JP2002184413A - Method of manufacturing electrode for phosphoric acid type fuel cell - Google Patents

Method of manufacturing electrode for phosphoric acid type fuel cell

Info

Publication number
JP2002184413A
JP2002184413A JP2000378971A JP2000378971A JP2002184413A JP 2002184413 A JP2002184413 A JP 2002184413A JP 2000378971 A JP2000378971 A JP 2000378971A JP 2000378971 A JP2000378971 A JP 2000378971A JP 2002184413 A JP2002184413 A JP 2002184413A
Authority
JP
Japan
Prior art keywords
fuel cell
slurry
electrode
phosphoric acid
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000378971A
Other languages
Japanese (ja)
Inventor
Masato Hanazawa
真人 花澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000378971A priority Critical patent/JP2002184413A/en
Publication of JP2002184413A publication Critical patent/JP2002184413A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method allowing the low-cost production of an electrode catalyst layer with catalyst particles and water repellent particles highly and uniformly dispersed. SOLUTION: After a catalyst is added to an alkaline solution, consisting of an ammonia water added to a pure water, and dispersed therein and then a fluorine contained resin is added thereto and highly and uniformly dispersed therein, phosphoric acid is added thereto into an acidic form and agglomerated. The obtained agglomerated slurry, arranged on a carbon paper, is sucked at its back, filtered and subjected to pure water cleaning and drying to obtain a fuel cell electrode having an electrode catalyst layer formed on a porous substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料ガスと酸化剤
ガスを導入して電気化学反応により電気エネルギーを得
るりん酸型燃料電池に用いられる電極の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrode used in a phosphoric acid fuel cell in which a fuel gas and an oxidizing gas are introduced to obtain electric energy by an electrochemical reaction.

【0002】[0002]

【従来の技術】図4は、りん酸型燃料電池の電極および
電解液層の構成を模式的に示す部分断面図である。電極
は電解液層を挟んでその両面に配されるが、本図におい
ては、便宜上一方の電極のみ表示されている。図に見ら
れるごとく、電極1は、多孔質カーボン基材3の上に電
極触媒層4を付着して構成されている。この電極触媒層
4は、触媒担体5の表面に貴金属微粒子6を担持した触
媒粒子7をフッ素樹脂等の撥水材粒子8により結着して
形成したものである。また、電解質層2は、りん酸電解
液9をシリコンカーバイト微粒子10からなる電解質保
持層に含浸させたものである。本構成において、電極触
媒層4の内部で多孔質カーボン基材3から送られてきた
反応ガスと電解質層2からのりん酸電解液9とが接触
し、三相界面が形成されて電気化学反応が進行する。電
気化学反応を効率よく進行させるためには、貴金属微粒
子6を担持させた触媒粒子7と撥水材粒子8とをできる
だけ微粒子にすること、及び、電解液9に濡れやすい触
媒粒子7と電解液9に濡れにくい撥水材粒子8をより均
一に分散させて触媒粒子7(固相)と反応ガス(気相)
と電解液9(液相)とが接する三相界面を増大させるこ
とが必要である。
2. Description of the Related Art FIG. 4 is a partial sectional view schematically showing the structure of an electrode and an electrolyte layer of a phosphoric acid fuel cell. Although the electrodes are arranged on both sides of the electrolyte layer, only one of the electrodes is shown in FIG. As shown in the figure, the electrode 1 is configured by attaching an electrode catalyst layer 4 on a porous carbon substrate 3. The electrode catalyst layer 4 is formed by binding catalyst particles 7 carrying noble metal fine particles 6 on the surface of a catalyst carrier 5 with water-repellent particles 8 such as fluororesin. The electrolyte layer 2 is obtained by impregnating a phosphoric acid electrolyte 9 into an electrolyte holding layer composed of silicon carbide fine particles 10. In this configuration, the reaction gas sent from the porous carbon substrate 3 and the phosphoric acid electrolyte 9 from the electrolyte layer 2 come into contact with each other inside the electrode catalyst layer 4 to form a three-phase interface, and the electrochemical reaction occurs. Progresses. In order to make the electrochemical reaction proceed efficiently, the catalyst particles 7 carrying the noble metal fine particles 6 and the water-repellent material particles 8 should be made as fine as possible. The catalyst particles 7 (solid phase) and the reaction gas (gas phase) are dispersed more uniformly with the water-repellent material particles 8 which are hardly wetted by 9.
It is necessary to increase the three-phase interface where the electrolyte and the electrolytic solution 9 (liquid phase) are in contact.

【0003】従来の電極触媒層4の形成方法において
は、界面活性剤を含む水に超音波等を用いて触媒微粒子
7を分散させ、次いで、界面活性剤を使用した撥水材粒
子のディスパージョンを加えて触媒微粒子7と撥水材粒
子8の均一な分散混合状態を得たのち、凝集剤を添加し
て触媒微粒子7と撥水材粒子8とで構成される凝集物を
作製し、この凝集物を多孔質カーボン基材3の上に散
布、塗布したり、あるいは吸引濾過したり、あるいはこ
の凝集物を混練してカレンダーロールで延伸してシート
状に加工する等の方法によって電極触媒層4を形成して
いる。このようにして形成された電極触媒層4は、電極
触媒層としての形態を安定させ、さらに、撥水材の撥水
性を有効に発現させるために撥水材の融点近傍の温度に
おいて熱処理されている。
In the conventional method for forming the electrode catalyst layer 4, the catalyst fine particles 7 are dispersed in water containing a surfactant using ultrasonic waves or the like, and then the dispersion of the water-repellent material particles using the surfactant is performed. Is added to obtain a uniformly dispersed and mixed state of the catalyst fine particles 7 and the water-repellent material particles 8, and then an aggregating agent is added to produce an aggregate composed of the catalyst fine particles 7 and the water-repellent material particles 8. The electrode catalyst layer is formed by spraying and applying the aggregate on the porous carbon substrate 3, or by suction filtration, or by kneading the aggregate and stretching it with a calender roll to form a sheet. 4 are formed. The electrode catalyst layer 4 thus formed is heat-treated at a temperature near the melting point of the water-repellent material in order to stabilize the form as the electrode catalyst layer and to effectively exhibit the water-repellency of the water-repellent material. I have.

【0004】[0004]

【発明が解決しようとする課題】上記のように従来のり
ん酸型燃料電池においては、電極触媒層を作製する際、
触媒粒子と撥水材粒子が工業的に適用できる濃度におい
て、それぞれの粒子径が1μm以下で、かつ良好に分散
・混合した状態を得るために、通常、界面活性剤が用い
られる。
As described above, in the conventional phosphoric acid type fuel cell, when forming the electrode catalyst layer,
In order to obtain a state in which the catalyst particles and the water-repellent material particles have a particle diameter of 1 μm or less and are well dispersed and mixed at a concentration which can be applied industrially, a surfactant is usually used.

【0005】しかしながら、極く一般的なノニオン系界
面活性剤を使用して触媒粒子と撥水材粒子とを混合、分
散し、アルコール系溶媒で凝集させる場合には、分散粒
子同士のゼータ電位に差が生じないので、凝集する粒子
に選択性がなく、撥水性材料粒子同士、あるいは電気伝
導性粒子同士で再凝縮する場合が多い、したがって、分
散が均一であっても凝集により均一性が悪化してしまう
場合がある。
[0005] However, when the catalyst particles and the water-repellent material particles are mixed and dispersed by using a very common nonionic surfactant and are agglomerated with an alcohol-based solvent, the zeta potential of the dispersed particles is reduced. Since there is no difference, the agglomerated particles have no selectivity and are often recondensed between the water-repellent material particles or between the electrically conductive particles. Therefore, even if the dispersion is uniform, the uniformity deteriorates due to the aggregation. In some cases.

【0006】また、界面活性剤を用いる場合には、この
界面活性剤が燃料電池中に残存すると、電気化学反応を
阻害することとなるので、電極製造工程に不活性雰囲気
下での熱処理工程等を設けて、界面活性剤を除去する必
要がある。したがって、界面活性剤を用いると製造工程
の工数が増加し、製造コストが上昇するという難点があ
る。
In the case where a surfactant is used, if the surfactant remains in the fuel cell, the electrochemical reaction is hindered. To remove the surfactant. Therefore, when a surfactant is used, the number of steps in the manufacturing process increases, and there is a problem that the manufacturing cost increases.

【0007】さらに、このような熱処理工程等を設けて
界面活性剤を除去することとしても、完全に除去するこ
とは不可能で、微量の界面活性剤や、界面活性剤が分解
して生じた不純物が製造した電極内に残存する可能性が
高く、また、熱処理工程で界面活性剤を分解した時、触
媒粒子の担体表面を酸化したり、担体表面と反応して担
体表面にカルボニル基や水酸基等の親水性官能基を生じ
る可能性が非常に高い。このような事態が生じると電極
全体が電解液に対して濡れやすい傾向が強くなり、三相
界面への反応ガスの流入が電解液によって阻害され、燃
料電池の特性が低下することとなる。また同時に、電解
液による触媒粒子の浸食、腐食が生じて、発電性能が低
下し、電池の寿命特性の劣化を引き起こすこととなる。
Further, even if such a heat treatment step is provided to remove the surfactant, it is impossible to completely remove the surfactant, and a small amount of the surfactant or the surfactant is generated by decomposition. There is a high possibility that impurities will remain in the manufactured electrode, and when the surfactant is decomposed in the heat treatment step, the surface of the catalyst particles will be oxidized or will react with the surface of the catalyst to form a carbonyl group or hydroxyl group on the surface of the carrier. It is very likely to produce hydrophilic functional groups such as When such a situation occurs, the tendency of the entire electrode to be easily wetted by the electrolytic solution is increased, and the flow of the reaction gas into the three-phase interface is hindered by the electrolytic solution, so that the characteristics of the fuel cell are degraded. At the same time, the catalyst particles are eroded and corroded by the electrolytic solution, so that the power generation performance is reduced and the life characteristics of the battery are deteriorated.

【0008】本発明は、上記のごとき従来技術の問題点
を考慮してなされたもので、本発明の目的は、触媒粒子
と撥水材粒子が高度に均一に分散した電極触媒層が少な
い工数で作製され、低コストで優れた電池特性が得られ
るりん酸型燃料電池用電極の製造方法を提供することに
ある。
The present invention has been made in consideration of the problems of the prior art as described above, and an object of the present invention is to provide an electrode catalyst layer in which catalyst particles and water-repellent particles are highly uniformly dispersed, and that the number of steps is small. It is an object of the present invention to provide a method for producing an electrode for a phosphoric acid type fuel cell, which is manufactured at a low cost and has excellent cell characteristics at low cost.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、触媒粒子と撥水材粒子とを分
散媒中に分散して分散スラリーを作製し、この分散スラ
リーを凝集させて凝集スラリーを作製し、得られた凝集
スラリーを多孔質電極基材に付着し、洗浄、乾燥して触
媒粒子と撥水材粒子とからなる電極触媒層を作製するり
ん酸型燃料電池用電極の製造方法において、 (1)上記の分散媒としてアルカリ性分散媒を用いるこ
ととし、例えば純水にアンモニアを加えた溶液とする。
In order to achieve the above object, in the present invention, a dispersion slurry is prepared by dispersing catalyst particles and water-repellent particles in a dispersion medium, and the dispersion slurry is agglomerated. A phosphoric acid type fuel cell for producing an agglomerated slurry, attaching the obtained agglomerated slurry to a porous electrode substrate, washing and drying to produce an electrode catalyst layer composed of catalyst particles and water-repellent material particles In the method for manufacturing an electrode, (1) an alkaline dispersion medium is used as the dispersion medium, for example, a solution obtained by adding ammonia to pure water.

【0010】(2)また、上記の(1)において、分散
スラリーに酸を加えて酸性とすることにより分散スラリ
ーの凝集を行う。 (3)また、上記の(1)、(2)において、凝集スラ
リーを多孔質電極基材上に配し、背面より吸引して濾過
することにより、あるいは、凝集スラリーを多孔質電極
基材上に塗布することにより,凝集スラリーを多孔質電
極基材へ付着させることとする。
(2) In the above (1), the dispersion slurry is aggregated by adding an acid to the dispersion slurry to make it acidic. (3) Further, in the above (1) and (2), the aggregated slurry is disposed on the porous electrode substrate and suctioned from the back surface and filtered, or the aggregated slurry is placed on the porous electrode substrate. To apply the aggregated slurry to the porous electrode substrate.

【0011】上記(1)のように分散媒をアンモニア等
のアルカリ溶液とすれば、触媒粒子と撥水材粒子、例え
ばフッ素樹脂粒子はともに粒子の表面電荷が負側となり
分散性が高まる。したがって、高度に分散された分散ス
ラリーが得られる。また、上記(2)のごとく、この分
散スラリーに例えばりん酸のごとき酸を加えて酸性とす
れば、触媒粒子の表面電荷を正側に、また撥水材粒子の
表面電荷を負側にすることができる。このように二種類
の粒子の表面電荷をそれぞれ異なった極性をもつものと
すれば、異種類の粒子同士が選択的に凝集するヘテロ凝
集が生じる。したがって、従来のように同種類の粒子同
士が凝集することがなく、触媒粒子と撥水材粒子が高度
に分散した凝集スラリーが得られる。
When the dispersion medium is an alkaline solution such as ammonia as in the above (1), both the catalyst particles and the water-repellent material particles, for example, the fluororesin particles, have negative surface charges, thereby increasing the dispersibility. Therefore, a highly dispersed dispersion slurry is obtained. Further, as described in (2) above, if the dispersion slurry is made acidic by adding an acid such as phosphoric acid, the surface charge of the catalyst particles becomes positive and the surface charge of the water-repellent material particles becomes negative. be able to. When the surface charges of the two types of particles have different polarities, hetero-aggregation occurs in which the different types of particles selectively aggregate. Therefore, unlike the conventional case, the same type of particles are not aggregated, and an aggregated slurry in which the catalyst particles and the water repellent particles are highly dispersed can be obtained.

【0012】したがって、上記(3)のごとき方法によ
ってこの凝集スラリーを多孔質電極基材へ付着させれ
ば、触媒粒子と撥水材粒子が高度に均一に分散した電極
触媒層が得られる。上記(1)〜(3)では、従来の方
法で使用されていた界面活性剤を用いていないので、こ
れを除去するための熱処理工程が不要となり、製作コス
トの低減が可能となる。また界面活性剤の使用に伴って
生じていた残存不純物等による電池特性の低下も回避さ
れる。なお、上記(1)のように分散媒としてアンモニ
ア等のアルカリ溶液を用いれば、りん酸アンモニウム等
が生成される可能性があるが、これらの塩は水溶性で、
溶解度も比較的高いので電極触媒層形成時に水で洗浄す
るだけで容易に除去することができる。
Therefore, if the aggregated slurry is adhered to the porous electrode substrate by the method (3), an electrode catalyst layer in which the catalyst particles and the water-repellent material particles are highly uniformly dispersed can be obtained. In the above (1) to (3), since the surfactant used in the conventional method is not used, a heat treatment step for removing the surfactant is not required, and the manufacturing cost can be reduced. In addition, deterioration of battery characteristics due to residual impurities and the like caused by use of the surfactant is also avoided. If an alkaline solution such as ammonia is used as a dispersion medium as in the above (1), ammonium phosphate or the like may be generated, but these salts are water-soluble and
Since the solubility is relatively high, it can be easily removed only by washing with water when forming the electrode catalyst layer.

【0013】[0013]

【発明の実施の形態】以下、実施例を用いて本発明の製
造方法をより詳しく説明する。図1は、本発明のりん酸
型燃料電池用電極の製造方法の実施例を示すフロー図で
ある。本実施例においては、まず純水 500gに 25 %ア
ンモニア水 10 mlを加えてなるアルカリ性分散媒に触媒
50 gを加え、超音波ホモジナイザーを用いて触媒を分
散させた。次いで、これに撥水材としてフッ素樹脂 40
gを加え、超音波ホモジナイザーを用いて分散させるこ
とにより、触媒粒子とフッ素樹脂粒子が均一に、かつ微
細に分散した分散スラリーを得た。次に、この分散スラ
リーに 105%りん酸 5 ml を加えて酸性とし、混合、凝
縮させ、触媒粒子とフッ素樹脂粒子がヘテロ凝集した凝
集スラリーを得た。引き続いて、この凝集スラリーを多
孔質カーボン基材となるカーボンペーパーの上に配し、
背面より吸引して濾過することによってカーボンペーパ
ーの一面に付着させた。さらに、純水を用いて洗浄し、
その後乾燥して燃料電池電極を作製した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the production method of the present invention will be described in more detail with reference to examples. FIG. 1 is a flow chart showing an embodiment of a method for producing an electrode for a phosphoric acid fuel cell according to the present invention. In this embodiment, first, a catalyst was added to an alkaline dispersion medium obtained by adding 10 ml of 25% ammonia water to 500 g of pure water.
50 g was added, and the catalyst was dispersed using an ultrasonic homogenizer. Next, a fluororesin 40
g, and dispersed using an ultrasonic homogenizer to obtain a dispersion slurry in which catalyst particles and fluororesin particles were uniformly and finely dispersed. Next, 5 ml of 105% phosphoric acid was added to the dispersed slurry to make it acidic, mixed and condensed to obtain an agglomerated slurry in which catalyst particles and fluororesin particles were heteroaggregated. Subsequently, the coagulated slurry was placed on carbon paper that would be a porous carbon substrate,
It was attached to one surface of the carbon paper by suction and filtration from the back. Furthermore, it is washed with pure water,
Thereafter, drying was performed to produce a fuel cell electrode.

【0014】このようにして作製した二枚の燃料電池電
極によって電解液層を挟むことによってりん酸型燃料電
池のセルを作製し、大気圧、190 ℃の条件下で、燃料電
池の発電実験を実施した。なお、カソードに供給する酸
化剤ガスには空気を、また、アノードに供給する燃料ガ
スには水素と二酸化炭素の混合ガスを用いた。本発電実
験で得られた特性は以下のとおりである。図2は、実施
例の製造方法よりなる燃料電池の出力電圧特性を従来方
法で作製された電池の特性と比較して示した特性図で、
図中の特性Aが実施例の製造方法よりなる燃料電池の特
性、特性Bが従来方法で作製された電池の同一運転条件
下での特性である。図3は、実施例の製造方法よりなる
燃料電池の寿命特性を従来方法で作製された電池の特性
と比較して示した特性図で、図中の特性Cが実施例の製
造方法よりなる燃料電池の特性、特性Dが従来方法で作
製された電池の同一運転条件下での特性である。図2に
見られるごとく、本実施例の製造方法により製造された
燃料電池は、電流の全域にわたって従来方法で作製され
た燃料電池に比較して高い出力電圧が得られており、通
常の運転条件において2 〜 3mVの向上が見られる。ま
た、図3に見られるごとく、本実施例の製造方法により
製造された燃料電池の長期連続運転に伴う端子電圧の低
下は、従来方法で作製された燃料電池に比較して小さ
く、出力電圧劣化速度に約 9%の改善が認められる。
A cell of a phosphoric acid type fuel cell is manufactured by sandwiching the electrolyte layer between the two fuel cell electrodes manufactured as described above, and a fuel cell power generation experiment is performed under the conditions of atmospheric pressure and 190 ° C. Carried out. Air was used as the oxidizing gas supplied to the cathode, and a mixed gas of hydrogen and carbon dioxide was used as the fuel gas supplied to the anode. The characteristics obtained in this power generation experiment are as follows. FIG. 2 is a characteristic diagram showing an output voltage characteristic of a fuel cell manufactured by the manufacturing method of the example in comparison with a characteristic of a cell manufactured by a conventional method.
The characteristic A in the figure is the characteristic of the fuel cell manufactured by the manufacturing method of the embodiment, and the characteristic B is the characteristic of the cell manufactured by the conventional method under the same operating conditions. FIG. 3 is a characteristic diagram showing the life characteristics of the fuel cell manufactured by the manufacturing method of the embodiment in comparison with the characteristics of a battery manufactured by the conventional method. The characteristic of the battery, characteristic D, is the characteristic under the same operating conditions of the battery manufactured by the conventional method. As can be seen from FIG. 2, the fuel cell manufactured by the manufacturing method of the present embodiment has a higher output voltage over the entire current range as compared with the fuel cell manufactured by the conventional method. , An improvement of 2-3 mV is observed. Further, as shown in FIG. 3, the decrease in terminal voltage due to long-term continuous operation of the fuel cell manufactured by the manufacturing method of this embodiment is smaller than that of the fuel cell manufactured by the conventional method, and the output voltage is deteriorated. About a 9% improvement in speed is observed.

【0015】上記のごとく、本実施例の製造方法により
製造された燃料電池は従来方法で作製された燃料電池に
比較して優れた電池特性を示しているが、その主因は、
界面活性剤を用いないで触媒粒子とフッ素樹脂粒子が高
度にヘテロ凝集した凝集スラリーを作製し、この凝集ス
ラリーによって電極触媒層を作製したことにある。した
がって、上記の実施例ではこの凝集スラリーを濾過する
ことにより電極触媒層を作製しているが、この凝集スラ
リーを多孔質カーボン基材となるカーボンペーパーの上
に塗布する方法により電極触媒層を形成しても、同様に
優れた特性を有する燃料電池が得られることとなる。
As described above, the fuel cell manufactured by the manufacturing method of the present embodiment has excellent cell characteristics as compared with the fuel cell manufactured by the conventional method.
An aggregate slurry in which catalyst particles and fluororesin particles are highly hetero-aggregated without using a surfactant is produced, and an electrode catalyst layer is produced with the aggregate slurry. Therefore, in the above embodiment, the electrode catalyst layer is produced by filtering the aggregated slurry, but the electrode catalyst layer is formed by a method of applying the aggregated slurry on carbon paper as a porous carbon substrate. Even in this case, a fuel cell having similarly excellent characteristics can be obtained.

【0016】また、本実施例の電極の製造方法と界面活
性剤を用いた従来の製造方法とを比較すると、界面活性
剤を除去する工程に相当する分だけ、本実施例の電極の
製造方法の方が工数が少なくなり、製造コストが低減さ
れる。
Further, comparing the method for manufacturing an electrode of the present embodiment with a conventional manufacturing method using a surfactant, the method for manufacturing an electrode according to the present embodiment corresponds to the step of removing the surfactant. In this case, the number of steps is reduced, and the manufacturing cost is reduced.

【0017】[0017]

【発明の効果】上述のように、本発明のりん酸型燃料電
池用電極の製造方法においては、請求項に記載のごと
く、触媒粒子と撥水材粒子とをアルカリ性分散媒中に分
散して分散スラリーを作製し、さらに、この分散スラリ
ーに酸を加えて酸性とすることにより分散スラリーを凝
集させて凝集スラリーを作製し、得られた凝集スラリー
を多孔質電極基材に付着させて電極触媒層を作製するこ
ととしたので、触媒粒子と撥水材粒子とが高度に均一に
分散した電極触媒層が少ない工数で作製され、低コスト
で優れた電池特性が得られるりん酸型燃料電池用電極が
製造できることとなった。
As described above, in the method for producing an electrode for a phosphoric acid type fuel cell according to the present invention, the catalyst particles and the water-repellent material particles are dispersed in an alkaline dispersion medium as described in the claims. A dispersion slurry is prepared, and an acid is added to the dispersion slurry to make the dispersion slurry acidic, thereby aggregating the dispersion slurry to prepare a flocculated slurry, and attaching the obtained flocculated slurry to a porous electrode substrate to form an electrode catalyst. Since the electrode layer is prepared, the electrode catalyst layer in which the catalyst particles and the water-repellent material particles are highly uniformly dispersed is manufactured with a small number of man-hours. Electrodes can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のりん酸型燃料電池用電極の製造方法の
実施例を示すフロー図
FIG. 1 is a flowchart showing an embodiment of a method for producing an electrode for a phosphoric acid fuel cell according to the present invention.

【図2】実施例の製造方法よりなる燃料電池の出力電圧
特性を従来方法で作製された電池の特性と比較して示し
た特性図
FIG. 2 is a characteristic diagram showing the output voltage characteristics of a fuel cell manufactured by the manufacturing method of the example in comparison with the characteristics of a cell manufactured by a conventional method.

【図3】実施例の製造方法よりなる燃料電池の寿命特性
を従来方法で作製された電池の特性と比較して示した特
性図
FIG. 3 is a characteristic diagram showing the life characteristics of a fuel cell manufactured by the manufacturing method of the example in comparison with the characteristics of a cell manufactured by a conventional method.

【図4】りん酸型燃料電池の電極および電解液層の構成
を模式的に示す部分断面図
FIG. 4 is a partial cross-sectional view schematically showing a configuration of an electrode and an electrolyte layer of a phosphoric acid fuel cell.

【符号の説明】[Explanation of symbols]

1 電極 2 電解質層 3 多孔質カーボン基材 4 電極触媒層 5 触媒担体 6 貴金属微粒子 7 触媒粒子 8 撥水材粒子(フッ素樹脂) 9 りん酸電解液 10 シリコンカーバイト微粒子 Reference Signs List 1 electrode 2 electrolyte layer 3 porous carbon substrate 4 electrode catalyst layer 5 catalyst carrier 6 noble metal fine particles 7 catalyst particles 8 water repellent material particles (fluororesin) 9 phosphoric acid electrolyte 10 silicon carbide fine particles

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】触媒粒子と撥水材粒子とを分散媒中に分散
して分散スラリーを作製し、この分散スラリーを凝集さ
せて凝集スラリーを作製し、得られた凝集スラリーを多
孔質電極基材に付着し、洗浄、乾燥して触媒粒子と撥水
材粒子とからなる電極触媒層を作製するりん酸型燃料電
池用電極の製造方法において、前記分散媒がアルカリ性
分散媒であることを特徴とするりん酸型燃料電池用電極
の製造方法。
1. A dispersion slurry is prepared by dispersing a catalyst particle and a water-repellent material particle in a dispersion medium, and the dispersion slurry is aggregated to form an aggregation slurry. A method for producing an electrode for a phosphoric acid type fuel cell, wherein the dispersion medium is an alkaline dispersion medium, wherein the dispersion medium is an alkaline dispersion medium. For producing an electrode for a phosphoric acid type fuel cell.
【請求項2】請求項1に記載の製造方法において、前記
のアルカリ性分散媒が、純水にアンモニアを加えた溶液
よりなることを特徴とするりん酸型燃料電池用電極の製
造方法。
2. The method according to claim 1, wherein said alkaline dispersion medium comprises a solution obtained by adding ammonia to pure water.
【請求項3】請求項1または2に記載の製造方法におい
て、前記の分散スラリーの凝集が、分散スラリーに酸を
加えて酸性とすることにより行われることを特徴とする
りん酸型燃料電池用電極の製造方法。
3. The phosphoric acid type fuel cell according to claim 1, wherein the dispersion slurry is coagulated by adding an acid to the dispersion slurry to make the dispersion slurry acidic. Manufacturing method of electrode.
【請求項4】請求項1乃至3のいずれかに記載の製造方
法において、前記の凝集スラリーの多孔質電極基材への
付着が、凝集スラリーを多孔質電極基材上に配し、背面
より吸引して濾過することにより行われることを特徴と
するりん酸型燃料電池用電極の製造方法。
4. The method according to claim 1, wherein the adhesion of the aggregated slurry to the porous electrode substrate comprises disposing the aggregated slurry on the porous electrode substrate, A method for producing an electrode for a phosphoric acid fuel cell, wherein the method is performed by suction and filtration.
【請求項5】請求項1乃至3のいずれかに記載の製造方
法において、前記の凝集スラリーの多孔質電極基材への
付着が、凝集スラリーを多孔質電極基材上に塗布するこ
とにより行われることを特徴とするりん酸型燃料電池用
電極の製造方法。
5. The method according to claim 1, wherein the adhesion of the aggregated slurry to the porous electrode substrate is performed by applying the aggregated slurry to the porous electrode substrate. A method for producing an electrode for a phosphoric acid type fuel cell, comprising:
JP2000378971A 2000-12-13 2000-12-13 Method of manufacturing electrode for phosphoric acid type fuel cell Pending JP2002184413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000378971A JP2002184413A (en) 2000-12-13 2000-12-13 Method of manufacturing electrode for phosphoric acid type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000378971A JP2002184413A (en) 2000-12-13 2000-12-13 Method of manufacturing electrode for phosphoric acid type fuel cell

Publications (1)

Publication Number Publication Date
JP2002184413A true JP2002184413A (en) 2002-06-28

Family

ID=18847440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000378971A Pending JP2002184413A (en) 2000-12-13 2000-12-13 Method of manufacturing electrode for phosphoric acid type fuel cell

Country Status (1)

Country Link
JP (1) JP2002184413A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527596A (en) * 2003-07-07 2007-09-27 レボルト テクノロジー アクスイェ セルスカプ Manufacturing method of gas diffusion electrode
JP2008034295A (en) * 2006-07-31 2008-02-14 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and solid polymer electrolyte fuel cell using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527596A (en) * 2003-07-07 2007-09-27 レボルト テクノロジー アクスイェ セルスカプ Manufacturing method of gas diffusion electrode
JP4897480B2 (en) * 2003-07-07 2012-03-14 レボルト テクノロジー リミティド Manufacturing method of gas diffusion electrode
JP2008034295A (en) * 2006-07-31 2008-02-14 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and solid polymer electrolyte fuel cell using it

Similar Documents

Publication Publication Date Title
JP6203286B2 (en) Support carbon material and metal catalyst particle-supported carbon material for polymer electrolyte fuel cell, and production method
JP5054912B2 (en) Catalyst for fuel cell, method for producing the same, and fuel cell system including the same
JP2002117869A (en) Active solid polymer electrolyte film of solid polymer fuel cell
US7700219B2 (en) Structure having three-dimensional network skeleton, method for producing the structure, and fuel cell including the structure
US20060287194A1 (en) Electrode for solid polymer type fuel cell and manufacturing method therefor
JP3262408B2 (en) Gas electrode manufacturing method
JP2001048511A (en) Production of carbon nanotube thin film, electron emission element and display device using the same carbon nanotube thin film
JP2002184413A (en) Method of manufacturing electrode for phosphoric acid type fuel cell
US9837666B2 (en) Cathode current collector for electrical energy storage device and method for manufacturing the same
JP2004087427A (en) Conductive polymer-metal cluster conjugate electrode and its manufacturing method
JP2004047206A (en) Electrolyte film for fuel cell
JP6981883B2 (en) Fuel cell aging method
WO2020017351A1 (en) Battery material and method of manufacturing battery
JP2006252938A (en) Electrode for solid polymer electrolyte fuel cell and its manufacturing method
CN109148887B (en) Preparation method of graphene-carbon nanofiber conductive agent
KR101948658B1 (en) Electrode for redox flow battery using nanodiamond-derived onion-like carbon, redox flow battery comprising the same and method for manufacturing the same
US10017897B1 (en) Method of enhancing efficiency of carbon felts in flow battery through sonication
JP2008077956A (en) Varnish for forming catalyst electrode for fuel cell, catalytic electrode using it, membrane electrode assembly using it, fuel cell using it
JP2006210181A (en) Method of manufacturing electrode catalyst layer for fuel cell and fuel cell having electrode catalyst layer
KR102249108B1 (en) Manufacuring method of coated substrate using electrospraying and electrode using the same
JP2001332269A (en) Manufacturing method for solid polymer type fuel cell
JP2007018801A (en) Manufacturing method of catalyst mixture for solid polymer fuel cell, and solid polymer fuel cell using electrode containing catalyst mixture obtained by the above manufacturing method
JP2019194963A (en) Electrode of redox flow cell and manufacturing method for the same, and redox flow cell
CN115074745B (en) Preparation method of tantalum pentoxide nanotube array film
JP2009193910A (en) Membrane-electrode assembly and solid polymer fuel cell