JP2009193910A - Membrane-electrode assembly and solid polymer fuel cell - Google Patents

Membrane-electrode assembly and solid polymer fuel cell Download PDF

Info

Publication number
JP2009193910A
JP2009193910A JP2008035727A JP2008035727A JP2009193910A JP 2009193910 A JP2009193910 A JP 2009193910A JP 2008035727 A JP2008035727 A JP 2008035727A JP 2008035727 A JP2008035727 A JP 2008035727A JP 2009193910 A JP2009193910 A JP 2009193910A
Authority
JP
Japan
Prior art keywords
carbon
membrane
electrode assembly
polymer electrolyte
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008035727A
Other languages
Japanese (ja)
Inventor
Saori Okada
早織 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2008035727A priority Critical patent/JP2009193910A/en
Publication of JP2009193910A publication Critical patent/JP2009193910A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane-electrode assembly and a solid polymer fuel cell excellent in durability and indicating high-power generation characteristics, under low humidity condition. <P>SOLUTION: In the membrane-electrode assembly having a structure wherein a polymer electrolyte membrane is held by a pair of electrode catalyst layers, at least one of the electrode catalyst layers has a polymer electrolyte, a catalyst material, and a carbon carrier for carrying the catalyst material, and the carbon carrier has at least two types or more of carbon carriers which are different on the degree of graphitization. Furthermore, the carbon carrier in the membrane-electrode assembly is selected from among graphite carbon, carbon nanotube, nanohorn, and fullerene. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体高分子型燃料電池に用いる膜電極接合体、及びそれを用いた固体高分子型燃料電池に関する。さらに詳しくは、耐久性に優れ、低加湿条件下において高い発電特性を示す膜電極接合体及びそれを用いた固体高分子型燃料電池に関する。   The present invention relates to a membrane electrode assembly used for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell using the same. More specifically, the present invention relates to a membrane electrode assembly having excellent durability and high power generation characteristics under low humidification conditions, and a polymer electrolyte fuel cell using the membrane electrode assembly.

燃料電池は水素、酸素を燃料として、水の電気分解の逆反応を起こさせることにより電気を生み出す発電システムである。これは、従来の発電方式と比較して高効率、低環境負荷、低騒音といった特徴を持ち、将来のクリーンなエネルギー源として注目されている。燃料電池はその電解質により分類することができ、溶融炭酸塩型燃料電池、リン酸型燃料電池、固体酸化物型燃料電池、固体高分子型燃料電池等がある。   A fuel cell is a power generation system that generates electricity by using hydrogen and oxygen as fuel and causing reverse reaction of water electrolysis. This has features such as high efficiency, low environmental load and low noise compared with the conventional power generation method, and is attracting attention as a clean energy source in the future. Fuel cells can be classified according to their electrolyte, and include molten carbonate fuel cells, phosphoric acid fuel cells, solid oxide fuel cells, solid polymer fuel cells, and the like.

燃料電池の中でも、固体高分子型燃料電池は低温領域での運転が可能であり、80〜100℃の運転温度で使用されるのが一般的であり、車載用電源や家庭据置用電源などへの使用が有望視されている。固体高分子型燃料電池は、膜電極接合体(MEA)と呼ばれる高分子電解質膜の両面に一対の触媒電極層を配置させた接合体を、前記電極の一方に水素を含有する燃料ガスを供給し、前記電極の他方に酸素を含む酸化剤ガスを供給するためのガス流路を形成した一対のセパレータ板で挟持した電池である。ここで、燃料ガスを供給する電極を燃料極、酸化剤を供給する電極を空気極と呼んでいる。   Among the fuel cells, the polymer electrolyte fuel cell can be operated in a low temperature region, and is generally used at an operating temperature of 80 to 100 ° C., and is used for an in-vehicle power source or a household stationary power source. The use of is promising. The polymer electrolyte fuel cell supplies a fuel gas containing hydrogen to one of the electrodes, and uses a joined body in which a pair of catalyst electrode layers are arranged on both sides of a polymer electrolyte membrane called a membrane electrode assembly (MEA). The battery is sandwiched between a pair of separator plates formed with a gas flow path for supplying an oxidant gas containing oxygen to the other electrode. Here, the electrode for supplying the fuel gas is called a fuel electrode, and the electrode for supplying the oxidant is called an air electrode.

固体高分子型燃料電池では電解質膜の導電性を確保するために、MEAを加湿する必要があるが、加湿する為には補機が必要となり、燃料電池システム全体のコスト高に繋がってしまう為、低加湿での運転が好ましく、更には無加湿運転が望ましい。   In the polymer electrolyte fuel cell, it is necessary to humidify the MEA in order to ensure the conductivity of the electrolyte membrane. However, in order to humidify, an auxiliary machine is required, which leads to high cost of the entire fuel cell system. The operation with low humidification is preferable, and the non-humidification operation is more preferable.

一方、固体高分子型燃料電池はコストとともに耐久性の向上が望まれている。燃料電池の起動停止時、燃料極に微量の空気が混入し、その結果、空気極の電位が1.2V以上の高電位となる。そのため、触媒層中に存在する水を酸化剤として二酸化炭素を生成する酸化反応(C+2HO→CO+4H++4e)が起こり、担体カーボンの酸化が促進され劣化してしまうことがある。 On the other hand, solid polymer fuel cells are desired to have improved durability along with cost. When the fuel cell is started and stopped, a small amount of air is mixed into the fuel electrode, and as a result, the potential of the air electrode becomes a high potential of 1.2 V or more. Therefore, an oxidation reaction (C + 2H 2 O → CO 2 + 4H ++ 4e ) that generates carbon dioxide using water present in the catalyst layer as an oxidizing agent occurs, which may promote and deteriorate the oxidation of the carrier carbon.

また、燃料極においても水素供給が不十分となった場合、所定の電流密度を維持する為、水素の酸化反応の代わりに、水の電気分解反応やカーボン担体の酸化反応が起きる可能性がある。以上のように、カーボン担体の酸化反応が進行し、カーボン担体が酸化腐食してしまうと、担持されていた触媒物質が、触媒層の高分子電解質中に溶解、再析出してしまい、触媒層の発電特性が低下する。   Also, when hydrogen supply becomes insufficient at the fuel electrode, in order to maintain a predetermined current density, there is a possibility that an electrolysis reaction of water or an oxidation reaction of the carbon support may occur instead of the oxidation reaction of hydrogen. . As described above, when the oxidation reaction of the carbon carrier proceeds and the carbon carrier is oxidatively corroded, the supported catalyst substance is dissolved and re-precipitated in the polymer electrolyte of the catalyst layer. The power generation characteristics of the are reduced.

前記の様な、カーボンの酸化を防ぎ、電極触媒層の耐久性を向上させる手段として、担体をあらかじめ高温熱処理をすることによりグラファイト化させることが提案されている。カーボンに高温で熱処理を施し、グラファイト化させることによって触媒層の撥水性及び耐食性が向上すること等が開示されている(特許文献1〜6参照)。   As a means for preventing the oxidation of carbon and improving the durability of the electrode catalyst layer as described above, it has been proposed to graphitize the support by high-temperature heat treatment in advance. It has been disclosed that the water repellency and corrosion resistance of a catalyst layer are improved by subjecting carbon to heat treatment at high temperature to cause graphitization (see Patent Documents 1 to 6).

特開2000−268828号公報JP 2000-268828 A 特開2001−357857号公報JP 2001-357857 A 特開2002−015745号公報JP 2002-015745 A 特開2003−036859号公報JP 2003-036859 A 特開2005−26174号公報JP 2005-26174 A 特開2006−4662号公報JP 20064662 A

しかしながら、グラファイト化したカーボンはその熱処理によって、表面が疎水性になる傾向がある。担体表面が疎水性であると、スルホン酸基を持つ高分子電解質との親和性が低下する。また、低加湿運転下や、発電による生成水の少ない低負荷領域下での電圧降下が大きく、十分な発電特性を得られないという問題がある   However, graphitized carbon tends to be hydrophobic on the surface by heat treatment. When the carrier surface is hydrophobic, the affinity with the polymer electrolyte having a sulfonic acid group is lowered. In addition, there is a problem in that sufficient power generation characteristics cannot be obtained due to a large voltage drop under low humidification operation or in a low load region where water generated by power generation is low.

そこで、本発明にあっては、耐久性に優れ、低加湿条件下において高い発電特性を示す膜電極接合体、また固体高分子型燃料電池を提供することを課題とする。   Accordingly, it is an object of the present invention to provide a membrane electrode assembly and a polymer electrolyte fuel cell that are excellent in durability and exhibit high power generation characteristics under low humidification conditions.

本発明者は鋭意検討を重ねた結果、上記課題を解決することができ、本発明を完成するに至った。   As a result of intensive studies, the present inventor has been able to solve the above-mentioned problems and has completed the present invention.

すなわち、請求項1に係る発明としては、一対の電極触媒層で高分子電解質膜を挟持した構造を備える膜電極接合体であって、前記電極触媒層の少なくとも一方が、高分子電解質と触媒物質と該触媒物質を担持するカーボン担体を備え、且つ、該カーボン担体がグラファイト化度の異なる少なくとも2種類以上のカーボン担体を備えることを特徴とする膜電極接合体とした。   That is, the invention according to claim 1 is a membrane electrode assembly having a structure in which a polymer electrolyte membrane is sandwiched between a pair of electrode catalyst layers, wherein at least one of the electrode catalyst layers includes a polymer electrolyte and a catalyst substance. And a carbon support for supporting the catalyst substance, and the carbon support includes at least two kinds of carbon supports having different degrees of graphitization.

また、請求項2に係る発明としては。前記カーボン担体が、黒鉛質炭素、炭素繊維、カーボンナノチューブ、ナノホーン、フラーレンから選択されることを特徴とする請求項1記載の膜電極接合体とした。   As an invention according to claim 2. 2. The membrane electrode assembly according to claim 1, wherein the carbon support is selected from graphitic carbon, carbon fiber, carbon nanotube, nanohorn, and fullerene.

また、請求項3に係る発明としては、請求項1または請求項2記載の膜電極接合体を一対のガス拡散層で狭持し、且つ、前記一対のガス拡散層で狭持された膜電極接合体を一対のセパレータで狭持した構造を備える固体高分子型燃料電池とした。   According to a third aspect of the invention, the membrane electrode assembly according to the first or second aspect is sandwiched between a pair of gas diffusion layers, and the membrane electrode is sandwiched between the pair of gas diffusion layers. A solid polymer fuel cell having a structure in which the joined body is sandwiched between a pair of separators was obtained.

本発明の請求項1記載の膜電極接合体は一対の電極触媒層で挟まれた高分子電解質膜を備える膜電極接合体であって、前記電極触媒層は高分子電解質および、触媒物質とその触媒物質を担持したカーボン担体を備え、該カーボン担体がグラファイト化度が異なる少なくとも2種類以上のカーボン担体を用いることを特徴とするものである。1種類の担体は、グラファイト化度の高い担体を用いることでカーボン担体の酸化を防ぎ、もう1種類の担体は、グラファイト化度が、前記担体より低い担体を用いることで、スルホン酸基を持つ高分子電解質との親和性が向上させることができ、耐久性に優れ、低加湿条件下において高い発電特性を示す膜電極接合体とすることができた。   The membrane electrode assembly according to claim 1 of the present invention is a membrane electrode assembly comprising a polymer electrolyte membrane sandwiched between a pair of electrode catalyst layers, the electrode catalyst layer comprising a polymer electrolyte, a catalyst substance and A carbon carrier carrying a catalyst substance is provided, and the carbon carrier uses at least two kinds of carbon carriers having different degrees of graphitization. One type of carrier prevents oxidation of the carbon carrier by using a carrier having a high degree of graphitization, and the other type of carrier has a sulfonic acid group by using a carrier having a lower degree of graphitization than the carrier. The affinity with the polymer electrolyte could be improved, the membrane electrode assembly having excellent durability and high power generation characteristics under low humidification conditions could be obtained.

また、請求項2記載の膜電極接合体は、電極触媒層に用いられるカーボン担体が黒鉛質炭素、炭素繊維、カーボンナノチューブ、ナノホーン、フラーレンから選択されることを特徴とするものであり、これらの耐酸化性に強い材料を用いることにより、さらに耐久性に優れた膜電極接合体とすることができた。   The membrane electrode assembly according to claim 2 is characterized in that the carbon support used in the electrode catalyst layer is selected from graphitic carbon, carbon fiber, carbon nanotube, nanohorn, and fullerene. By using a material having high oxidation resistance, a membrane electrode assembly having further excellent durability could be obtained.

また、請求項3の燃料電池は、請求項1または請求項2記載の膜電極接合体を一対のガス拡散層で狭持し、且つ、一対のセパレータで狭持した構造を備えることを特徴とし、耐久性に優れ、低加湿条件運転時においても十分な発電特性を示す燃料電池とすることができた。   A fuel cell according to claim 3 is provided with a structure in which the membrane electrode assembly according to claim 1 or 2 is sandwiched between a pair of gas diffusion layers and sandwiched between a pair of separators. Thus, a fuel cell having excellent durability and sufficient power generation characteristics even during operation under low humidification conditions could be obtained.

以下に、本発明の膜電極接合体(MEA)、燃料電池について説明する。なお、本発明は、以下に記載する各実施の形態に限定されうるものではなく、当業者の知識に基づいて設計の変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。   Below, the membrane electrode assembly (MEA) and fuel cell of this invention are demonstrated. Note that the present invention is not limited to the embodiments described below, and modifications such as design changes can be made based on the knowledge of those skilled in the art, and such modifications are added. The embodiments may be included in the scope of the present invention.

図1に本発明の膜電極接合体の断面模式図を示した。本発明の膜電極接合体(MEA)12は固体高分子電解質膜1の両面に電極触媒層2、電極触媒層3が接合され、狭持された構造を備える。   FIG. 1 shows a schematic cross-sectional view of the membrane electrode assembly of the present invention. The membrane electrode assembly (MEA) 12 of the present invention has a structure in which an electrode catalyst layer 2 and an electrode catalyst layer 3 are bonded to both surfaces of a solid polymer electrolyte membrane 1 and sandwiched.

本発明の膜電極接合体にあっては、少なくとも一方の電極触媒層が、高分子電解質と触媒物質と該触媒物質を担持するカーボン担体を備え、且つ、該カーボン担体が、グラファイト化度の異なる少なくとも2種類以上のカーボン担体を備えることを特徴とする。このとき、一方のグラファイト化度の高いカーボン担体は酸化されにくく、形成される触媒電極層の耐久性を向上させることができる。また、もう一方のグラファイト化の低いカーボン担体は高分子電解質との親和性が高く、十分な発電性能を発現させることができる。特に、低加湿運転時において、また、低負荷領域において、形成される膜電極接合体、燃料電池に十分な発電性能を発現させることができる。   In the membrane / electrode assembly of the present invention, at least one of the electrode catalyst layers includes a polymer electrolyte, a catalyst material, and a carbon support that supports the catalyst material, and the carbon support has a different degree of graphitization. It is characterized by comprising at least two kinds of carbon carriers. At this time, one of the carbon supports having a high degree of graphitization is not easily oxidized, and the durability of the formed catalyst electrode layer can be improved. The other carbon support with low graphitization has high affinity with the polymer electrolyte and can exhibit sufficient power generation performance. In particular, sufficient power generation performance can be exhibited in the formed membrane electrode assembly and the fuel cell during low humidification operation and in a low load region.

カーボン担体にあっては、グラファイト化が高いほど結晶化度が高く、耐酸化性に優れたカーボン担体とすることができる。しかし、グラファイト化度の高いカーボン担体にあっては、高分子電解質との親和性が低く、特に低加湿時において十分な発電性能を有する膜電極接合体もしくは燃料電池とすることができない。本発明者は、グラファイト化度の異なる2種類以上のカーボン担体を用いることにより、耐久性と低加湿時の発電性能を両立することに成功した。   In the carbon support, the higher the graphitization, the higher the crystallinity and the better the carbon support. However, a carbon support with a high degree of graphitization has a low affinity with a polymer electrolyte, and cannot be a membrane electrode assembly or a fuel cell having a sufficient power generation performance particularly at low humidification. The present inventor succeeded in achieving both durability and power generation performance during low humidification by using two or more types of carbon supports having different degrees of graphitization.

また、本発明の膜電極接合体は、例えば、カーボン担体に親水性官能基を付与し親水化をおこなう方法と比較して、製造工程が少なく、低コストで耐久性と低加湿時の発電性能を両立した膜電極接合体、燃料電池を製造することができる。   In addition, the membrane electrode assembly of the present invention has fewer manufacturing steps, lower cost, durability, and power generation performance at low humidification compared to, for example, a method of imparting a hydrophilic functional group to a carbon support to make it hydrophilic. A membrane electrode assembly and a fuel cell that are compatible with each other can be manufactured.

本発明のカーボン担体のグラファイト化度を表す指標としては、G/D比を用いることができる。ここで、Gは、共鳴ラマン散乱測定法により得られるスペクトルにおいて1590cm−1付近に見られるグラファイト由来のバンドのピーク強度である。Dは、共鳴ラマン散乱測定法により得られるスペクトルにおいて1350cm−1付近に見られるバンドのピーク強度であり、このバンドはグラファイトの欠陥やアモルファスカーボン由来である。すなわち、共鳴ラマン散乱測定法により得られるスペクトルのそれぞれのピーク強度からG/Dを求めることにより、カーボン担体のグラファイト化度の指標とすることができる。 The G / D ratio can be used as an index representing the degree of graphitization of the carbon support of the present invention. Here, G is the peak intensity of a band derived from graphite that is found in the vicinity of 1590 cm −1 in the spectrum obtained by the resonance Raman scattering measurement method. D is a peak intensity of a band seen in the vicinity of 1350 cm −1 in a spectrum obtained by a resonance Raman scattering measurement method, and this band is derived from a defect of graphite or amorphous carbon. That is, by obtaining G / D from each peak intensity of the spectrum obtained by the resonance Raman scattering measurement method, it can be used as an index of the degree of graphitization of the carbon support.

本発明にあっては、2種類以上のグラファイト化度の異なるカーボン担体のうちグラファイト化度の高い方のカーボン担体にあっては、そのG/Dは10以上であることが好ましく、更には、20以上であることが好ましい。また、2種類以上のグラファイト化度の異なるカーボン担体のうちグラファイト化度の低い方のカーボン担体にあっては、そのG/Dは5以下であることが好ましい。2種類以上のグラファイト化度の異なるカーボン担体のG/Dをそれぞれ上記範囲内とすることにより、本発明の効果をより顕著にすることができる。   In the present invention, in the carbon support having a higher degree of graphitization among two or more types of carbon supports having different degrees of graphitization, the G / D is preferably 10 or more. It is preferable that it is 20 or more. In addition, in the carbon support having a lower degree of graphitization among two or more types of carbon supports having different degrees of graphitization, the G / D is preferably 5 or less. By making G / D of two or more types of carbon supports having different degrees of graphitization within the above ranges, the effects of the present invention can be made more remarkable.

さらには、本発明にあっては、G/Dが10以上のグラファイト化度の高いカーボン担体とG/Dが5以下のグラファイト化度の低いカーボン担体の重量比は、(グラファイト化度の高い方):(グラファイト化度の低い方)=30:70〜95:5であることが好ましい。グラファイト化度の異なる2種類以上のカーボン担体の重量比を上記範囲内とすることにより、本発明の効果をさらに顕著にすることができる。   Furthermore, in the present invention, the weight ratio of the carbon support having a high graphitization degree having a G / D of 10 or more and the carbon support having a low graphitization degree having a G / D of 5 or less is (a high graphitization degree). Method): (the one having a lower degree of graphitization) = 30: 70 to 95: 5 is preferable. By making the weight ratio of two or more kinds of carbon supports having different degrees of graphitization within the above range, the effect of the present invention can be made more remarkable.

また、本発明のカーボン担体は、耐酸化性の点で、黒鉛質炭素、炭素繊維、カーボンナノチューブ、ナノホーン、フラーレンから選択されることが好ましい。   In addition, the carbon support of the present invention is preferably selected from graphitic carbon, carbon fiber, carbon nanotube, nanohorn, and fullerene in terms of oxidation resistance.

図2に本発明の固体高分子型燃料電池の分解模式図を示した。本発明の固体高分子型燃料電池にあっては、膜電極接合体12の電極触媒層2および電極触媒層の3と対向して空気極側ガス拡散層4および燃料極側ガス拡散層5が配置される。これによりそれぞれ空気極6及び燃料極7が構成される。そしてガス流通用のガス流路8を備え、相対する主面に冷却水流通用の冷却水流路9を備えた導電性でかつ不透過性の材料よりなる1組のセパレータ10が配置される。燃料極7側のセパレータ10のガス流路8からは燃料ガスとして、例えば水素ガスが供給される。一方、空気極6側のセパレータ10のガス流路8からは、酸化剤ガスとして、例えば酸素を含むガスが供給される。   FIG. 2 shows an exploded schematic view of the polymer electrolyte fuel cell of the present invention. In the polymer electrolyte fuel cell of the present invention, the air electrode side gas diffusion layer 4 and the fuel electrode side gas diffusion layer 5 are opposed to the electrode catalyst layer 2 and the electrode catalyst layer 3 of the membrane electrode assembly 12. Be placed. Thereby, the air electrode 6 and the fuel electrode 7 are comprised, respectively. Then, a set of separators 10 made of a conductive and impermeable material, which is provided with a gas flow path 8 for gas flow and is provided with a cooling water flow path 9 for cooling water flow on the opposing main surface, is disposed. For example, hydrogen gas is supplied as a fuel gas from the gas flow path 8 of the separator 10 on the fuel electrode 7 side. On the other hand, a gas containing oxygen, for example, is supplied as an oxidant gas from the gas flow path 8 of the separator 10 on the air electrode 6 side.

図2に示した固体高分子型燃料電池は一組のセパレータに固体高分子電解質膜1、電極触媒層2、3、ガス拡散層4、5が狭持された。いわゆる単セル構造の固体高分子型燃料電池であるが、本発明にあっては、セパレータ10を介して複数のセルを積層して燃料電池とすることもできる。   In the solid polymer fuel cell shown in FIG. 2, the solid polymer electrolyte membrane 1, the electrode catalyst layers 2, 3, and the gas diffusion layers 4, 5 are sandwiched between a pair of separators. Although it is a solid polymer fuel cell having a so-called single cell structure, in the present invention, a plurality of cells can be stacked via a separator 10 to form a fuel cell.

以下に、本発明の膜電極接合体(MEA)の製造方法、燃料電池の製造方法について説明する。   Below, the manufacturing method of the membrane electrode assembly (MEA) of this invention and the manufacturing method of a fuel cell are demonstrated.

本発明に用いられる固体高分子電解質膜は、プロトン伝導性に優れ、且つ電子を流さない材料からなるものであれば特に限定されない。特にパーフルオロ型のスルホン酸膜、例えば、ナフィオン(Nafion、デュポン社の登録商標)、フレミオン(旭硝子社の登録商標)、アシプレックス(旭化成社の登録商標)等の膜が使用される。その他、プロトン伝導基を有するポリイミド等の炭化水素系樹脂など等も挙げられる。   The solid polymer electrolyte membrane used in the present invention is not particularly limited as long as it is made of a material that is excellent in proton conductivity and does not flow electrons. In particular, a perfluoro type sulfonic acid membrane such as a membrane such as Nafion (registered trademark of DuPont), Flemion (registered trademark of Asahi Glass Co., Ltd.), Aciplex (registered trademark of Asahi Kasei Co., Ltd.) or the like is used. Other examples include hydrocarbon resins such as polyimide having a proton conductive group.

本発明で用いる高分子電解質膜は、電極触媒層に用いられる高分子電解質と同一の材料からなることが好ましい。   The polymer electrolyte membrane used in the present invention is preferably made of the same material as the polymer electrolyte used for the electrode catalyst layer.

次に、用意した固体高分子電解質膜の両面には電極触媒層を形成する。触媒電極層を形成するにあっては、高分子電解質と触媒物質と触媒物質を担持するカーボン担体と分散媒を含む触媒インクを調整する。   Next, an electrode catalyst layer is formed on both surfaces of the prepared solid polymer electrolyte membrane. In forming the catalyst electrode layer, a catalyst ink containing a polymer electrolyte, a catalyst material, a carbon carrier carrying the catalyst material, and a dispersion medium is prepared.

触媒インク中に含まれる高分子電解質には様々なものが用いられるが、用いる固体高分子電解質膜と同様材料を用いることができ、固体高分子電解質膜と同一の材料を用いることが好ましい。ナフィオンを固体高分子電解質膜として用いた場合は、触媒インクに含まれる高分子電解質としてはナフィオンを使用するのが好ましい。固体高分子電解質膜にナフィオン以外の材料を用いた場合は、触媒インク中に電解質膜と同じ成分を溶解させるなど最適化をはかることが好ましい。   Various polymer electrolytes are used in the catalyst ink, but the same material as the solid polymer electrolyte membrane to be used can be used, and the same material as the solid polymer electrolyte membrane is preferably used. When Nafion is used as the solid polymer electrolyte membrane, it is preferable to use Nafion as the polymer electrolyte contained in the catalyst ink. When a material other than Nafion is used for the solid polymer electrolyte membrane, it is preferable to optimize such as dissolving the same components as the electrolyte membrane in the catalyst ink.

本発明に用いられる触媒は一般的に用いられているものを使用することができ、特に限定されるものではない。具体的には、白金担持カーボンの白金は、白金単体もしくは白金合金が担持されたカーボン粒子などが使用できる。合金としては、パラジウム、ルテニウム、モリブデンなどが挙げられるが、特にルテニウムが望ましい。また、タングステン、スズ、レニウムなどが白金合金に添加物として含まれていてもよい。上記添加物が含まれているとCO耐被毒性が高めるとことができる。上記添加金属は、白金合金の金蔵間化合物として存在してもよいし、合金を形成してもよい。またこれらの触媒粒径は、大きすぎる触媒の活性が低下し、小さすぎると触媒の安定性が低下するため、0.5〜20nmが好ましい。更に好ましくは1〜5nmが良い。触媒の担持率は40〜60重量%が好ましく、触媒担持率が40重量%未満では、電池の厚みが厚くなることで電池特性が低下してしまい、一方60重量%を超えると、触媒の分散性が悪くなってしまう。   As the catalyst used in the present invention, those generally used can be used and are not particularly limited. Specifically, the platinum-supported carbon platinum may be carbon particles carrying a platinum simple substance or a platinum alloy. Examples of the alloy include palladium, ruthenium, and molybdenum, and ruthenium is particularly desirable. Moreover, tungsten, tin, rhenium, etc. may be contained as an additive in the platinum alloy. If the additive is contained, CO poisoning resistance can be increased. The additive metal may exist as a platinum alloy intermetallic compound or may form an alloy. Further, the catalyst particle diameter is preferably 0.5 to 20 nm because the activity of the catalyst is too large, and if it is too small, the stability of the catalyst is lowered. More preferably, 1-5 nm is good. The catalyst loading rate is preferably 40 to 60% by weight. When the catalyst loading rate is less than 40% by weight, the battery characteristics are deteriorated by increasing the thickness of the battery. It becomes worse.

これらの触媒物質は、カーボン担体に担持される。カーボン担体の種類は、微粒子状で導電性を有し、触媒に侵されないものであればどのようなものでも構わないが、黒鉛質炭素、炭素繊維、カーボンナノチューブ、ナノホーン、フラーレンを好適に用いることができる。このとき、本発明にあっては、グラファイト化度の異なる2種類以上のカーボン担体を使用する必要がある。カーボン担体の粒径は、小さすぎると電子伝導パスが形成されにくくなり、また大きすぎると電極触媒層のガス拡散性が低下したり、触媒の利用率が低下したりするので、10〜1000nm程度が好ましい。更に好ましくは、10〜100nmが好ましい。   These catalytic materials are supported on a carbon support. The type of the carbon carrier may be any fine particle that is electrically conductive and is not affected by the catalyst. Graphite carbon, carbon fiber, carbon nanotube, nanohorn, and fullerene are preferably used. Can do. At this time, in the present invention, it is necessary to use two or more types of carbon supports having different degrees of graphitization. If the particle size of the carbon support is too small, it becomes difficult to form an electron conduction path. If the particle size is too large, the gas diffusibility of the electrode catalyst layer is reduced or the utilization factor of the catalyst is reduced. Is preferred. More preferably, 10-100 nm is preferable.

触媒インクの分散媒として使用される溶媒は、触媒粒子や水素イオン伝導性樹脂を浸食することがなく、流動性の高い状態でプロトン伝導性高分子を溶解または微細ゲルとして分散できるものあれば特に制限はないが、発性の液体有機溶媒が少なくとも含まれることが望ましく、特に限定されるものではないが、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブチルアルコール、tert−ブチルアルコール、ペンタノール、2−ヘプタノール、ベンジルアルコール等のアルコール類、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、メチルイゾブチルケトン、メチルアミルケトン、ペンタノン、へプタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトニルアセトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトンなどのケトン類、テトラヒドロフラン、テトラヒドロピラン、ジオキサン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のエーテル類、イソプロピルアミン、ブチルアミン、イソブチルアミン、シクロヘキシルアミン、ジエチルアミン、アニリンなどのアミン類、蟻酸プロピル、蟻酸イソブチル、蟻酸アミル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチルなどのエステル類、その他酢酸、プロピオン酸、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、エチレングリコール、ジエチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジアセトンアルコール、1−メトキシ−2−プロパノール等の極性溶媒等が使用される。また、これらの溶媒のうち二種以上を混合させたものも使用できる。   The solvent used as the dispersion medium for the catalyst ink is not particularly limited as long as it does not erode the catalyst particles or the hydrogen ion conductive resin, and can dissolve or disperse the proton conductive polymer in a highly fluid state as a fine gel. Although there is no limitation, it is desirable to include at least a nascent liquid organic solvent, and although not particularly limited, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol , Tert-butyl alcohol, pentanol, 2-heptanol, benzyl alcohol, and the like, acetone, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl amyl ketone, pentanone, heptanone, cyclohexanone, methylcyclohexane S , Acetonyl acetone, diethyl ketone, dipropyl ketone, diisobutyl ketone and other ketones, tetrahydrofuran, tetrahydropyran, dioxane, diethylene glycol dimethyl ether, anisole, methoxytoluene, diethyl ether, dipropyl ether, dibutyl ether and other ethers, isopropyl Amines such as amine, butylamine, isobutylamine, cyclohexylamine, diethylamine, aniline, propyl formate, isobutyl formate, amyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, propionic acid Esters such as methyl, ethyl propionate, butyl propionate, etc., acetic acid, propionic acid, dimethylformamide, dimethyl ester Polar solvents such as acetoamide, N-methylpyrrolidone, ethylene glycol, diethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diacetone alcohol, 1-methoxy-2-propanol are used. . Moreover, what mixed 2 or more types of these solvents can also be used.

これらの溶媒の中でも誘電率が異なる二種類の溶媒を用いることで、触媒インク中の高分子電解質の分散状態を制御することも可能である。これらの溶媒また、溶剤として低級アルコールを用いたものは発火の危険性が高く、このような溶媒を用いる際は水との混合溶媒にするのが好ましい。また、高分子電解質となじみがよい水が含まれていてもよい。水の添加量は、プロトン伝導性ポリマーが分離して白濁を生じたり、ゲル化したりしない程度であれば特に制限はない。   By using two kinds of solvents having different dielectric constants among these solvents, it is possible to control the dispersion state of the polymer electrolyte in the catalyst ink. These solvents and those using lower alcohols as the solvent have a high risk of ignition, and when using such a solvent, it is preferable to use a mixed solvent with water. Further, water that is compatible with the polymer electrolyte may be contained. The amount of water added is not particularly limited as long as the proton conductive polymer is not separated to cause white turbidity or gelation.

また、触媒インクにあっては、触媒物質を担持したカーボン担体を分散させるために、分散剤が含まれていても良い。分散剤としては、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、非イオン界面活性剤などを用いることができる。   Further, the catalyst ink may contain a dispersant in order to disperse the carbon carrier carrying the catalyst substance. As the dispersant, an anionic surfactant, a cationic surfactant, an amphoteric surfactant, a nonionic surfactant, or the like can be used.

また、触媒インクに造孔剤が含まれても良い。造孔剤は、電極触媒層の形成後に除去することで、細孔を形成することが出来る。酸やアルカリ、水に溶ける物質や、ショウノウなどの昇華する物質、熱分解する物質などを挙げることが出来る。温水で溶ける物質であれば、発電時に発生する水で取り除いても良い。   The catalyst ink may contain a pore forming agent. By removing the pore-forming agent after the formation of the electrode catalyst layer, pores can be formed. Examples include substances that are soluble in acids, alkalis, and water, substances that sublime such as camphor, and substances that thermally decompose. If the substance is soluble in hot water, it may be removed with water generated during power generation.

酸やアルカリ、水に溶ける造孔剤としては、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、硫酸マグネシウム、酸化マグネシウム等の酸可溶性無機塩類、アルミナ、シリカゲル、シリカゾル等のアルカリ水溶液に可溶性の無機塩類、アルミニウム、亜鉛、スズ、ニッケル、鉄等の酸またはアルカリに可溶性の金属類、塩化ナトリウム、塩化カリウム、塩化アンモニウム、炭酸ナトリウム、硫酸ナトリウム、リン酸一ナトリウム等の水溶性無機塩類、ポリビニルアルコール、ポリエチレングリコール等の水溶性有機化合物類などが挙げられ、2種以上併用することも有効である。   Examples of pore-forming agents that are soluble in acids, alkalis, and water include acid-soluble inorganic salts such as calcium carbonate, barium carbonate, magnesium carbonate, magnesium sulfate, and magnesium oxide, inorganic salts that are soluble in alkaline aqueous solutions such as alumina, silica gel, and silica sol, aluminum Metals soluble in acids or alkalis such as zinc, tin, nickel and iron, water-soluble inorganic salts such as sodium chloride, potassium chloride, ammonium chloride, sodium carbonate, sodium sulfate and monosodium phosphate, polyvinyl alcohol, polyethylene glycol It is also effective to use two or more types in combination.

触媒インクの粘度は、塗布方法によって最適値が異なる。例えば、スクリーン印刷法やドクターブレード法による塗布の場合、インキの粘度は50〜500cPであることが好ましい。この範囲の粘度よりも粘度が高い場合も低い場合もインキの塗布は困難になる。一方、スプレー法により基材上に噴霧する場合は、インキの粘度が0.1〜100cPであることが好ましい。この範囲よりもインキ粘度が高いと噴霧が困難になり、また少なすぎると成膜レートが非常に遅く、生産性が低下する。粘度は溶媒の種類、固形分濃度を変化させることで最適化する。またインキの分散時に分散剤を添加することで、粘度の制御をすることもできる。   The optimum value of the viscosity of the catalyst ink varies depending on the coating method. For example, in the case of application by a screen printing method or a doctor blade method, the viscosity of the ink is preferably 50 to 500 cP. Whether the viscosity is higher or lower than this range of viscosity makes it difficult to apply ink. On the other hand, when spraying on a base material by a spray method, it is preferable that the viscosity of an ink is 0.1-100 cP. If the ink viscosity is higher than this range, spraying becomes difficult. If the ink viscosity is too low, the film formation rate is very slow and the productivity is lowered. The viscosity is optimized by changing the type of solvent and the solid content concentration. Further, the viscosity can be controlled by adding a dispersing agent when the ink is dispersed.

また、高分子電解質と触媒物質と触媒物質を担持するカーボン担体と分散媒を含む触媒インクは公知の方法により適宜分散処理がおこなわれる。   The catalyst ink containing the polymer electrolyte, the catalyst material, the carbon carrier carrying the catalyst material, and the dispersion medium is appropriately dispersed by a known method.

調整された触媒インクは、ドクターブレード法、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などの塗布法、噴霧法を用い固体高分子電解質膜もしくはガス拡散層上に塗布され、電極触媒層は形成される。また、転写基材を用い、転写基材上に触媒インクを塗布し、転写基材上に電極触媒層を一旦形成した後、転写法により固体高分子電解質膜上に電極触媒層を形成しても良い。   The prepared catalyst ink is applied onto the solid polymer electrolyte membrane or the gas diffusion layer by using a doctor blade method, a dipping method, a screen printing method, a roll coating method, a coating method such as a spray method, or a spraying method. Is formed. Also, using a transfer substrate, applying a catalyst ink on the transfer substrate, forming an electrode catalyst layer on the transfer substrate, and then forming an electrode catalyst layer on the solid polymer electrolyte membrane by a transfer method. Also good.

スプレー法といった触媒インクを噴霧する方法を用いた場合、インクを微粒子化してガス拡散層や固体高分子電解質膜の表面に吹き付けるため、微粒子化されたインクがガス拡散層や固体高分子電解質膜の表面に付着する前に、分散媒の大部分が蒸発する。したがって、分散媒の蒸発速度が速いほうが塗着後の液滴の流動による粒子の凝集が少なく、均質な膜を作製できるため好ましい。   When a method of spraying catalyst ink such as a spray method is used, the ink is atomized and sprayed onto the surface of the gas diffusion layer or solid polymer electrolyte membrane. Most of the dispersion medium evaporates before adhering to the surface. Therefore, it is preferable that the evaporation rate of the dispersion medium is high because there is less aggregation of particles due to the flow of droplets after coating, and a homogeneous film can be produced.

電極触媒層と固体高分子電解質膜は熱圧着により接合される。さらに、その電極触媒層とプロトン伝導性高分子の間には、接合性を高める為に、プロトン伝導性高分子を含む溶液を結着剤として塗布することが好ましく、固体高分子電解質膜と同一の材料を用いることが更に好ましい。   The electrode catalyst layer and the solid polymer electrolyte membrane are joined by thermocompression bonding. Further, in order to improve the bonding property between the electrode catalyst layer and the proton conductive polymer, it is preferable to apply a solution containing the proton conductive polymer as a binder, which is the same as the solid polymer electrolyte membrane. It is more preferable to use these materials.

さらに本発明に用いられるガス拡散層およびセパレータとしては通常の燃料電池に用いられているものを用いることができる。具体的にはガス拡散層としてはカーボンクロス、カーボンペーパー、不織布などのポーラスカーボン材が用いられる。セパレータとしては、カーボンタイプのもの金属タイプのもの等を用いることができる。また、燃料電池としては、ガス供給装置、冷却装置などその他付随する装置を組み立てることにより製造される。   Furthermore, as the gas diffusion layer and separator used in the present invention, those used in ordinary fuel cells can be used. Specifically, porous carbon materials such as carbon cloth, carbon paper, and nonwoven fabric are used as the gas diffusion layer. As the separator, a carbon type metal type or the like can be used. The fuel cell is manufactured by assembling other accompanying devices such as a gas supply device and a cooling device.

[実施例]
〔触媒インクの調製〕
ケッチェンブラックに熱処理を行い、グラファイト化度を高めた後、白金を担持した担体と、グラファイト化度の低いアモルファスカーボンであるケッチェンブラックに白金を担持した担体(田中貴金属工業株式会社)をカーボン重量で1:1、純水、およびNafion(デュポン株式会社)溶液を混合、分散処理をおこない触媒インクとした。
[Example]
[Preparation of catalyst ink]
After heat-treating Ketjen Black to increase the degree of graphitization, a carrier carrying platinum and a carrier carrying platinum on Ketjen Black, an amorphous carbon with a low degree of graphitization (Tanaka Kikinzoku Kogyo Co., Ltd.) are carbonized. 1: 1 by weight, pure water and a Nafion (DuPont) solution were mixed and dispersed to obtain a catalyst ink.

[比較例]
熱処理を行い、グラファイト化度を高めた後に、白金を担持した担体のみを使用し、グラファイト化度の低い、アモルファスカーボンであるケッチェンブラックに白金を担持した担体を混合させなかったこと以外は、実施例1と同様に作製した。
〔電極触媒層の作製方法〕
この(実施例)及び(比較例)作製した触媒インクを転写基材上に塗布し、電極触媒層を作製した。このとき、単位面積あたりPt質量が0.3mg/cm以下になる様に、触媒インク塗布条件を調整した。乾燥工程後、所定の電極サイズに打ち抜いた。
[Comparative example]
After performing heat treatment and increasing the degree of graphitization, using only the carrier supporting platinum, except that the carrier supporting platinum was not mixed with ketjen black, which is an amorphous carbon having a low degree of graphitization, It was produced in the same manner as in Example 1.
[Method for producing electrode catalyst layer]
The catalyst inks thus prepared (Example) and (Comparative Example) were applied onto a transfer substrate to prepare an electrode catalyst layer. At this time, the catalyst ink application conditions were adjusted so that the Pt mass per unit area was 0.3 mg / cm 2 or less. After the drying process, it was punched into a predetermined electrode size.

[膜電極接合体作製]
固体高分子電解質膜としては、プロトン伝導性高分子膜、ナフィオン212(デュポン株式会社製)を用いた。電解質膜の両面に、先に準備をした電極触媒層で挟持し、130℃、6.0MPaの条件でホットプレスを行った後、転写基材をのみを剥がすことにより、電極触媒層付き固体高分子電解質膜、膜電極接合体を得た。
[Membrane electrode assembly production]
As the solid polymer electrolyte membrane, a proton conductive polymer membrane, Nafion 212 (manufactured by DuPont) was used. By sandwiching the electrode catalyst layer on both surfaces of the electrolyte membrane with the previously prepared electrode catalyst layer and performing hot pressing under conditions of 130 ° C. and 6.0 MPa, only the transfer substrate is peeled off, so that the solid catalyst with electrode catalyst layer is removed. A molecular electrolyte membrane and a membrane electrode assembly were obtained.

得られた膜電極接合体の両面に、ガス拡散層としてカーボンペーパーを配置し、更に、一対の焼成カーボン製のセパレータで挟持し、単セルの固体高分子型燃料電池を作製した。   Carbon paper was disposed as a gas diffusion layer on both surfaces of the obtained membrane electrode assembly, and was further sandwiched between a pair of calcined carbon separators to produce a single-cell solid polymer fuel cell.

[評価]
〔発電特性〕
燃料電池測定装置(東陽テクニカ社製GFT−SG1)にて発電特性評価をおこなった。燃料として水素ガス、酸化剤として空気を使用し、セル温度80℃、低加湿条件下にて、電流密度0.5A/cm、1.0A/cmにおけるセル電圧値の評価をおこなった。
[Evaluation]
[Power generation characteristics]
The power generation characteristics were evaluated with a fuel cell measurement device (GFT-SG1 manufactured by Toyo Technica Co., Ltd.). Using hydrogen gas as the fuel and air as the oxidant, the cell voltage values were evaluated at a current density of 0.5 A / cm 2 and 1.0 A / cm 2 under a cell temperature of 80 ° C. and low humidification conditions.

図3は、実施例1、および比較例1の電極触媒層を用いて作製した、固体高分子型燃料電池の発電特性結果であり、電流密度0.5A/cm、1.0A/cmにおけるセル電圧値を示すグラフである。実施例1の方が、比較例1よりもセル電圧が高く、性能が向上していることが確認された。 FIG. 3 shows the results of power generation characteristics of the polymer electrolyte fuel cells produced using the electrode catalyst layers of Example 1 and Comparative Example 1, and current densities of 0.5 A / cm 2 and 1.0 A / cm 2 are shown. It is a graph which shows the cell voltage value in. It was confirmed that the cell voltage of Example 1 was higher than that of Comparative Example 1 and the performance was improved.

図1は本発明の膜電極接合体の断面模式図である。FIG. 1 is a schematic cross-sectional view of a membrane electrode assembly of the present invention. 図2は本発明の固体高分子型燃料電池の分解模式図である。FIG. 2 is an exploded schematic view of the polymer electrolyte fuel cell of the present invention. 図3は実施例1および比較例1の固体高分子型燃料電池の発電特性結果を示すグラフである。FIG. 3 is a graph showing the results of power generation characteristics of the polymer electrolyte fuel cells of Example 1 and Comparative Example 1.

符号の説明Explanation of symbols

12 膜電極接合体
1 固体高分子電解質膜
2 電極触媒層
3 電極触媒層
4 空気極側ガス拡散層
5 燃料極側ガス拡散層
6 空気極
7 燃料極
8 ガス流路
9 冷却水流路
10 セパレータ
DESCRIPTION OF SYMBOLS 12 Membrane electrode assembly 1 Solid polymer electrolyte membrane 2 Electrode catalyst layer 3 Electrode catalyst layer 4 Air electrode side gas diffusion layer 5 Fuel electrode side gas diffusion layer 6 Air electrode 7 Fuel electrode 8 Gas flow path 9 Cooling water flow path 10 Separator

Claims (3)

一対の電極触媒層で高分子電解質膜を挟持した構造を備える膜電極接合体であって、
前記電極触媒層の少なくとも一方が、高分子電解質と触媒物質と該触媒物質を担持するカーボン担体を備え、且つ、該カーボン担体がグラファイト化度の異なる少なくとも2種類以上のカーボン担体を備えることを特徴とする膜電極接合体。
A membrane electrode assembly having a structure in which a polymer electrolyte membrane is sandwiched between a pair of electrode catalyst layers,
At least one of the electrode catalyst layers includes a polymer electrolyte, a catalyst substance, and a carbon support that supports the catalyst substance, and the carbon support includes at least two kinds of carbon supports having different degrees of graphitization. Membrane electrode assembly.
前記カーボン担体が、黒鉛質炭素、炭素繊維、カーボンナノチューブ、ナノホーン、フラーレンから選択されることを特徴とする請求項1記載の膜電極接合体。   The membrane electrode assembly according to claim 1, wherein the carbon support is selected from graphitic carbon, carbon fiber, carbon nanotube, nanohorn, and fullerene. 請求項1または請求項2記載の膜電極接合体を一対のガス拡散層で狭持し、且つ、
前記一対のガス拡散層で狭持された膜電極接合体を一対のセパレータで狭持した構造を備える固体高分子型燃料電池。
The membrane electrode assembly according to claim 1 or 2 is sandwiched between a pair of gas diffusion layers, and
A solid polymer fuel cell comprising a structure in which a membrane electrode assembly sandwiched between a pair of gas diffusion layers is sandwiched between a pair of separators.
JP2008035727A 2008-02-18 2008-02-18 Membrane-electrode assembly and solid polymer fuel cell Pending JP2009193910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008035727A JP2009193910A (en) 2008-02-18 2008-02-18 Membrane-electrode assembly and solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008035727A JP2009193910A (en) 2008-02-18 2008-02-18 Membrane-electrode assembly and solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2009193910A true JP2009193910A (en) 2009-08-27

Family

ID=41075735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008035727A Pending JP2009193910A (en) 2008-02-18 2008-02-18 Membrane-electrode assembly and solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2009193910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509336A (en) * 2012-12-23 2016-03-24 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Graphite-containing electrode and related method
US10516171B2 (en) 2013-01-18 2019-12-24 Kolon Industries, Inc. Catalyst for fuel cell, electrode for fuel cell, membrane-electrode assembly for fuel cell and fuel cell system using the same

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141871A (en) * 1980-12-13 1982-09-02 Electrochem Energieconversie Fuel battery electrode and method of producing fuel battery electrode
JPH01286257A (en) * 1988-05-12 1989-11-17 Matsushita Electric Ind Co Ltd Electrode for liquid fuel cell
WO2002027844A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell and production method therefor
JP2004158359A (en) * 2002-11-08 2004-06-03 Hitachi Ltd Electrode catalyst, and fuel cell using the same
JP2005129457A (en) * 2003-10-27 2005-05-19 Nissan Motor Co Ltd Electrode catalyst
JP2005135671A (en) * 2003-10-29 2005-05-26 Nissan Motor Co Ltd Electrode for fuel cell
JP2005174836A (en) * 2003-12-12 2005-06-30 Nissan Motor Co Ltd Solid polymer fuel cell
JP2005209615A (en) * 2003-11-14 2005-08-04 Nissan Motor Co Ltd Gas diffusion layer and solid polyelectrolyte fuel cell
JP2005531884A (en) * 2002-01-08 2005-10-20 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Electrocatalyst ink
JP2006004916A (en) * 2004-05-17 2006-01-05 Nissan Motor Co Ltd Mea for fuel cell and fuel cell using the same
JP2006012476A (en) * 2004-06-23 2006-01-12 Nissan Motor Co Ltd Membrane-electrode assembly for fuel cell
JP2006160543A (en) * 2004-12-03 2006-06-22 Nissan Motor Co Ltd Electroconductive material, electrode catalyst for fuel cell using the same, and methods for manufacturing them
JP2006179463A (en) * 2004-11-25 2006-07-06 Nissan Motor Co Ltd Solid polymer fuel cell
JP2006236631A (en) * 2005-02-22 2006-09-07 Nissan Motor Co Ltd Polymer electrolyte fuel cell and vehicle mounting the same
JP2006344428A (en) * 2005-06-07 2006-12-21 Nissan Motor Co Ltd Solid polymer fuel cell
JP2007061698A (en) * 2005-08-30 2007-03-15 Hitachi Ltd Electrode catalyst for fuel cell, membrane electrode assembly, fuel cell and portable electronic equipment
JP2007242392A (en) * 2006-03-08 2007-09-20 Honda Motor Co Ltd Membrane electrode structure for solid-polymer fuel cell
JP2007265916A (en) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd Fuel cell
JP2007335163A (en) * 2006-06-13 2007-12-27 Matsushita Electric Ind Co Ltd Membrane catalyst layer assembly, membrane electrode assembly, and polymer-electrolyte fuel cell
JP2008060002A (en) * 2006-09-01 2008-03-13 Sanyo Electric Co Ltd Membrane electrode assembly and fuel cell
JP2008059921A (en) * 2006-08-31 2008-03-13 Nippon Soken Inc Fuel cell

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141871A (en) * 1980-12-13 1982-09-02 Electrochem Energieconversie Fuel battery electrode and method of producing fuel battery electrode
JPH01286257A (en) * 1988-05-12 1989-11-17 Matsushita Electric Ind Co Ltd Electrode for liquid fuel cell
WO2002027844A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell and production method therefor
JP2005531884A (en) * 2002-01-08 2005-10-20 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Electrocatalyst ink
JP2004158359A (en) * 2002-11-08 2004-06-03 Hitachi Ltd Electrode catalyst, and fuel cell using the same
JP2005129457A (en) * 2003-10-27 2005-05-19 Nissan Motor Co Ltd Electrode catalyst
JP2005135671A (en) * 2003-10-29 2005-05-26 Nissan Motor Co Ltd Electrode for fuel cell
JP2005209615A (en) * 2003-11-14 2005-08-04 Nissan Motor Co Ltd Gas diffusion layer and solid polyelectrolyte fuel cell
JP2005174836A (en) * 2003-12-12 2005-06-30 Nissan Motor Co Ltd Solid polymer fuel cell
JP2006004916A (en) * 2004-05-17 2006-01-05 Nissan Motor Co Ltd Mea for fuel cell and fuel cell using the same
JP2006012476A (en) * 2004-06-23 2006-01-12 Nissan Motor Co Ltd Membrane-electrode assembly for fuel cell
JP2006179463A (en) * 2004-11-25 2006-07-06 Nissan Motor Co Ltd Solid polymer fuel cell
JP2006160543A (en) * 2004-12-03 2006-06-22 Nissan Motor Co Ltd Electroconductive material, electrode catalyst for fuel cell using the same, and methods for manufacturing them
JP2006236631A (en) * 2005-02-22 2006-09-07 Nissan Motor Co Ltd Polymer electrolyte fuel cell and vehicle mounting the same
JP2006344428A (en) * 2005-06-07 2006-12-21 Nissan Motor Co Ltd Solid polymer fuel cell
JP2007061698A (en) * 2005-08-30 2007-03-15 Hitachi Ltd Electrode catalyst for fuel cell, membrane electrode assembly, fuel cell and portable electronic equipment
JP2007242392A (en) * 2006-03-08 2007-09-20 Honda Motor Co Ltd Membrane electrode structure for solid-polymer fuel cell
JP2007265916A (en) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd Fuel cell
JP2007335163A (en) * 2006-06-13 2007-12-27 Matsushita Electric Ind Co Ltd Membrane catalyst layer assembly, membrane electrode assembly, and polymer-electrolyte fuel cell
JP2008059921A (en) * 2006-08-31 2008-03-13 Nippon Soken Inc Fuel cell
JP2008060002A (en) * 2006-09-01 2008-03-13 Sanyo Electric Co Ltd Membrane electrode assembly and fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509336A (en) * 2012-12-23 2016-03-24 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Graphite-containing electrode and related method
US10944108B2 (en) 2012-12-23 2021-03-09 Raytheon Technologies Corporation Graphite-containing electrode and method related thereto
US10516171B2 (en) 2013-01-18 2019-12-24 Kolon Industries, Inc. Catalyst for fuel cell, electrode for fuel cell, membrane-electrode assembly for fuel cell and fuel cell system using the same

Similar Documents

Publication Publication Date Title
JP5458503B2 (en) Method for producing electrolyte membrane-electrode assembly
JP5481820B2 (en) Microporous layer and gas diffusion layer having the same
JP2009252359A (en) Fuel cell
JP4655168B1 (en) Method for producing electrode catalyst layer for fuel cell
CN108780900B (en) Carbon powder for fuel cell, and catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell using same
JP5581583B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP5428493B2 (en) Method for producing polymer electrolyte fuel cell
JP5332294B2 (en) Manufacturing method of membrane electrode assembly
KR102422340B1 (en) Catalyst for fuel cell and manufacturing method thereof
KR102602407B1 (en) The composition for manufacturing electrode of membrane-electrode assembly for fuel cell and method for manufacturing electrode of membrane-electrode assembly for fuel cell using the same
JP5740889B2 (en) Carbon-coated catalyst material for polymer electrolyte fuel cell, its production method, electrode catalyst layer, and membrane electrode assembly
JP4858658B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell having the same
JP5487701B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
KR20100068028A (en) Catalyst layer for fuel cell and method for preparing the same
JP5262156B2 (en) Solid polymer fuel cell and manufacturing method thereof
JP2009193910A (en) Membrane-electrode assembly and solid polymer fuel cell
JP5790049B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5928072B2 (en) Manufacturing method of membrane electrode assembly
KR102187990B1 (en) Manufacturing method of catalyst ink for forming fuel cell electrode catalyst layer
JP5434051B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP2006160543A (en) Electroconductive material, electrode catalyst for fuel cell using the same, and methods for manufacturing them
JP2010170797A (en) Manufacturing method of electrode catalyst layer for fuel cell
JP2011071000A (en) Storing method and using method for catalyst ink for fuel cell, and solid form catalyst ink to be stored in the storing method
JP2004063409A (en) Manufacturing method of solid high molecular fuel cell
JP2005174575A (en) Electrode catalyst layer and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140212