脂
初期縮合物の反応液に対し濃縮・再希釈を何回も繰り返
すことが必要であり、工程、時間、および消費エネルギ
ーに無駄の多いことが判明した。また、この提案技術に
より得られる吸水性組成物の諸性質は、ゼラチンおよび
尿素樹脂初期縮合物の両者が水溶液や反応液の段階で決
定されるため、これにより利用範囲が限定されてしまう
ことも判った。
However, in the above-mentioned proposed technique, in order to uniformly mix the aqueous gelatin solution and the urea resin precondensate, it is necessary to dilute the gelatin concentration of the aqueous gelatin solution to lower the viscosity. The fact that it is necessary to keep the temperature in order to prevent gelatinization of the gelatin aqueous solution, and to remove unreacted formaldehyde that causes a crosslinking reaction with gelatin in the solution, the reaction solution of the urea resin precondensate must be used. It was necessary to repeat the concentration and redilution many times, and it was found that the process, time, and energy consumption were wasteful. In addition, various properties of the water-absorbing composition obtained by this proposed technique are determined at the stage of the aqueous solution or the reaction solution of both the gelatin and the urea resin precondensate, so that the range of use may be limited. understood.

【0006】従って、ゼラチンを利用した吸水性組成物
を広範囲に普及させるためには、これらの問題を解決す
る手段を創案しなければならない。このように、本発明
は、一層簡便に得られ、且つ、一層利便性に優れた成形
材料の提供を目的とするものである。
[0006] Therefore, in order to spread the water-absorbing composition using gelatin widely, means for solving these problems must be devised. As described above, an object of the present invention is to provide a molding material that can be obtained more easily and that is more convenient.

【0007】[0007]

【課題を解決するための手段】本発明者は、前述の課題
を解決するため種々試験を重ねた結果、水溶性可塑剤を
ゼラチン分子間の網目構造内に取り込ませてから乾燥さ
せて得られた水溶性可塑剤含有のゼラチン粉末と、尿素
樹脂初期縮合物の粉末との混合粉末を成形時に加圧加熱
し、これにより、ゼラチンと尿素樹脂初期縮合物とを部
分的に架橋させて複合化を図ることにより、前記目的が
達成できることを見出し、本発明を完遂するに至ったの
である。すなわち、本発明に係る成形材料は、ゼラチン
および水溶性可塑剤が溶解した水溶液を乾燥させて得ら
れる水溶性可塑剤含有のゼラチン粉末と、尿素とホルム
アルデヒドとの反応液を乾燥させて得られる尿素樹脂初
期縮合物の粉末とを含んでいるものである。
The present inventor has conducted various tests to solve the above-mentioned problems, and as a result, obtained by incorporating a water-soluble plasticizer into a network between gelatin molecules and then drying. A mixed powder of the water-soluble plasticizer-containing gelatin powder and the urea resin precondensate powder is heated under pressure during molding, thereby partially cross-linking the gelatin and the urea resin precondensate to form a composite. As a result, the present inventors have found that the above object can be achieved, thereby completing the present invention. That is, the molding material according to the present invention is a water-soluble plasticizer-containing gelatin powder obtained by drying an aqueous solution in which gelatin and a water-soluble plasticizer are dissolved, and a urea obtained by drying a reaction solution of urea and formaldehyde. And a resin precondensate powder.

【0008】[0008]

【発明の実施の形態】本発明に係る成形材料の製造に係
る概略工程を図1に示す。まず、本発明による水溶性可
塑剤含有のゼラチン粉末は以下のように調製される。す
なわち、水溶性可塑剤を溶解した水をゼラチンに加え、
10〜30℃で膨潤させた後、50〜60℃に加温し溶
解させて水溶液とする。この水溶液を乾燥させて粉末と
する。このように水溶性可塑剤がゼラチン分子間の網目
構造内に取り込まれた状態で粉末とされることにより、
ゼラチンリッチであるにも拘わらず、成形時の流動性が
付与された成形材料が得られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic process for producing a molding material according to the present invention. First, a gelatin powder containing a water-soluble plasticizer according to the present invention is prepared as follows. That is, water in which a water-soluble plasticizer is dissolved is added to gelatin,
After swelling at 10 to 30 ° C, the mixture is heated to 50 to 60 ° C and dissolved to form an aqueous solution. The aqueous solution is dried to form a powder. By making the water-soluble plasticizer into a powder in a state of being incorporated in the network structure between gelatin molecules,
A molding material having a flowability at the time of molding is obtained in spite of being rich in gelatin.

【0009】本発明において、水溶液中のゼラチン濃度
は特に限定されないが、例えば30〜70重量%とする
のが好ましい。ゼラチン濃度が70重量%よりも濃厚で
あると、溶解に長時間を要するとともに原料粉末の固ま
り(俗称ダマ)が水溶液中に残りやすくなる。反面、ゼ
ラチン濃度が30重量%よりも希薄であると、乾燥処理
に多大な費用と時間を要するので好ましくない。
In the present invention, the gelatin concentration in the aqueous solution is not particularly limited, but is preferably, for example, 30 to 70% by weight. If the gelatin concentration is more than 70% by weight, it takes a long time to dissolve and the lump of the raw material powder (commonly known as lumps) tends to remain in the aqueous solution. On the other hand, if the gelatin concentration is less than 30% by weight, a large amount of time and cost is required for the drying treatment, which is not preferable.

【0010】また、本発明に用いる水溶性可塑剤として
は特に限定されないが、沸点が150℃以上のものを用
いるのが好ましい。かかるものとしては、例えばグリセ
リン、エチレングリコール、プロピレングリコールなど
が挙げられる。因みに、沸点が130℃以下の水溶性可
塑剤であると成形時に沸騰して、成形品が曇ガラス状に
白化する。水溶性可塑剤の添加量は特に限定されない
が、成形が可能な流動性を成形材料に与え得る量であれ
ばよい。例えば、水溶性可塑剤の添加量はゼラチン10
0重量部に対して10〜40重量部とすることができ
る。水溶性可塑剤量が40重量部を越えると、最終的に
得られる成形体が柔らか過ぎたり成形体表面から水溶性
可塑剤が滲み出るおそれがある。水溶性可塑剤量が10
重量部を下回ると、成形時に成形材料が加圧加熱されて
も流動しないので、所期の性質の成形体を得られないお
それがある。
[0010] The water-soluble plasticizer used in the present invention is not particularly limited, but those having a boiling point of 150 ° C or more are preferably used. Such materials include, for example, glycerin, ethylene glycol, propylene glycol and the like. By the way, if it is a water-soluble plasticizer having a boiling point of 130 ° C. or less, it will boil at the time of molding, and the molded product will be whitened to a cloudy glass. The amount of the water-soluble plasticizer to be added is not particularly limited, but may be any amount as long as the molding material has fluidity that allows molding. For example, the amount of the water-soluble plasticizer added is gelatin 10
It can be 10 to 40 parts by weight with respect to 0 parts by weight. If the amount of the water-soluble plasticizer exceeds 40 parts by weight, the finally obtained molded article may be too soft or the water-soluble plasticizer may seep out from the surface of the molded article. 10 water-soluble plasticizers
When the amount is less than the weight part, the molding material does not flow even if the molding material is pressurized and heated at the time of molding, so that there is a possibility that a molded body having desired properties may not be obtained.

【0011】一方、本発明に係る尿素樹脂初期縮合物
(尿素−ホルムアルデヒド初期縮合物)を得る反応は慣
用法でよい。すなわち、pH7〜12のアルカリ性域に
おいて尿素とホルムアルデヒドとを30〜100℃で付
加反応させると、尿素樹脂初期縮合物が溶解した反応液
が得られる。本発明において、尿素とホルムアルデヒド
の添加割合は慣用法通り、尿素1モルに対してホルムア
ルデヒド1〜1.7モルとすればよい。尿素に対するホ
ルムアルデヒドの添加割合が1.7モルよりも過剰であ
ると、メチロール基によるゼラチンの架橋密度が高くな
り過ぎ、成形体が脆くなる。逆に、ホルムアルデヒドの
添加割合が1モルよりも過少であると、尿素とホルムア
ルデヒドの分子間で架橋しにくくなって成形体の機械強
度が低下する。
On the other hand, the reaction for obtaining the urea resin precondensate (urea-formaldehyde precondensate) according to the present invention may be a conventional method. That is, when urea and formaldehyde are subjected to an addition reaction at 30 to 100 ° C. in an alkaline range of pH 7 to 12, a reaction solution in which a urea resin precondensate is dissolved is obtained. In the present invention, the addition ratio of urea and formaldehyde may be 1 to 1.7 mol of formaldehyde per 1 mol of urea, as is commonly used. If the addition ratio of formaldehyde to urea is more than 1.7 mol, the crosslink density of gelatin by the methylol group becomes too high, and the molded article becomes brittle. Conversely, if the addition ratio of formaldehyde is less than 1 mol, crosslinking between the molecules of urea and formaldehyde is difficult, and the mechanical strength of the molded body is reduced.

【0012】上記の尿素樹脂初期縮合物が溶解した反応
液を濃縮、乾燥させると、尿素樹脂初期縮合物の粉末が
得られる。前記の尿素樹脂初期縮合物は水溶性であり、
反応液中に溶解しているか粉末であるかによらず、未硬
化の状態である。
When the reaction solution in which the urea resin precondensate is dissolved is concentrated and dried, a powder of the urea resin precondensate is obtained. The urea resin precondensate is water-soluble,
It is in an uncured state irrespective of whether it is dissolved or powdery in the reaction solution.

【0013】尚、尿素樹脂初期縮合物は成形時の加熱だ
けでも架橋反応がわずかに進むが、反応速度は極めて遅
い。そこで、通常は架橋反応の促進剤である硬化剤が添
加される。かかる硬化剤は、未硬化の尿素樹脂初期縮合
物を含有する反応液の乾燥前、ゼラチン粉末との混合
前、或いは、本発明の成形材料の成形前(それぞれ、図
1の工程図参照)のいずれの段階で添加してもよく、或
いは、前記複数の段階で小分けして添加しても構わな
い。但し、どの段階で硬化剤が添加されたとしても、一
定以上の加熱を受けるまで、未硬化の尿素樹脂初期縮合
物のままである。
The urea resin precondensate undergoes a slight crosslinking reaction only by heating during molding, but the reaction rate is extremely slow. Therefore, a curing agent, which is an accelerator for the crosslinking reaction, is usually added. Such a curing agent may be used before drying the reaction solution containing the uncured urea resin precondensate, before mixing with the gelatin powder, or before molding the molding material of the present invention (each shown in the process diagram of FIG. 1). It may be added at any stage, or may be added in small portions at the plurality of stages. However, no matter what stage the curing agent is added, the uncured urea resin initial condensate remains until it is heated to a certain level or more.

【0014】上記のように、水溶性可塑剤を含有するゼ
ラチン水溶液、または、未硬化の尿素樹脂初期縮合物を
含有する反応液を乾燥させる態様としては、ゼラチン自
体や未硬化の尿素樹脂初期縮合物自体を変性させない条
件であればよく、例えば温風乾燥(40℃程度)、凍結
乾燥、真空乾燥、噴霧乾燥などを適用することができ
る。乾燥により得られたいずれの粉末も、成形体の使用
目的に応じた粒径のものが用いられる。因みに、各粉末
の粒経が小さいほど表面の平滑な成形品が得られ、大き
いほど表面の粗い成形品が得られる。尚、上記の乾燥に
より塊状の乾固体が得られた場合は、適宜の粉砕機で粉
砕して篩分けし、所望する粒径の粉末を得るようにすれ
ばよい。
As described above, the gelatin aqueous solution containing the water-soluble plasticizer or the reaction solution containing the uncured urea resin precondensate may be dried by using gelatin itself or the uncured urea resin precondensate. Any condition may be used as long as the material itself is not denatured, and for example, hot air drying (about 40 ° C.), freeze drying, vacuum drying, spray drying and the like can be applied. Any powder obtained by drying has a particle size according to the purpose of use of the molded article. Incidentally, the smaller the particle size of each powder is, the more a molded product having a smooth surface is obtained, and the larger the size is, the more a molded product having a rough surface is obtained. When a lump of dry solid is obtained by the above drying, it may be pulverized by a suitable pulverizer and sieved to obtain a powder having a desired particle size.

【0015】ところで、一般に尿素とホルムアルデヒド
は、下記(1)式の付加反応により水溶性の尿素樹脂初
期縮合物(NH2CONHCH2OH)となる。この尿素樹脂初期縮
合物を成形時などに加熱すると、(2)式の縮合反応に
よって水不溶性の硬化物となる。 NH2CONH2 + HCHO → NH2CONHCH2OH (1) NH2CONHCH2OH + NH2CONH2 → NH2CONHCH2NHCONH2 + H2O (2)
Generally, urea and formaldehyde are converted into a water-soluble urea resin precondensate (NH 2 CONHCH 2 OH) by the addition reaction of the following formula (1). When this urea resin initial condensate is heated during molding or the like, a water-insoluble cured product is obtained by the condensation reaction of the formula (2). NH 2 CONH 2 + HCHO → NH 2 CONHCH 2 OH (1) NH 2 CONHCH 2 OH + NH 2 CONH 2 → NH 2 CONHCH 2 NHCONH 2 + H 2 O (2)

【0016】一方、ゼラチンは下記の(3)式のように
ホルムアルデヒドによって側鎖アミノ基がメチロール化
され、これとは別のアミノ基が(4)式のように縮合反
応して架橋することが知られている。ゼラチンと尿素樹
脂初期縮合物を含む成形材料においては、尿素樹脂初期
縮合物中のメチロール基が前述した(2)の反応だけで
なく、ゼラチンの側鎖アミノ基との間で(5)式のよう
な架橋反応を起こすと想起される。これにより、ゼラチ
ンに耐水性が付与されて成形材料の複合化が完遂し、所
期の成形体が得られるのである。 gelatin-NH2 + HCHO → gelatin-NHCH2OH (3) gelatin-NHCH2OH + NH2-gelatin → gelatin-NHCH2NH-gelatin + H2O (4) NH2CONHCH2OH + NH2-gelatin → NH2CONHCH2NH-gelatin + H2O (5) 尚、(3)〜(5)式中で、「gelatin-」,「-gelatin」
は、ゼラチン分子またはゼラチン誘導体の基本骨格を示
している。この場合、ゼラチンと尿素樹脂初期縮合物の
配合比を変えることにより、最終的に得られる成形体の
生分解性と吸水性が調整される。ここでいう吸水性と
は、液体である水を吸収して保水する吸水的な性質のみ
ならず、気体である水蒸気を吸収したり吸着する吸湿的
な性質をも含む。
On the other hand, in gelatin, a side chain amino group is converted into methylol by formaldehyde as shown in the following formula (3), and another amino group is crosslinked by a condensation reaction as shown in the following formula (4). Are known. In a molding material containing gelatin and a urea resin precondensate, the methylol group in the urea resin precondensate not only reacts with the above-mentioned reaction (2) but also reacts with the side chain amino group of gelatin according to the formula (5). It is recalled that such a cross-linking reaction occurs. As a result, the gelatin is imparted with water resistance, and the compounding of the molding material is completed, whereby the desired molded article is obtained. gelatin-NH 2 + HCHO → gelatin-NHCH 2 OH (3) gelatin-NHCH 2 OH + NH 2 -gelatin → gelatin-NHCH 2 NH-gelatin + H 2 O (4) NH 2 CONHCH 2 OH + NH 2 -gelatin → NH 2 CONHCH 2 NH-gelatin + H 2 O (5) In the formulas (3) to (5), “gelatin-” and “-gelatin”
Indicates a basic skeleton of a gelatin molecule or a gelatin derivative. In this case, by changing the mixing ratio of the gelatin and the urea resin precondensate, the biodegradability and water absorption of the finally obtained molded product are adjusted. The term “water absorption” used herein includes not only a water-absorbing property of absorbing and retaining liquid water, but also a moisture-absorbing property of absorbing and adsorbing gaseous water vapor.

【0017】引続き、図1の工程図において、上記のよ
うにして得られたゼラチン粉末と尿素樹脂初期縮合物の
粉末を混合すると、本発明に係る粉状の成形材料が得ら
れる。ここで、ゼラチン粉末100重量部に対する尿素
樹脂初期縮合物の粉末の配合比は200〜10重量部と
するのが良く、より好ましくは160〜20重量部とし
たい。尿素樹脂初期縮合物の粉末の配合比が10重量部
を下回ると成形体の耐水性が悪くなる一方、200重量
部を上回ると成形体の生分解性および吸水性がいずれも
悪くなる。
Subsequently, in the process diagram of FIG. 1, when the gelatin powder obtained as described above and the powder of the urea resin precondensate are mixed, the powdery molding material according to the present invention is obtained. Here, the compounding ratio of the urea resin precondensate powder to 100 parts by weight of gelatin powder is preferably 200 to 10 parts by weight, more preferably 160 to 20 parts by weight. If the mixing ratio of the powder of the urea resin precondensate is less than 10 parts by weight, the water resistance of the molded body is deteriorated, while if it exceeds 200 parts by weight, both the biodegradability and the water absorption of the molded body are deteriorated.

【0018】上記した粉状の成形材料を圧縮成形、トラ
ンスファー成形、あるいは射出成形などの成形法で加圧
加熱成形することにより、尿素樹脂初期縮合物のメチロ
ール基とゼラチンの側鎖アミノ基が反応して架橋し
((5)式参照)、水不溶性硬化物である成形体とな
る。成形時の加圧加熱条件は成形法によって異なり、特
に限定されないが、本発明ではゼラチンの熱変性を抑制
するために温度130〜160℃、圧力10〜20Mp
aとすることが望ましい。かかる成形にあたっては、ゼ
ラチン粉末と尿素樹脂初期縮合物の粉末の混合物に、必
要に応じて離形剤、着色剤、充填剤、補強剤、滑剤など
の配合剤を添加することができる。
The above-mentioned powdery molding material is pressurized and heated by a molding method such as compression molding, transfer molding or injection molding, whereby the methylol group of the urea resin precondensate and the side chain amino group of gelatin react. (See formula (5)) to form a water-insoluble cured product. The pressure and heating conditions during molding are different depending on the molding method and are not particularly limited. However, in the present invention, in order to suppress thermal denaturation of gelatin, a temperature of 130 to 160 ° C. and a pressure of 10 to 20 Mp.
a is desirable. In such molding, a compounding agent such as a release agent, a coloring agent, a filler, a reinforcing agent, a lubricant, and the like can be added to a mixture of the gelatin powder and the powder of the urea resin precondensate, if necessary.

【0019】[0019]

【実施例】以下、本発明を実施例により具体的に説明す
る。各実施例に用いたゼラチン粉末は以下の方法で調製
した。すなわち、グリセリン20g(ゼラチン100重
量部に対し20重量部)を水100gに添加して20℃
に調整した液に、ゼラチン100gを浸漬し、30分間
放置して膨潤させる。そののち、昇温して60℃に40
分間保ちゼラチンを溶解して水溶液とする。この水溶液
を真空乾燥機内で25℃前後、真空度95%程度の条件
下で乾燥させた後、得られた乾固物を回転刃式粉砕機に
より粉砕し篩で粒径300μm以下に分級して、ゼラチ
ン分子間の網目構造内にグリセリンを含有するゼラチン
粉末を得た。
The present invention will be described below in more detail with reference to examples. Gelatin powder used in each example was prepared by the following method. That is, 20 g of glycerin (20 parts by weight with respect to 100 parts by weight of gelatin) was added to 100 g of water, and the mixture was added at 20 ° C.
Then, 100 g of gelatin is immersed in the liquid prepared as described above and left for 30 minutes to swell. Then, raise the temperature to 60 ° C to 40
Dissolve the gelatin to make an aqueous solution by keeping for a minute. This aqueous solution was dried in a vacuum drier at about 25 ° C. and a degree of vacuum of about 95%, and the obtained dried product was pulverized by a rotary blade pulverizer and classified by a sieve to a particle size of 300 μm or less. Thus, a gelatin powder containing glycerin in a network structure between gelatin molecules was obtained.

【0020】各実施例に用いた尿素樹脂初期縮合物の粉
末は以下の方法で調製した。すなわち、温度計、攪拌
機、還流器を付した三口フラスコに尿素60g、37%
ホルムアルデヒド水溶液122g(尿素:ホルムアルデ
ヒドのモル比=1:1.5)を仕込み、28%アンモニ
ア水で反応系をpH7.5〜8.5に調整し、50℃で
1時間反応させて尿素樹脂初期縮合物を含む反応液を得
た。この反応液を微白色のペースト状になるまで減圧濃
縮した。因みに、反応液を濃縮し過ぎると固化するので
好ましくない。前記の反応液に硬化剤としてイミドジス
ルフォン酸アンモニウム0.3g(尿素100重量部に
対して0.5重量部)を添加した。更に、この液を真空
乾燥機内で25℃前後、真空度95%程度の条件下で乾
燥させた後、得られた乾固物を回転刃式粉砕機により粉
砕し篩で分級して、粒径300μm以下の尿素樹脂初期
縮合物(未硬化物)の粉末を得た。
The powder of the urea resin precondensate used in each example was prepared by the following method. That is, urea 60 g, 37%
122 g of an aqueous formaldehyde solution (molar ratio of urea: formaldehyde = 1: 1.5) was charged, the reaction system was adjusted to pH 7.5 to 8.5 with 28% aqueous ammonia, and reacted at 50 ° C. for 1 hour to initiate the urea resin initial stage. A reaction solution containing a condensate was obtained. The reaction solution was concentrated under reduced pressure until it became a slightly white paste. Incidentally, if the reaction solution is concentrated too much, it is not preferable because it is solidified. 0.3 g (0.5 parts by weight per 100 parts by weight of urea) of ammonium imidodisulfonate was added as a curing agent to the reaction solution. Further, after this liquid was dried in a vacuum dryer at about 25 ° C. and a degree of vacuum of about 95%, the obtained dried product was pulverized by a rotary blade pulverizer and classified by a sieve to obtain a particle size. A powder of a urea resin precondensate (uncured product) having a size of 300 μm or less was obtained.

【0021】「実施例1.」上記で調製したゼラチン粉
末120gと尿素樹脂初期縮合物の粉末20gとを混合
し、成形材料とした。
Example 1 120 g of the gelatin powder prepared above and 20 g of the urea resin precondensate powder were mixed to obtain a molding material.

【0022】「実施例2.」上記で調製したゼラチン粉
末120gと尿素樹脂初期縮合物の粉末50gとを混合
し、成形材料とした。
Example 2 120 g of the gelatin powder prepared above and 50 g of a powder of the urea resin precondensate were mixed to prepare a molding material.

【0023】「実施例3.」上記で調製したゼラチン粉
末120gと尿素樹脂初期縮合物の粉末100gとを混
合し、成形材料とした。
Example 3 120 g of the gelatin powder prepared above and 100 g of the urea resin precondensate powder were mixed to prepare a molding material.

【0024】「実施例4.」上記で調製したゼラチン粉
末120gと尿素樹脂初期縮合物の粉末160gとを混
合し、成形材料とした。
Example 4 120 g of the gelatin powder prepared above and 160 g of the powder of the urea resin precondensate were mixed to obtain a molding material.

【0025】「比較例.」グリセリンを含有しないゼラ
チン粉末100g、尿素樹脂初期縮合物の粉末50g、
および、グリセリン20gを混合し、成形材料とした。
"Comparative Example" 100 g of a gelatin powder containing no glycerin, 50 g of a powder of a urea resin precondensate,
And 20 g of glycerin was mixed to obtain a molding material.

【0026】そこで、これまで述べた実施例1〜4の成
形材料を平型上におき、それぞれ温度140℃、圧力1
5MPaで10分間プレスすることにより、直径40m
m、厚さ約2mmで円盤状の成形体(硬化物)を試験片
として得、吸湿度、吸水度、および、生分解性に関する
評価を行った。
Therefore, the molding materials of Examples 1 to 4 described above were placed on a flat mold, and the temperature was 140 ° C. and the pressure was 1
40m diameter by pressing at 5MPa for 10 minutes
A disk-shaped molded product (cured product) having a thickness of about 2 mm and a thickness of about 2 mm was obtained as a test piece, and was evaluated for moisture absorption, water absorption, and biodegradability.

【0027】「吸湿度」は、温度35℃、相対湿度85
%の条件下に実施例1〜4の各試験片を96時間放置し
たときの、各試験片に含まれる水分重量を計量し、これ
を乾燥試験片の重量に対する百分率で表した。そして、
「吸水度」は、温度25℃の水に実施例1〜4の各試験
片を96時間浸漬したときの、各試験片に含まれる水分
重量を計量し、これを乾燥試験片の重量に対する百分率
で表した。これらの結果を以下の表1、および図2のグ
ラフに示す。
"Humidity absorption" means a temperature of 35 ° C. and a relative humidity of 85.
%, The weight of water contained in each test piece when each of the test pieces of Examples 1 to 4 was allowed to stand for 96 hours was expressed as a percentage of the weight of the dry test piece. And
"Water absorbency" was measured by weighing the water content of each test piece when the test pieces of Examples 1 to 4 were immersed in water at a temperature of 25 ° C for 96 hours, and weighing the percentage of the weight of the dry test piece. It was expressed by. These results are shown in Table 1 below and the graph of FIG.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例1〜4に関する試験結果から、ゼラ
チン粉末に対する尿素樹脂初期縮合物の粉末の配合比を
変えることにより、用途に応じた吸湿・吸水性を調整可
能であることが判る。
From the test results of Examples 1 to 4, it can be seen that by changing the compounding ratio of the urea resin precondensate powder to the gelatin powder, the moisture absorption and water absorption according to the intended use can be adjusted.

【0030】それに対し、比較例については、成形材料
調製時に加えたグリセリンが成形材料の表面に留まった
ままで粉末内部に浸透しなかったため、成形することが
できず、型表面がグリセリンにより汚染されてベトつい
た。
On the other hand, in the comparative example, the glycerin added during the preparation of the molding material did not penetrate into the powder while remaining on the surface of the molding material, so that molding was not possible, and the mold surface was contaminated with glycerin. It was sticky.

【0031】一方、「生分解性」は、土壌の表面下10
cmに実施例1〜4の各試験片を埋め、3ヶ月経過後に
各試験片の状態変化を観察した。その結果、実施例1の
試験片は完全に分解消失し、実施例2の試験片は褐色に
変色して小片に分解するとともに厚さが1/4以下にな
っていた。実施例3の試験片は褐色(部分的に紫色)に
変色して小片に分解するとともに厚さが1/2以下にな
っていた。実施例4の試験片は原形を保っていたが、微
生物の繁殖による色素の沈着が認められた。
On the other hand, “biodegradable” means that the “
The test pieces of Examples 1 to 4 were buried in cm, and the state change of each test piece was observed after 3 months. As a result, the test piece of Example 1 was completely decomposed and disappeared, and the test piece of Example 2 was discolored to brown, decomposed into small pieces, and had a thickness of 1/4 or less. The test piece of Example 3 turned brown (partially purple), decomposed into small pieces, and had a thickness of 以下 or less. The test piece of Example 4 retained its original shape, but pigmentation due to propagation of microorganisms was observed.

【0032】[0032]

【発明の効果】以上詳述したように、本発明に係る成形
材料は、水溶性可塑剤をゼラチン分子間の網目構造内に
含有するゼラチン粉末と、尿素樹脂初期縮合物の粉末と
を含む粉体であるので、取扱いが容易である。また、こ
の成形材料から得られる成形体の物性はゼラチン粉末と
尿素樹脂初期縮合物の粉末との混合比率により決められ
るため、成形体の諸性質を容易に調整することができ
る。ゼラチンは粉末として取り扱われるため、ゲル化防
止のための保温を必要としない。また、尿素樹脂初期縮
合物の粉末には未反応のホルムアルデヒドが残っている
が、粉末同士の混合なのでゼラチンと尿素樹脂初期縮合
物の架橋反応はほとんど起こらない。従って、従来技術
のような尿素樹脂初期縮合物反応液の濃縮・再希釈の繰
り返しを必要としない。更には、従来技術のように希薄
なゼラチン水溶液に尿素樹脂初期縮合物を混合しなけれ
ばならないといったことがないから、尿素樹脂初期縮合
物に対するゼラチンの添加比率を高くすることができ、
ゼラチンリッチな成形体を工業的に得ることができる。
無論、本発明の成形材料から得られた成形体は、使用に
支障のない一定以上の耐水性を有しているとともに生分
解性を備えており、且つ、一層簡便な方法で吸水性の性
能変更調整が可能である。かかる特性を利用することに
より、吸湿体、吸水体、農園芸保水材、シーリング材、
養生材などへの利用が大いに期待できる。
As described above in detail, the molding material according to the present invention is a powder containing a gelatin powder containing a water-soluble plasticizer in a network structure between gelatin molecules and a powder of a urea resin precondensate. Since it is a body, it is easy to handle. Further, since the physical properties of a molded article obtained from this molding material are determined by the mixing ratio of the gelatin powder and the powder of the urea resin precondensate, various properties of the molded article can be easily adjusted. Gelatin is handled as a powder and does not require heat retention to prevent gelation. Although unreacted formaldehyde remains in the powder of the urea resin precondensate, the cross-linking reaction between gelatin and the urea resin precondensate hardly occurs because the powders are mixed. Therefore, it is not necessary to repeat the concentration and re-dilution of the urea resin precondensate reaction liquid as in the prior art. Furthermore, since it is not necessary to mix the urea resin precondensate with a dilute aqueous gelatin solution as in the prior art, the addition ratio of gelatin to the urea resin precondensate can be increased,
Gelatin-rich molded articles can be obtained industrially.
Of course, the molded article obtained from the molding material of the present invention has not less than a certain level of water resistance that does not hinder use, has biodegradability, and has a simpler method for absorbing water. Changes can be adjusted. By utilizing such properties, moisture absorbent, water absorbent, agricultural and horticultural water retention material, sealing material,
It can be greatly expected to be used for curing materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る成形材料の製造方法を説明するた
めの工程図である。
FIG. 1 is a process chart for explaining a molding material manufacturing method according to the present invention.

【図2】本発明の各実施例に係る成形材料で成形した吸
水性組成物試験片の吸湿度および吸水度を表したグラフ
である。
FIG. 2 is a graph showing moisture absorption and water absorption of a water-absorbing composition test piece molded from a molding material according to each example of the present invention.

【図3】従来技術に係る成形材料の製造方法を説明する
ための工程図である。
FIG. 3 is a process chart for explaining a method of manufacturing a molding material according to a conventional technique.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ゼラチンおよび水溶性可塑剤が溶解した
水溶液を乾燥させて得られる水溶性可塑剤含有のゼラチ
ン粉末と、尿素とホルムアルデヒドとの反応液を乾燥さ
せて得られる尿素樹脂初期縮合物の粉末とを含んでいる
ことを特徴とする成形材料。
1. A water-soluble plasticizer-containing gelatin powder obtained by drying an aqueous solution in which gelatin and a water-soluble plasticizer are dissolved, and a urea resin precondensate obtained by drying a reaction solution of urea and formaldehyde. And a powder.
JP2000388017A 2000-12-21 2000-12-21 Molding material Pending JP2002188011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000388017A JP2002188011A (en) 2000-12-21 2000-12-21 Molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000388017A JP2002188011A (en) 2000-12-21 2000-12-21 Molding material

Publications (1)

Publication Number Publication Date
JP2002188011A true JP2002188011A (en) 2002-07-05

Family

ID=18854830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000388017A Pending JP2002188011A (en) 2000-12-21 2000-12-21 Molding material

Country Status (1)

Country Link
JP (1) JP2002188011A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019123955A (en) * 2018-01-15 2019-07-25 日本バイリーン株式会社 Gelatin solution, spinning dope made of the gelatin solution, method for producing fiber assembly using the spinning dope, and method for producing film and composite body using the gelatin solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019123955A (en) * 2018-01-15 2019-07-25 日本バイリーン株式会社 Gelatin solution, spinning dope made of the gelatin solution, method for producing fiber assembly using the spinning dope, and method for producing film and composite body using the gelatin solution

Similar Documents

Publication Publication Date Title
JP4302318B2 (en) Biodegradable thermoplastic composition based on protein and starch
US6379446B1 (en) Methods for dispersing fibers within aqueous compositions
FI58044C (en) FOERFARANDE FOER FRAMSTAELLNING AV FORMPRODUKTER SPECIELLT SLANGFOLIER FOER FOERPACKNING AV KORVPRODUKTER OCH I FOERFARANDET ANVAENDBAR FORMMASSA
CN106883430A (en) A kind of preparation method of vegetable protein composite aquogel
EP1176174A1 (en) A degradable material, container or packaging material made of same, and method of forming same
JP2002188011A (en) Molding material
KR101655299B1 (en) Methods for manufacturing carboxyalkyl starch
JP3317624B2 (en) Method for producing biodegradable composite material
JP2001207018A (en) Water absorbing composition and method for manufacturing the same
JP2003292554A (en) Biodegradable compound, biodegradable composition and method for molding the same
JPH03131636A (en) New composite material and production thereof
EP3315536B1 (en) Biodegradable polymeric derivatives
JP3046105B2 (en) Chitosan-plant fiber composite and method for preparing the same
CN1314428A (en) Method for producing water-keeping gel
CN109233682A (en) A kind of adhesive tape strength adhesive
CN111378201B (en) Preparation method of environment-friendly high-water-absorption water-retention material
CN115250870B (en) Consolidated plant ecological composite material and preparation method thereof
AU756668B2 (en) Substantially water-insoluble matrix containing bioactive substances for slow release
US2359166A (en) Plastic composition and process for preparing the same
NL1011143C2 (en) Biodegradable moldings.
WO2015097036A1 (en) Polysaccharide hydrogels
JPH05239244A (en) Method for waterproofing of biodegradable material
JP2003105130A (en) Biodegradable composition and molding method therefor
Song Synthesis, Characterization and Applications of Hydrogels from Renewable Resources Based on Soy Protein Macromer and Poly (Acrylic Acid)
JPH10287754A (en) Film and sheet and their production