JPH03131636A - New composite material and production thereof - Google Patents

New composite material and production thereof

Info

Publication number
JPH03131636A
JPH03131636A JP26908889A JP26908889A JPH03131636A JP H03131636 A JPH03131636 A JP H03131636A JP 26908889 A JP26908889 A JP 26908889A JP 26908889 A JP26908889 A JP 26908889A JP H03131636 A JPH03131636 A JP H03131636A
Authority
JP
Japan
Prior art keywords
composite material
parts
protein
film
fine cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26908889A
Other languages
Japanese (ja)
Other versions
JPH06104759B2 (en
Inventor
Masashi Nishiyama
西山 昌史
Jun Hosokawa
細川 純
Kazutoshi Yoshihara
一年 吉原
Takamasa Kubo
久保 隆昌
Kunio Kaneoka
金岡 邦夫
Kazuo Kondo
和夫 近藤
Kakushi Maruyama
丸山 覚志
Kenji Tateishi
健二 立石
Akihiko Ueda
彰彦 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Okura Industrial Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Okura Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Okura Industrial Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP1269088A priority Critical patent/JPH06104759B2/en
Publication of JPH03131636A publication Critical patent/JPH03131636A/en
Publication of JPH06104759B2 publication Critical patent/JPH06104759B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a composite material useful as packaging film, agricultural and horticultural film, materials, molding tray, having excellent strength, decomposable with microorganisms in soil, by blending fine cellulosic fibers with an aqueous solution of protein and drying. CONSTITUTION:Fine cellulosic fibers (preferably fibers having <=1,000mu length and <=30mu diameter) are mixed with an aqueous solution of a protein (e.g. casein, gluten, soybean protein, gelatin) preferably at 50-160 deg.C and dried to give the composite material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は優れた強度を有するとともに土壌中の微生物に
より分解可能な新規な複合材料に関するものであり、包
装用、農園芸用のフィルム及び資材、成形トレー等の分
野で有用である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a novel composite material that has excellent strength and can be decomposed by microorganisms in soil, and is suitable for use in films and materials for packaging, agriculture and horticulture. , molded trays, etc.

〔従来の技術] 従来よりセルロース、澱粉、蛋白質、キトサン等の天然
物を素材とした成形体が数多く知られている。しかし、
これらは一般のプラスチックに比べて強度が弱く、また
水中で溶解したり、湿潤状態での強度が極めて弱い等の
問題点を有している。
[Prior Art] Many molded bodies made from natural products such as cellulose, starch, protein, and chitosan have been known. but,
These have lower strength than general plastics, and also have problems such as dissolving in water and extremely low strength in wet conditions.

これらの問題点を改良するために、例えば、澱粉を用い
る成形体の場合はホルムアルデヒド等の架橋剤を反応さ
せたり、蛋白質を用いる成形体の場合は・イソシアネー
トやジメチロール尿素等の架橋剤を反応させ、またキト
サンを用いる成形体の場合はアルカリ固定する等の煩雑
な操作が行われている。
In order to improve these problems, for example, in the case of a molded article using starch, a cross-linking agent such as formaldehyde is reacted, and in the case of a molded article using protein, a cross-linking agent such as isocyanate or dimethylol urea is reacted. In addition, in the case of a molded article using chitosan, complicated operations such as alkali fixation are performed.

一方、近年プラスチック公害が大きな問題となり、天然
の崩壊サイクルに組み込まれるようなプラスチックの開
発が渇望されている。
On the other hand, plastic pollution has become a major problem in recent years, and there is a strong desire to develop plastics that can be incorporated into the natural decay cycle.

〔発明が解決しようとする問題点] 本発明は天然物を素材とした成形体に見られる、水中や
湿潤状態でその形状や強度を保てないという問題点を簡
単な方法で解決するとともに、使用後、土中においてす
みやかに分解するフィルム成形可能な無公害の成形材料
を提供するものである。
[Problems to be Solved by the Invention] The present invention solves, in a simple manner, the problem that molded bodies made of natural products cannot maintain their shape and strength in water or in wet conditions. The present invention provides a pollution-free molding material that can be formed into a film that quickly decomposes in the soil after use.

〔問題点を解決するための手段) 本発明者達は天然物の種々の組合わせについて鋭意検討
を行った結果、微細セルロース繊維と蛋白質がそれぞれ
単独で乾燥した場合、水中や湿潤状態で形状や強度を保
てないにもかかわらず、それらを混合し乾燥することに
より初めて複合化して、優れた乾燥強度を有するととも
に、水中でも十分な強度を示すことを見出し本発明に至
った。
[Means for Solving the Problems] As a result of intensive studies on various combinations of natural products, the present inventors found that when fine cellulose fibers and proteins are dried alone, their shape and shape change in water or in a wet state. Despite not being able to maintain strength, the inventors have discovered that by mixing and drying them, they can be composited for the first time, and have excellent dry strength as well as sufficient strength even in water, leading to the present invention.

更に、これらは、土中の微生物によって分解されること
も見出された。
Furthermore, it was also found that these were decomposed by microorganisms in the soil.

本発明において使用されるセルロース繊維としては木材
、藁、綿、麻、竹、バガス等の植物から得られるセルロ
ース、ヘミセルロース、リグノセルロース、ペクトセル
ロースや菌が生産するバクテリアセルロース等が挙げら
れる。これらのセルロース繊維は公知の種々の方法で微
細化することができるが、特に微細に叩解されたセルロ
ース繊維が好ましく用いられる。
Examples of cellulose fibers used in the present invention include cellulose, hemicellulose, lignocellulose, and pectocellulose obtained from plants such as wood, straw, cotton, hemp, bamboo, and bagasse, and bacterial cellulose produced by bacteria. Although these cellulose fibers can be made fine by various known methods, finely beaten cellulose fibers are particularly preferably used.

@細セルロース繊維の大きさについては、長さ3000
μ以下、直径50μ以下であり、特に長さ1000μ以
下、直径30μ以下が好ましい。
@ Regarding the size of fine cellulose fiber, the length is 3000
μ or less, the diameter is 50 μ or less, and particularly preferably the length is 1000 μ or less and the diameter is 30 μ or less.

また、これらの中に上記のものより大きい繊維が一部混
じっていてもさしつかえない。
Moreover, there is no problem even if some fibers larger than those mentioned above are mixed in these.

本発明において使用される蛋白質とL7てはカゼイン、
アルブブン、グルテン、大豆蛋白、ゼラチン、膠等、各
種の動植物体や微生物から分離または濃縮して得られる
ものが挙げられる。これらは単独または2種類以上混合
して使用することができる。
The protein used in the present invention and L7 are casein,
Examples include those obtained by separating or concentrating from various animals, plants, and microorganisms, such as albumin, gluten, soybean protein, gelatin, and glue. These can be used alone or in combination of two or more.

本発明においては、成形材料に可撓性を付与する目的で
可塑剤が使用される。使用される可塑剤としては水溶性
、または親水性の可塑剤であれば特に制限はないが、グ
リセリン、ソルビトール、トリメチロールプロパン、エ
チレングリコール、プロピレングリコール、ジエチレン
グリコール、ジプロピレングリコール、ポリエチレング
リコール、ポリプロピレングリコール等の多価アルコー
ル類が好ましく用いられる。
In the present invention, a plasticizer is used for the purpose of imparting flexibility to the molding material. The plasticizer used is not particularly limited as long as it is water-soluble or hydrophilic, but examples include glycerin, sorbitol, trimethylolpropane, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, and polypropylene glycol. Polyhydric alcohols such as the following are preferably used.

本発明の複合材料の製造方法を示すと、まず蛋白質を該
蛋白質の溶解に適したpHに調整した水に溶解する。得
られた蛋白質の水溶液を微細セルロース繊維と混合し、
更に可塑剤を使用する場合はこれに可塑剤を混合する。
In the method for producing the composite material of the present invention, first, a protein is dissolved in water whose pH is adjusted to be suitable for dissolving the protein. The resulting aqueous protein solution is mixed with fine cellulose fibers,
Furthermore, if a plasticizer is used, the plasticizer is mixed therein.

尚、混合の順序はこれに限定されるものではない。この
混合物から水を蒸発させて乾燥すると本発明の微細セル
ロースと蛋白質が複合化した新規な複合材料が得られる
のである。
Note that the mixing order is not limited to this. By evaporating water from this mixture and drying it, the novel composite material of the present invention in which fine cellulose and protein are combined can be obtained.

尚、複合化の機構については詳細は明らかではないが、
セルロース中の水酸基やカルボキシル基と、蛋白質中の
アミノ基やカルボキシル基等が乾燥の間にお互いに化学
結合を生じ複合化していることが推測される。
Although the details of the compounding mechanism are not clear,
It is presumed that the hydroxyl groups and carboxyl groups in cellulose and the amino groups and carboxyl groups in proteins form chemical bonds with each other during drying and form a complex.

乾燥温度としては室温〜200°C1特に好ましくは5
0〜160°Cが用いられる。
The drying temperature is room temperature to 200°C, particularly preferably 5°C.
0-160°C is used.

面、上記の混合物を調整する際に、必要に応じて着色剤
、充填剤、補強剤等の添加剤を添加することも可能であ
る。
On the other hand, when preparing the above mixture, it is also possible to add additives such as colorants, fillers, reinforcing agents, etc., if necessary.

〔作用] 本発明において用いられる微細セルロース繊維及び蛋白
質はそれぞれ単独で成形した場合、水中や湿潤状態で溶
解したり、形状を保っても強度が非常に弱いものしか得
られないが、これらを混合して乾燥することにより複合
化し、水中でも形状を保ら、十分な湿潤強度を示す。ま
た天然の原料を使用しているため土中の微生物により容
易に分解される。
[Function] When the fine cellulose fibers and protein used in the present invention are molded individually, they dissolve in water or in a wet state, and even if they keep their shape, they have only very weak strength. However, when they are mixed together, It forms a composite by drying, maintains its shape even in water, and exhibits sufficient wet strength. Also, since it uses natural raw materials, it is easily decomposed by microorganisms in the soil.

〔実施例〕〔Example〕

次ムこ本発明を実施例、比較例によって更に詳細に説明
する。これらの例において、部は全て重量部を表わす。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. In these examples, all parts refer to parts by weight.

また引張強度はASTM  D88281に準じて測定
した。湿潤引張強度は試料を23゛Cの水に24時浸漬
後、取出してすぐ測定した。微生物分解性試験は土壌を
入れたポリ容器に試料を埋め、これを23゛C195〜
100%RHで2力月間放置後試料を掘り出し、その分
解状態を観察して行った。
Moreover, the tensile strength was measured according to ASTM D88281. Wet tensile strength was measured immediately after the sample was immersed in water at 23°C for 24 hours and then taken out. In the microbial decomposition test, the sample was buried in a plastic container containing soil, and the sample was heated at 23°C195~
After being left at 100% RH for 2 months, the sample was dug out and its state of decomposition was observed.

実施例1 針葉樹漂白バルブを叩解して得た微細セルロース繊維1
00部の水分散液(濃度4wt%)をゼラチン10部の
水溶液(濃度5−1%、pH6)と混合する。これをガ
ラス板上に流延し70°Cで15時間送風乾燥して厚さ
60〜70μで半透明のフィルムを得た。
Example 1 Fine cellulose fiber 1 obtained by beating softwood bleached bulb
00 parts of an aqueous dispersion (concentration 4 wt%) are mixed with an aqueous solution of 10 parts gelatin (concentration 5-1%, pH 6). This was cast onto a glass plate and dried with air at 70° C. for 15 hours to obtain a translucent film with a thickness of 60 to 70 μm.

得られたフィルムは乾燥時の引張強度1102kg /
 ci 、湿潤時の引張強度104 kg/crAであ
り、微生物分解性試験では原形を留めない程度に分解さ
れていた。
The resulting film has a dry tensile strength of 1102 kg/
ci and a wet tensile strength of 104 kg/crA, and in the microbial decomposition test, it was decomposed to such an extent that it did not retain its original shape.

実施例2〜6 針葉樹漂白バルブを叩解して得た微細セルロース繊維1
00部の水分散液(濃度4wt%)を所定量のゼラチン
の水溶液(濃度5wt%、pH6)、及びグリセリン5
0部と混合し、実施例1と同様に製膜してフィルムを得
た。
Examples 2-6 Fine cellulose fibers 1 obtained by beating coniferous bleached bulbs
00 parts of an aqueous dispersion (concentration 4 wt%), a predetermined amount of gelatin aqueous solution (concentration 5 wt%, pH 6), and glycerin 5
0 parts and formed into a film in the same manner as in Example 1.

得られたフィルムの引張強度を表1に示す。Table 1 shows the tensile strength of the obtained film.

また微生物分解試験ではいずれのフィルムも原形を留め
ない程度に分解されていた。
Furthermore, in the microbial decomposition test, all films were decomposed to such an extent that their original shapes were not retained.

比較例1 針葉樹漂白バルブを叩解して得た微細セルロース繊維1
00部の水分散液(濃度4wt%)とグリセリン50部
とを混合し、実施例1と同様に製膜してフィルムを得た
Comparative Example 1 Fine cellulose fiber 1 obtained by beating softwood bleached bulb
00 parts of an aqueous dispersion (concentration: 4 wt%) and 50 parts of glycerin were mixed and formed into a film in the same manner as in Example 1.

得られたフィルムの引張強度を表1に示す。Table 1 shows the tensile strength of the obtained film.

比較例2 ゼラチン100部の水溶液(濃度5wt%、pH6)と
グリセリン50部とを混合し、実施例1と同様に製膜し
てフィルムを得た。
Comparative Example 2 An aqueous solution of 100 parts of gelatin (concentration: 5 wt %, pH 6) and 50 parts of glycerin were mixed and formed into a film in the same manner as in Example 1.

得られたフィルムの引張強度を表1に示す。Table 1 shows the tensile strength of the obtained film.

実施例7 針葉樹漂白バルブを叩解して得た微細セルロース繊維1
00部の水分散液(濃度4wt%)をπ型カゼインIO
部の水溶液(濃度3wt%、pH8)、及びグリセリン
50部と混合し、実施例1と同様に製膜してフィルムを
得た。
Example 7 Fine cellulose fiber 1 obtained by beating softwood bleached bulb
00 parts of the aqueous dispersion (concentration 4 wt%) was mixed with π-type casein IO.
of the aqueous solution (concentration: 3 wt %, pH 8) and 50 parts of glycerin, and formed into a film in the same manner as in Example 1.

得られたフィルムは、乾燥時の引張強度1003 kg
 / cIIff、湿潤時の引張強度104kg/CT
Aであり、微生物分解性試験では原形を留めない程度に
分解されていた。
The resulting film has a dry tensile strength of 1003 kg
/ cIIff, wet tensile strength 104kg/CT
A, and in the microbial decomposition test, it was decomposed to such an extent that it did not retain its original shape.

比較例3 孔型カゼイン100部の水溶M(濃度3wt%。Comparative example 3 100 parts of pore casein dissolved in water M (concentration 3 wt%).

p H8)とグリセリン50部とを混合し、実施例1と
同様に製膜してフィルムを得た。
pH 8) and 50 parts of glycerin were mixed and formed into a film in the same manner as in Example 1.

得られたフィルムは乾燥時の引張強度167kg、/ 
cutであったが、湿潤時の引張強度は弱くて測定不可
能であ、った。
The resulting film had a dry tensile strength of 167 kg;
However, the tensile strength when wet was so weak that it could not be measured.

実施例8 針葉樹漂白バルブを叩解して得た微細セルロース繊維1
00部の水分散液(a度4wt%)を乳製カゼイン20
部の水溶液(濃度3wt%、pH8)、及びグリセリン
50部と混合する。これをガラス板上に流延し、70°
Cで5時間、ついで】60°Cで1時間送風乾燥して厚
さ60〜70μで半透明のフィルムを得た。
Example 8 Fine cellulose fiber 1 obtained by beating softwood bleached bulb
00 parts of an aqueous dispersion (a degree 4 wt%) was mixed with 20 parts of dairy casein.
of an aqueous solution (concentration: 3 wt%, pH 8) and 50 parts of glycerin. This was cast onto a glass plate and 70°
C for 5 hours, and then dried with air at 60°C for 1 hour to obtain a translucent film with a thickness of 60 to 70 μm.

得られたフィルムは乾燥時の引張強度861kg// 
ci、湿潤時の引張強度215 kg/cfflであり
、微生物分解性試験では原形を留めない程度に分解され
ていた。
The obtained film has a dry tensile strength of 861 kg//
ci, and the wet tensile strength was 215 kg/cffl, and in the microbial decomposition test, it was decomposed to such an extent that it did not retain its original shape.

実施例9 針葉樹漂白バルブを叩解して得た微細セルロース繊維1
00部の水分散液(濃度4wt%)を大豆蛋白10部の
水溶液(濃度3wt%、pH8)、及びエチレングリコ
ール100部とを混合する。これをガラス板上に流延し
、70°Cで5時間、ついで130°Cで1時間送風乾
燥して厚さ60〜70μで半透明のフィルムを得た。
Example 9 Fine cellulose fiber 1 obtained by beating softwood bleached bulb
00 parts of an aqueous dispersion (concentration: 4 wt%) is mixed with an aqueous solution of 10 parts of soybean protein (concentration: 3 wt%, pH 8), and 100 parts of ethylene glycol. This was cast onto a glass plate and dried at 70°C for 5 hours and then at 130°C for 1 hour to obtain a translucent film with a thickness of 60 to 70μ.

得られたフィルムは乾燥時の引張強度952 kg/ 
cod 、湿潤時の引張強度219 kg/cfflで
あり、微生物分解性試験では原形を留めない程度に分解
されていた。
The resulting film had a dry tensile strength of 952 kg/
cod, and the wet tensile strength was 219 kg/cffl, and in the microbial decomposition test, it was decomposed to such an extent that it did not retain its original shape.

〔発明の効果] 本発明により得られるフィルム成形可能な複合材料は優
れた乾燥強度と十分な湿潤強度を有するものであり、ま
た天然物を原料としているため分解された後でも有害物
質を生じないという特徴を有しており、包装用フィルム
、農業用フィルム、成形トレー、苗木鉢等の分野におい
て無公害の成形材料として優れた効果を発揮するもので
ある。
[Effects of the Invention] The film-formable composite material obtained by the present invention has excellent dry strength and sufficient wet strength, and since it is made from natural materials, it does not produce harmful substances even after being decomposed. It has these characteristics and exhibits excellent effects as a non-polluting molding material in fields such as packaging films, agricultural films, molded trays, and seedling pots.

Claims (4)

【特許請求の範囲】[Claims] (1)微細セルロース繊維と蛋白質よりなることを特徴
とする新規な複合材料。
(1) A novel composite material characterized by consisting of fine cellulose fibers and protein.
(2)微細セルロース繊維と蛋白質及び可塑剤よりなる
ことを特徴とする新規な複合材料。
(2) A novel composite material consisting of fine cellulose fibers, proteins, and plasticizers.
(3)微細セルロース繊維と蛋白質水溶液を混合し、乾
燥することを特徴とする新規な複合材料の製造方法。
(3) A method for producing a novel composite material characterized by mixing fine cellulose fibers and an aqueous protein solution and drying the mixture.
(4)微細セルロース繊維と蛋白質水溶液、及び可塑剤
を混合し、乾燥することを特徴とする新規な複合材料の
製造方法。
(4) A method for producing a novel composite material, which comprises mixing fine cellulose fibers, an aqueous protein solution, and a plasticizer, and drying the mixture.
JP1269088A 1989-10-18 1989-10-18 Novel composite material film and manufacturing method thereof Expired - Lifetime JPH06104759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1269088A JPH06104759B2 (en) 1989-10-18 1989-10-18 Novel composite material film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1269088A JPH06104759B2 (en) 1989-10-18 1989-10-18 Novel composite material film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03131636A true JPH03131636A (en) 1991-06-05
JPH06104759B2 JPH06104759B2 (en) 1994-12-21

Family

ID=17467503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1269088A Expired - Lifetime JPH06104759B2 (en) 1989-10-18 1989-10-18 Novel composite material film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH06104759B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510291A (en) * 1991-07-02 1993-01-19 Matsushita Electric Ind Co Ltd Fan and ventilator
EP0593123A1 (en) * 1992-10-16 1994-04-20 Latenstein Zetmeel B.V. Method of preparing a foil or coating on the basis of water insoluble proteins
WO1996014361A1 (en) * 1994-11-03 1996-05-17 Guy Heusquin Biodegradable material for making a variety of articles
WO2001036531A1 (en) * 1999-11-15 2001-05-25 Zaidan-Houjin Ueda Sen-I Kagaku Shinkoukai Molecularly composite polymeric material of fibroin/cellulose and process for producing the same
WO2009075122A1 (en) * 2007-12-13 2009-06-18 Nuclear Engineering, Ltd. Biodegradable film or sheet, method for producing the same and composition for biodegradable film or sheet
GB2459524A (en) * 2007-12-13 2009-10-28 Nuclear Engineering Ltd Biodegradable film or sheet, method for producing the same, and composition for biodegradable film or sheet
JP4574738B1 (en) * 2010-02-15 2010-11-04 株式会社原子力エンジニアリング Biodegradable molded products
WO2019013100A1 (en) * 2017-07-12 2019-01-17 国立大学法人岐阜大学 Composite composition, method for producing same and biosensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834962A (en) * 1971-09-01 1973-05-23
JPS54133549A (en) * 1978-04-10 1979-10-17 Shin Etsu Chem Co Ltd Coating composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834962A (en) * 1971-09-01 1973-05-23
JPS54133549A (en) * 1978-04-10 1979-10-17 Shin Etsu Chem Co Ltd Coating composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510291A (en) * 1991-07-02 1993-01-19 Matsushita Electric Ind Co Ltd Fan and ventilator
EP0593123A1 (en) * 1992-10-16 1994-04-20 Latenstein Zetmeel B.V. Method of preparing a foil or coating on the basis of water insoluble proteins
WO1996014361A1 (en) * 1994-11-03 1996-05-17 Guy Heusquin Biodegradable material for making a variety of articles
WO2001036531A1 (en) * 1999-11-15 2001-05-25 Zaidan-Houjin Ueda Sen-I Kagaku Shinkoukai Molecularly composite polymeric material of fibroin/cellulose and process for producing the same
WO2009075122A1 (en) * 2007-12-13 2009-06-18 Nuclear Engineering, Ltd. Biodegradable film or sheet, method for producing the same and composition for biodegradable film or sheet
GB2459524A (en) * 2007-12-13 2009-10-28 Nuclear Engineering Ltd Biodegradable film or sheet, method for producing the same, and composition for biodegradable film or sheet
GB2459524B (en) * 2007-12-13 2010-03-10 Nuclear Engineering Ltd Biodegradable film or sheet, process for producing the same, and composition for biodegradable film or sheet.
JP4574738B1 (en) * 2010-02-15 2010-11-04 株式会社原子力エンジニアリング Biodegradable molded products
JP2011084709A (en) * 2010-02-15 2011-04-28 Nuclear Engineering Ltd Biodegradable molded article
WO2019013100A1 (en) * 2017-07-12 2019-01-17 国立大学法人岐阜大学 Composite composition, method for producing same and biosensor
JP2019019169A (en) * 2017-07-12 2019-02-07 国立大学法人岐阜大学 Composite composition, method for producing the same, and biosensor

Also Published As

Publication number Publication date
JPH06104759B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
Rafique et al. Chitosan functionalized poly (vinyl alcohol) for prospects biomedical and industrial applications: A review
US6150438A (en) Composite resin composition
KR101458059B1 (en) Chitosan and/or chitin composite having improved mechanical properties, and use thereof
CA2111732A1 (en) Plant cellulose film and process of preparing the same
CA2399954A1 (en) Polymer composition and molded articles produced therefrom
JP2000273264A (en) Biopolymer/polyallylamine complex and its production
JPH02281050A (en) Novel water absorbing complex material and its production
JPH03131636A (en) New composite material and production thereof
US8277718B2 (en) Biodegradable film or sheet, process for producing the same, and composition for biodegradable film or sheet
RU2408621C2 (en) Polymeric composition for moulding biodegradable articles form molten mass
JPH026689A (en) Novel composite sheet and production thereof
JPH05148387A (en) Flexible biodegradable film or sheet, and its preparation
JP3317624B2 (en) Method for producing biodegradable composite material
CN102558589A (en) Preparation method of formaldehyde cross-linked gelatin/polyvinyl alcohol(PVA) composite membrane
WO2016090511A1 (en) Reactive extrusion process for the production of a bioplastic material with bioactive properties, from compostable materials from renewable sources and fossils, and resulting bioplastic material
CN109503786A (en) A kind of Lauxite and preparation method thereof and degradable mulch prepared therefrom
JPH0459830A (en) New biodegradative composite material and its production
RU2669865C1 (en) Composition for obtaining biodegradable polymer material and biodegradable polymer material on its basis
JP3092995B2 (en) Chitosan composite porous body and method for preparing the same
JPH0459829A (en) Production of composite material
JP3111216B2 (en) Antibacterial blend mass and method for producing the same
JPH02151639A (en) Polyvinyl alcohol-starch film
JPH06218878A (en) Biodegradable film or sheet having heat sealing property
US997294A (en) Sizing compound.
Sarmah et al. Evaluation of Biodegradable Films from Tapioca Starch

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term