JP2002184017A - Optical head device - Google Patents

Optical head device

Info

Publication number
JP2002184017A
JP2002184017A JP2000389386A JP2000389386A JP2002184017A JP 2002184017 A JP2002184017 A JP 2002184017A JP 2000389386 A JP2000389386 A JP 2000389386A JP 2000389386 A JP2000389386 A JP 2000389386A JP 2002184017 A JP2002184017 A JP 2002184017A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
phase correction
correction element
crystal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000389386A
Other languages
Japanese (ja)
Inventor
Mitsuo Osawa
光生 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000389386A priority Critical patent/JP2002184017A/en
Publication of JP2002184017A publication Critical patent/JP2002184017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small-size lightweight optical head device, mounted with a phase correction element having small transmission wavefront aberrations and little changes in the transmission wavefront aberration over a wide temperature range. SOLUTION: In a phase correction element prepared, a liquid crystal layer 303 pinched between two substrates 301, 302 facing each other, he outer edges of the substrates 301, 302 are sealed with a sealing agent 304, an the border line where the sealing agent 304 is in contact with the liquid crystal layer 303 is set in an elliptical form with the ratio of the major axis to the minor axis of the ellipse being >=1.0 and <=1.3. The phase correction element is disposed between a quarter-wave plate and a collimation lens of the optical head device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、位相補正素子を搭
載した光ヘッド装置に関する。
The present invention relates to an optical head device equipped with a phase correction element.

【0002】[0002]

【従来の技術】従来の光ヘッド装置は、本発明の光ヘッ
ド装置の構成と基本的には同じであるため、本発明の光
ヘッド装置を示す図6を用いて構成を説明する。半導体
レーザ1から出射した直線偏光(P偏光)のレーザ光
は、偏光ビームスプリッタ2、コリメートレンズ3、位
相補正素子4、λ/4板5の順に透過し、P偏光は円偏
光に変換されて、アクチュエータ7に保持された対物レ
ンズ6を通過して光記録媒体8上に集光される。集光さ
れたレーザ光は、光記録媒体8に記録された光情報を含
んで反射され、上記とは逆向きに進み、λ/4板5で円
偏光はP偏光と直交する偏波面のS偏光に変換され、偏
光ビームスプリッタ2によって偏向されて、光検出器9
によって光情報が読みとられる。位相補正素子4は位相
補正素子制御回路10からの出力電圧によって制御さ
れ、半導体レーザ1からのレーザ光の位相が変化させら
れる。
2. Description of the Related Art The configuration of a conventional optical head device is basically the same as the configuration of the optical head device of the present invention. Therefore, the configuration will be described with reference to FIG. 6 showing the optical head device of the present invention. The linearly polarized (P-polarized) laser light emitted from the semiconductor laser 1 is transmitted through the polarization beam splitter 2, the collimator lens 3, the phase correction element 4, and the λ / 4 plate 5 in this order, and the P-polarized light is converted into circularly polarized light. The light passes through the objective lens 6 held by the actuator 7 and is focused on the optical recording medium 8. The condensed laser light is reflected including the optical information recorded on the optical recording medium 8 and travels in the opposite direction, and the λ / 4 plate 5 converts the circularly polarized light into a polarization plane S orthogonal to the P polarized light. The light is converted into polarized light, deflected by the polarization beam splitter 2, and
The optical information is read. The phase correction element 4 is controlled by the output voltage from the phase correction element control circuit 10, and changes the phase of the laser light from the semiconductor laser 1.

【0003】従来の光ヘッド装置に使用される位相補正
素子4は液晶封止素子であり、通常図7および図8に示
す構造を有する。液晶封止素子は、基板101、102
の表面にITO透明導電膜を加工した透明電極106、
トランスファ部107を形成し、2枚の基板101、1
02を透明電極106などを形成した側を向かい合わせ
て両基板の外縁部にシール剤105を塗布し、熱圧着し
て固定したセル構造となっている。セルの内部には、注
入口109より液晶が注入されて液晶層108となる。
シール剤105には所望のセルギャップを保持するため
のスペーサ、および2枚(上下)の基板の電極間での導
電性を得るため導電膜を表面コーティングした導電性ビ
ーズが混入されている。液晶層は図7の基板101、1
02に挟持されているが非常に薄いので図7には図示さ
れていない。
A phase correction element 4 used in a conventional optical head device is a liquid crystal sealing element and usually has a structure shown in FIGS. The liquid crystal sealing elements are substrates 101 and 102
A transparent electrode 106 in which an ITO transparent conductive film is processed on the surface of
A transfer unit 107 is formed, and two substrates 101, 1
02 has a cell structure in which the sealing agent 105 is applied to the outer edges of both substrates with the sides on which the transparent electrodes 106 and the like are formed facing each other, and thermocompression bonded. Liquid crystal is injected into the cell from an injection port 109 to form a liquid crystal layer 108.
Spacers for maintaining a desired cell gap and conductive beads coated with a conductive film to obtain conductivity between electrodes of two (upper and lower) substrates are mixed in the sealant 105. The liquid crystal layers are substrates 101, 1 in FIG.
However, it is not shown in FIG. 7 because it is very thin.

【0004】基板102上の透明電極106は複数個に
分割された部分電極からなる。それぞれの部分電極は基
板102の端部に設けられた電極取り出し部104の配
線電極103と導電接続され、外部より電圧が供給され
る。電極取り出し部を有しない基板101側の電極への
電圧の供給は、トランスファ部107を通じて行われ
る。両基板上に形成されたトランスファ部107が、導
電性ビーズが混入されているシール剤105により導電
接続されており、基板102の電極取り出し部104の
配線電極103から電圧を供給できる。
The transparent electrode 106 on the substrate 102 is composed of a plurality of partial electrodes. Each of the partial electrodes is conductively connected to the wiring electrode 103 of the electrode extraction portion 104 provided at the end of the substrate 102, and a voltage is supplied from the outside. The supply of the voltage to the electrode on the substrate 101 side which does not have the electrode take-out part is performed through the transfer part 107. The transfer portions 107 formed on both substrates are conductively connected by the sealant 105 mixed with conductive beads, and a voltage can be supplied from the wiring electrodes 103 of the electrode take-out portions 104 of the substrate 102.

【0005】この液晶封止素子を光ヘッド装置に搭載し
て、光記録媒体8である光ディスク上での集光特性を改
善する。液晶封止素子は半導体レーザ1から出射するレ
ーザ光の光路中に配置され、レーザ光が透過する液晶封
止素子の有効領域中において、複数個に分割された部分
電極により部分的に液晶層に電圧が印加され、印加部分
の透過光の位相を変化させて光ディスク上の波面収差を
補正する。
[0005] The liquid crystal sealing element is mounted on an optical head device to improve the light condensing characteristics on an optical disk as the optical recording medium 8. The liquid crystal sealing element is disposed in the optical path of the laser light emitted from the semiconductor laser 1, and partially in the liquid crystal layer by the plurality of divided partial electrodes in the effective area of the liquid crystal sealing element through which the laser light passes. A voltage is applied to correct the wavefront aberration on the optical disk by changing the phase of the transmitted light at the applied portion.

【0006】[0006]

【発明が解決しようとする課題】液晶封止素子は、図9
に示すように一般に基板201の外縁部と基板202の
外縁部をシール剤203で固定した構造となっている。
図9においても、液晶層は非常に薄く、図示されていな
い。環境の温度変化により、液晶封止素子中の液晶層が
膨張または収縮することにより液晶封止素子を構成する
基板がたわみ、素子の断面形状は例えば図10(図9の
A−A’線断面図)、図11(図9のB−B’線断面
図)に示すように変形する。ここで図10、図11の2
04は液晶層である。基板が上記のように変形したと
き、液晶層の厚さは中央部で厚く外縁部で薄くなり、液
晶封止素子を透過する光の波面が変形して中央部に位相
の遅れが生じ、発生する透過波面収差により光ディスク
上での集光特性の劣化がおこる。本発明は、上記の問題
を解決し、広温度範囲にわたり透過波面収差の小さな液
晶封止素子(位相補正素子)を搭載した、光ディスク上
での光の集光特性が優れた小型かつ軽量の光ヘッド装置
を提供することを目的とする。
The liquid crystal sealing element is shown in FIG.
As shown in FIG. 2, the outer edge of the substrate 201 and the outer edge of the substrate 202 are generally fixed with a sealant 203.
Also in FIG. 9, the liquid crystal layer is very thin and is not shown. A substrate constituting the liquid crystal sealing element is bent by expansion or contraction of a liquid crystal layer in the liquid crystal sealing element due to a change in environmental temperature, and the cross-sectional shape of the element is, for example, as shown in FIG. FIG. 11 and FIG. 11 (cross-sectional view taken along the line BB ′ in FIG. 9). Here, 2 in FIGS. 10 and 11
04 is a liquid crystal layer. When the substrate is deformed as described above, the thickness of the liquid crystal layer is thicker at the center and thinner at the outer edge, and the wavefront of light passing through the liquid crystal sealing element is deformed, causing a phase lag at the center, causing Due to the transmitted wavefront aberration, the light-collecting characteristics on the optical disk deteriorate. SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and is equipped with a liquid crystal sealing element (phase correction element) having a small transmitted wavefront aberration over a wide temperature range. It is an object to provide a head device.

【0007】[0007]

【課題を解決するための手段】本発明は、直線偏光であ
る光を出射する半導体レーザと、出射された前記光の位
相を変化させる位相補正素子と、位相が変化させられた
前記光を光記録媒体に集光する対物レンズと、前記光の
前記光記録媒体からの反射光を検出する光検出器とを備
える光ヘッド装置であって、前記位相補正素子は、対向
する2枚の透明基板間に液晶層が挟持され、前記透明基
板の外縁部がシール剤により封止された構造を有し、前
記シール剤と前記液晶層とが接する境界線の形状が楕円
であり、前記楕円の長軸の短軸に対する長さの比が1.
0以上かつ1.3以下であることを特徴とする光ヘッド
装置を提供する。
SUMMARY OF THE INVENTION The present invention is directed to a semiconductor laser that emits light that is linearly polarized light, a phase correction element that changes the phase of the emitted light, and a light source that emits the phase-changed light. An optical head device comprising: an objective lens for condensing light on a recording medium; and a photodetector for detecting reflected light of the light from the optical recording medium, wherein the phase correction element comprises two opposing transparent substrates. A liquid crystal layer is interposed therebetween, and has a structure in which an outer edge of the transparent substrate is sealed with a sealant. A shape of a boundary line where the sealant and the liquid crystal layer are in contact is an ellipse, and the length of the ellipse is The ratio of the length of the axis to the minor axis is 1.
Provided is an optical head device characterized by being not less than 0 and not more than 1.3.

【0008】また、直線偏光である光を出射する半導体
レーザと、出射された前記光の位相を変化させる位相補
正素子と、位相が変化させられた前記光を光記録媒体に
集光する対物レンズと、前記光の前記光記録媒体からの
反射光を検出する光検出器とを備える光ヘッド装置であ
って、前記位相補正素子は、対向する2枚の透明基板間
に液晶層が挟持され、前記透明基板の外縁部がシール剤
により封止された構造を有し、前記シール剤と前記液晶
層とが接する境界線の形状が多角形であり、前記液晶層
と前記光の光軸との交点から、前記多角形の各辺に下し
た垂線のうち、最長の垂線の最短の垂線に対する長さの
比が1.0以上かつ1.3以下であることを特徴とする
光ヘッド装置を提供する。
Also, a semiconductor laser that emits linearly polarized light, a phase correction element that changes the phase of the emitted light, and an objective lens that condenses the phase-changed light on an optical recording medium An optical head device comprising: a light detector that detects reflected light of the light from the optical recording medium, wherein the phase correction element has a liquid crystal layer sandwiched between two opposing transparent substrates, The transparent substrate has a structure in which an outer edge portion is sealed with a sealant, and a shape of a boundary line where the sealant and the liquid crystal layer are in contact is a polygon, and a shape of a boundary line between the liquid crystal layer and the optical axis of the light. Provided is an optical head device, wherein the ratio of the length of the longest perpendicular to the shortest perpendicular among the perpendiculars drawn from the intersection to each side of the polygon is 1.0 or more and 1.3 or less. I do.

【0009】[0009]

【発明の実施の形態】本発明の光ヘッド装置における、
液晶封止素子である位相補正素子の第1の実施の態様
は、図1(a)に示すようにシール剤304である接着
剤と、注入口305から注入後封入された液晶層303
とが接する境界線の形状が楕円になるようにする。そし
て、半導体レーザからの直線偏光である光の光軸306
を中心とする楕円において、長軸の短軸に対する長さの
比が1.0以上かつ1.3以下となるよう設計する。こ
のように設計することにより、環境温度が変化したとき
の液晶の膨張または収縮により発生する透過波面収差の
変動を小さくできる。2枚の基板301と302は、図
1(b)の断面図に示すように長さが異なる。以下基板
とは透明基板のことを意味する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In an optical head device according to the present invention,
In the first embodiment of the phase correction element as a liquid crystal sealing element, as shown in FIG. 1A, an adhesive as a sealant 304, a liquid crystal layer 303 sealed after being injected from an injection port 305, and the like.
The shape of the boundary line contacting with is made elliptical. Then, the optical axis 306 of the light that is linearly polarized light from the semiconductor laser
Is designed so that the ratio of the length of the major axis to the minor axis is 1.0 or more and 1.3 or less in the ellipse centered at. With such a design, it is possible to reduce the fluctuation of the transmitted wavefront aberration caused by the expansion or contraction of the liquid crystal when the environmental temperature changes. The two substrates 301 and 302 have different lengths as shown in the cross-sectional view of FIG. Hereinafter, the substrate means a transparent substrate.

【0010】楕円の長軸の短軸に対する長さの比が1.
0のときは楕円は特別な形状、すなわち円となる。境界
線の形状が円になると、環境の温度変化に伴う波面収差
の変動をさらに小さくでき好ましい。
The ratio of the length of the major axis to the minor axis of the ellipse is 1.
When 0, the ellipse has a special shape, that is, a circle. It is preferable that the shape of the boundary line be a circle because the fluctuation of the wavefront aberration due to the temperature change of the environment can be further reduced.

【0011】上記の位相補正素子の作製法を以下に述べ
る。まずスクリーン印刷機、ディスペンサなどを使用
し、1枚の基板302にシール剤304として接着剤を
外縁部に塗布する。基板としてはガラス基板を用いても
よいし、ポリカーボネートなどのプラスティック基板を
用いてもよい。接着剤は、対向する2枚の基板を接着で
きれば、どのような材料を用いてもよいが、エポキシ樹
脂やアクリル樹脂などの樹脂系接着剤が、熱による硬化
や光による硬化ができ好ましい。
A method for manufacturing the above-described phase correction element will be described below. First, using a screen printing machine, a dispenser, or the like, an adhesive is applied to the outer edge of one substrate 302 as a sealant 304. As the substrate, a glass substrate may be used, or a plastic substrate such as polycarbonate may be used. As the adhesive, any material may be used as long as the two opposing substrates can be bonded. However, a resin-based adhesive such as an epoxy resin or an acrylic resin is preferable because it can be cured by heat or light.

【0012】次に別の基板301を基板302に重ね、
接着剤により2枚の基板301、302の外縁部を接着
しシールしてセル構造とした後、液晶を注入して液晶層
303とし、液晶の注入口305を封止する。
Next, another substrate 301 is placed on the substrate 302,
After the outer edges of the two substrates 301 and 302 are bonded and sealed with an adhesive to form a cell structure, liquid crystal is injected to form a liquid crystal layer 303, and a liquid crystal injection port 305 is sealed.

【0013】本発明の光ヘッド装置における、位相補正
素子の第2の実施の態様は、例えば図2に示すように、
シール剤404と、注入口405から注入された液晶層
403とが接する境界線の形状が多角形の1つである方
形である。そして、液晶層と半導体レーザからの直線偏
光である光の光軸406との交点から方形の各辺におろ
した垂線のうち、最長の垂線の最短の垂線に対する長さ
の比が1.0以上かつ1.3以下になるよう設計する。
ここで方形とは、正方形と長方形を意味する。
A second embodiment of the phase correction element in the optical head device of the present invention is, for example, as shown in FIG.
The shape of the boundary line where the sealant 404 and the liquid crystal layer 403 injected from the injection port 405 are in contact is a square which is one of polygons. The ratio of the length of the longest perpendicular to the shortest perpendicular among the perpendiculars drawn to each side of the rectangle from the intersection of the liquid crystal layer and the optical axis 406 of the light that is linearly polarized light from the semiconductor laser is 1.0 or more. And it is designed to be 1.3 or less.
Here, the square means a square and a rectangle.

【0014】上記の例では、多角形として方形について
説明したが、これに限定されず多角形とは、三角形、四
角形、五角形、六角形などであり、正多角形であっても
よいし、非正多角形であってもよい。しかし、正多角形
であり、かつ辺数の多いほうが波面収差の変動を小さく
でき好ましい。この第2の実施の態様における位相補正
素子の作製法は、シール剤404と液晶層403とが接
する境界線の形状が、第1の実施の態様における位相補
正素子と異なるだけで、基本的に同じである。
In the above example, a square was described as a polygon. However, the present invention is not limited to this, and a polygon may be a triangle, a quadrangle, a pentagon, a hexagon, or the like. It may be a regular polygon. However, it is preferable that the shape is a regular polygon and the number of sides is large because the fluctuation of the wavefront aberration can be reduced. The method of manufacturing the phase correction element according to the second embodiment basically differs from the phase correction element according to the first embodiment only in the shape of the boundary line where the sealant 404 and the liquid crystal layer 403 are in contact. Is the same.

【0015】また、作製された位相補正素子も、上記の
第1の実施の態様の位相補正素子のときと同様に透過波
面収差の変動を小さくできる。作製された、第1または
第2の実施の態様における位相補正素子は、図6に示す
ように、例えばコリメートレンズ3とλ/4板5との間
の光路中に配置される。そしてCD、CD−ROM、D
VDなどの光ディスク、相変化型の光ディスク、光磁気
ディスクなどへの集光特性を改善するために、位相補正
素子4へ向けて位相補正素子制御回路10からの電気信
号が供給される。λ/4板を透過した半導体レーザ1か
らの直線偏光の光は、位相が変化させられ円偏光とな
り、対物レンズ6によって光記録媒体8上に集光され
る。
Further, the manufactured phase correction element can reduce the variation of the transmitted wavefront aberration similarly to the case of the phase correction element of the first embodiment. The manufactured phase correction element according to the first or second embodiment is arranged, for example, in the optical path between the collimator lens 3 and the λ / 4 plate 5, as shown in FIG. And CD, CD-ROM, D
An electric signal is supplied from the phase correction element control circuit 10 to the phase correction element 4 in order to improve the light condensing characteristics on an optical disk such as a VD, a phase change optical disk, a magneto-optical disk, and the like. The phase of the linearly polarized light from the semiconductor laser 1 transmitted through the λ / 4 plate is changed to circularly polarized light, and is converged on the optical recording medium 8 by the objective lens 6.

【0016】λ/4板が配置されないとき、液晶封止素
子は例えばコリメートレンズ3と対物レンズ6との間に
配置される。液晶封止素子を透過した半導体レーザ1か
らの直線偏光の光は位相は変化させられるが、直線偏光
のまま対物レンズ6によって光記録媒体8上に集光され
る。
When the λ / 4 plate is not disposed, the liquid crystal sealing element is disposed, for example, between the collimator lens 3 and the objective lens 6. Although the phase of the linearly polarized light from the semiconductor laser 1 transmitted through the liquid crystal sealing element is changed, the linearly polarized light is condensed on the optical recording medium 8 by the objective lens 6 with the linearly polarized light.

【0017】本発明に係る位相補正素子は、位相補正素
子そのものの発生する収差を広温度範囲にわたって抑制
でき、光記録媒体上への集光度を高めるのに大きな効果
が得られる。
The phase correction element according to the present invention can suppress the aberration generated by the phase correction element itself over a wide temperature range, and has a great effect in increasing the degree of light condensing on the optical recording medium.

【0018】[0018]

【実施例】「例1」光ヘッド装置に使用する位相補正素
子は、図3および図4に示すように、まず種々の電極を
2枚の基板上に形成して作製した。スパッタ法によりI
TO透明電極膜を厚さ30nmに成膜した、厚さ0.5
3mmのガラスの基板802と804に、フォトリソグ
ラフィ法およびウエットエッチング法により電極のパタ
ーニングを施して、パターニング電極801、803、
805および配線電極806を形成した。ここでは、パ
ターニング電極803を5個の部分電極に分割した。
EXAMPLE 1 As shown in FIGS. 3 and 4, a phase correction element used in an optical head device was manufactured by first forming various electrodes on two substrates. I by sputtering
A TO transparent electrode film was formed to a thickness of 30 nm, a thickness of 0.5
Electrodes are patterned on 3 mm glass substrates 802 and 804 by a photolithography method and a wet etching method to form patterning electrodes 801, 803,
805 and a wiring electrode 806 were formed. Here, the patterning electrode 803 is divided into five partial electrodes.

【0019】部分電極間には、それぞれ10μmのギャ
ップを設けて相互の絶縁性を保った。図4では、それぞ
れの部分電極間の実線が10μmのギャップを表わして
いる。また、1つの部分電極を跨いで、他の部分電極と
配線電極とを接続するとき、前者の部分電極と配線電極
との間にも絶縁のため10μmのギャップを設けた。
A gap of 10 μm was provided between the partial electrodes to maintain mutual insulation. In FIG. 4, the solid line between the respective partial electrodes represents a gap of 10 μm. When connecting the other partial electrode and the wiring electrode across one partial electrode, a gap of 10 μm was provided between the former partial electrode and the wiring electrode for insulation.

【0020】次に、パターニング電極が形成された基板
802と804上に厚さ約60nmのポリイミド膜をフ
レキソ印刷法により塗布し、焼成した。ポリイミド膜に
対し布を使用したラビングによる配向処理を施した後、
図5に示すようにパターニング電極を形成した基板上
に、スクリーン印刷法によりエポキシ樹脂系の接着剤を
シール剤901として印刷した。シール剤901には、
直径5μmのファイバスペーサを3%(質量基準、以下
同じ。)と、表面に導電性コーティングを施した直径
5.5μmのアクリル樹脂球を2%混合した。ここで、
ファイバスペーサは、液晶セルのギャップを維持するた
めのものであり、またアクリル樹脂球は、基板802の
パターニング電極801と基板804のパターニング電
極805との導電性を得るためのものである。
Next, a polyimide film having a thickness of about 60 nm was applied on the substrates 802 and 804 on which the patterning electrodes were formed by flexographic printing and baked. After subjecting the polyimide film to an alignment treatment by rubbing using a cloth,
As shown in FIG. 5, an epoxy resin-based adhesive was printed as a sealant 901 by a screen printing method on a substrate on which a patterning electrode was formed. The sealant 901 includes:
3% of a fiber spacer having a diameter of 5 μm (based on mass, the same applies hereinafter) was mixed with 2% of an acrylic resin ball of 5.5 μm having a surface coated with a conductive coating. here,
The fiber spacer is for maintaining a gap between the liquid crystal cells, and the acrylic resin sphere is for obtaining conductivity between the patterning electrode 801 of the substrate 802 and the patterning electrode 805 of the substrate 804.

【0021】基板802と804とは、図5に示すよう
にパターニング電極801、803、805間の位置合
わせ後に重ねた。170℃にて、6×104N/m2の外
力をこれらの基板に加えて圧着し、液晶セルを作製し
た。作製した液晶セルに真空注入法により注入口902
から液晶を注入し液晶層904としたのち、注入口90
2をUV硬化型の接着剤にて封止して、外形寸法10×
13mmの位相補正素子を作製した。
The substrates 802 and 804 are overlapped after the alignment between the patterning electrodes 801, 803 and 805 as shown in FIG. At 170 ° C., the external force 6 × 10 4 N / m 2 crimped in addition to these substrates, a liquid crystal cell was produced. An injection port 902 is formed in the liquid crystal cell by vacuum injection.
After injecting liquid crystal into the liquid crystal layer 904 from the
2 is sealed with a UV-curable adhesive, and the external dimensions are 10 ×
A 13 mm phase correction element was manufactured.

【0022】液晶を封止しているシール剤901と液晶
層904との境界線の形状を、光軸905を中心とする
円形とした。作製した位相補正素子の、光軸905を中
心とする半径4mmφの円内で、透過波面収差を測定し
たところ、−40℃から+90℃までの温度範囲内で
0.025λ以下であった。
The shape of the boundary between the sealant 901 for sealing the liquid crystal and the liquid crystal layer 904 is circular with the optical axis 905 as the center. When the transmitted wavefront aberration was measured within a circle having a radius of 4 mm and centered on the optical axis 905 of the manufactured phase correction element, it was 0.025λ or less within a temperature range from −40 ° C. to + 90 ° C.

【0023】図6に示すように、光ヘッド装置に配置さ
れたλ/4板5とコリメートレンズ3との間に、作製さ
れた位相補正素子を位相補正素子4として設置し、この
位相補正素子4を位相補正素子制御回路10からの出力
電圧によって制御した。半導体レーザ1から出射した直
線偏光(P偏光)のレーザ光は、偏光ビームスプリッタ
2、コリメートレンズ3、位相補正素子4、λ/4板5
の順に透過し、P偏光は円偏光に変換されて、アクチュ
エータ7に保持された対物レンズ6を通過して光記録媒
体8上に集光された。集光されたレーザ光は、光記録媒
体8に記録された光情報を含んで反射され、上記とは逆
向きに進み、λ/4板5で円偏光はP偏光と直交する偏
波面のS偏光に変換され、偏光ビームスプリッタ2によ
って偏向されて、光検出器9によって光情報が読みとら
れた。この位相補正素子を搭載した光ヘッド装置は、光
ディスク上での光の集光特性が優れ、読みとった光情報
はジッター特性の良好なものであった。
As shown in FIG. 6, the produced phase correcting element is installed as a phase correcting element 4 between the λ / 4 plate 5 and the collimating lens 3 arranged in the optical head device. 4 was controlled by the output voltage from the phase correction element control circuit 10. The linearly polarized (P-polarized) laser light emitted from the semiconductor laser 1 is polarized by a polarization beam splitter 2, a collimating lens 3, a phase correction element 4, and a λ / 4 plate 5.
, And the P-polarized light was converted into circularly polarized light, passed through the objective lens 6 held by the actuator 7, and collected on the optical recording medium 8. The condensed laser light is reflected including the optical information recorded on the optical recording medium 8 and travels in the opposite direction, and the λ / 4 plate 5 converts the circularly polarized light into a polarization plane S orthogonal to the P polarized light. The light was converted into polarized light, deflected by the polarizing beam splitter 2, and optical information was read by the photodetector 9. The optical head device equipped with this phase correction element had excellent light condensing characteristics on the optical disk, and the read optical information had good jitter characteristics.

【0024】「例2」光ヘッド装置に使用する位相補正
素子は、例1と同様、図3および図4に示すように、ま
ず種々の電極を2枚の基板上に形成して作製した。スパ
ッタ法によりITO透明電極膜を厚さ30nmに成膜し
た、厚さ0.4mmのガラスの基板802と804に、
フォトリソグラフィ法およびウエットエッチング法によ
り電極のパターニングを施して、パターニング電極80
1、803、805および配線電極806を形成した。
ここでは、パターニング電極803を5個の部分電極に
分割した。
Example 2 As in Example 1, a phase correction element used in an optical head device was manufactured by first forming various electrodes on two substrates, as shown in FIGS. On a glass substrate 802 and 804 having a thickness of 0.4 mm, an ITO transparent electrode film having a thickness of 30 nm was formed by a sputtering method.
The electrode is patterned by photolithography and wet etching to form a patterned electrode 80.
1, 803, 805 and a wiring electrode 806 were formed.
Here, the patterning electrode 803 is divided into five partial electrodes.

【0025】部分電極間には、それぞれ15μmのギャ
ップを設けて相互の絶縁性を保った。図4では、それぞ
れの部分電極間の実線が15μmのギャップを表わして
いる。また、1つの部分電極を跨いで、他の部分電極と
配線電極とを接続するとき、前者の部分電極と配線電極
との間にも絶縁のため15μmのギャップを設けた。
A gap of 15 μm was provided between each of the partial electrodes to maintain mutual insulation. In FIG. 4, a solid line between each of the partial electrodes represents a gap of 15 μm. When connecting the other partial electrode and the wiring electrode across one partial electrode, a gap of 15 μm was provided between the former partial electrode and the wiring electrode for insulation.

【0026】次に、パターニング電極が形成された基板
802と804上に厚さ約40nmのポリイミド膜をフ
レキソ印刷法により塗布し、焼成した。ポリイミド膜に
対し布を使用したラビングによる配向処理を施した後、
図5に示すようにパターニング電極を形成した基板上
に、スクリーン印刷法によりエポキシ樹脂系の接着剤を
シール剤901として印刷した。シール剤901には、
直径8μmのファイバスペーサを3%と、表面に導電性
コーティングを施した直径9μmのアクリル樹脂球を2
%混合した。ここで、ファイバスペーサは、液晶セルの
ギャップを維持するためのものであり、またアクリル樹
脂球は、基板802のパターニング電極801と基板8
04のパターニング電極805との導電性を得るための
ものである。
Next, a polyimide film having a thickness of about 40 nm was applied on the substrates 802 and 804 on which the patterning electrodes were formed by flexographic printing and baked. After subjecting the polyimide film to an alignment treatment by rubbing using a cloth,
As shown in FIG. 5, an epoxy resin-based adhesive was printed as a sealant 901 by a screen printing method on a substrate on which a patterning electrode was formed. The sealant 901 includes:
3% of fiber spacers having a diameter of 8 μm and 2 μm of acrylic resin balls having a diameter of 9 μm having a conductive coating on the surface.
% Mixed. Here, the fiber spacer is for maintaining the gap between the liquid crystal cells, and the acrylic resin sphere is provided between the patterning electrode 801 of the substrate 802 and the substrate 8.
This is for obtaining conductivity with the patterning electrode 805 of FIG.

【0027】基板802と804とは、図5に示すよう
にパターニング電極801、803、805間の位置合
わせ後に重ねた。170℃にて、6×104N/m2の外
力を加えて、これらの基板を圧着し液晶セルを作製し
た。作製した液晶セルに真空注入法により注入口902
から液晶を注入し液晶層904としたのち、注入口90
2をUV硬化型の接着剤にて封止して、外形寸法8×1
0mmの位相補正素子を作製した。
As shown in FIG. 5, the substrates 802 and 804 are overlapped after the alignment between the patterning electrodes 801, 803 and 805. At 170 ° C., an external force of 6 × 10 4 N / m 2 was applied, and these substrates were pressed to produce a liquid crystal cell. An injection port 902 is formed in the liquid crystal cell by vacuum injection.
After injecting liquid crystal into the liquid crystal layer 904 from the
2 is sealed with a UV-curable adhesive, and the external dimensions are 8 × 1
A 0 mm phase correction element was produced.

【0028】液晶を封止しているシール剤901と液晶
層904との境界線の形状を、光軸905を中心とする
円形とした。作製した位相補正素子の、光軸905を中
心とする半径4mmφの円内で、透過波面収差を測定し
たところ、−40℃から+90℃までの温度範囲内で
0.025λ以下であった。
The shape of the boundary between the sealant 901 for sealing the liquid crystal and the liquid crystal layer 904 is circular with the optical axis 905 as the center. When the transmitted wavefront aberration was measured within a circle having a radius of 4 mm and centered on the optical axis 905 of the manufactured phase correction element, it was 0.025λ or less within a temperature range from −40 ° C. to + 90 ° C.

【0029】本例における光ヘッド装置では、図6に示
したλ/4板5を使用せず、また偏光ビームスプリッタ
2の代わりに、同じ場所に非偏光ビームスプリッタを配
置し、コリメートレンズ3と対物レンズ6との間に、作
製された位相補正素子を位相補正素子4として設置し、
位相補正素子制御回路10からの出力電圧によって制御
した。
In the optical head device according to the present embodiment, the λ / 4 plate 5 shown in FIG. 6 is not used, and a non-polarizing beam splitter is arranged in the same place instead of the polarizing beam splitter 2 so that the collimating lens 3 and Between the objective lens 6, the produced phase correction element is installed as the phase correction element 4,
It was controlled by the output voltage from the phase correction element control circuit 10.

【0030】この位相補正素子を搭載した光ヘッド装置
は、光ディスク上での光の集光特性が優れ、読みとった
光情報はジッター特性の良好なものであった。
The optical head device equipped with this phase correction element had excellent light condensing characteristics on an optical disk, and the read optical information had good jitter characteristics.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば光
ヘッド装置に設置する位相補正素子のシール剤と液晶層
との接する境界線の形状を楕円または多角形とし、最適
化することにより、位相補正素子の透過波面収差を小さ
くし、かつ環境温度の変動に伴う波面収差の変動を小さ
くできる。したがって、透過波面収差が小さくなるた
め、この素子を組み込んだ光ヘッド装置は、光の集光特
性が向上しジッター特性が向上して、高密度で情報の記
録・再生ができる。
As described above, according to the present invention, the shape of the boundary line between the sealant of the phase correction element installed in the optical head device and the liquid crystal layer is made elliptical or polygonal and optimized. In addition, the transmitted wavefront aberration of the phase correction element can be reduced, and the fluctuation of the wavefront aberration due to the fluctuation of the environmental temperature can be reduced. Accordingly, the transmitted wavefront aberration is reduced, so that the optical head device incorporating this element has improved light focusing characteristics and jitter characteristics, and can record and reproduce information at high density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る位相補正素子の第1の実施の態様
の1例を示す図で、(a)平面図、(b)断面図。
FIGS. 1A and 1B are views showing an example of a first embodiment of a phase correction element according to the present invention, wherein FIG. 1A is a plan view and FIG.

【図2】本発明に係る位相補正素子の第2の実施の態様
の1例を示す平面図。
FIG. 2 is a plan view showing an example of a second embodiment of the phase correction element according to the present invention.

【図3】実施例の位相補正素子を構成する一方の基板に
形成された透明電極のパターン図。
FIG. 3 is a pattern diagram of a transparent electrode formed on one substrate constituting the phase correction element of the embodiment.

【図4】図3の透明電極のパターンと合わせる他方の基
板に形成された透明電極のパターン図。
FIG. 4 is a pattern diagram of a transparent electrode formed on the other substrate to be matched with the pattern of the transparent electrode of FIG. 3;

【図5】図3と図4との透明電極のパターンを組み合わ
せて構成された位相補正素子の平面図。
5 is a plan view of a phase correction element configured by combining the patterns of the transparent electrodes in FIGS. 3 and 4. FIG.

【図6】本発明の光ヘッド装置の1例を示す概念図。FIG. 6 is a conceptual diagram showing an example of an optical head device according to the present invention.

【図7】従来の液晶封止素子の1例を示す斜視図。FIG. 7 is a perspective view showing an example of a conventional liquid crystal sealing element.

【図8】従来の液晶封止素子の1例を示す平面図。FIG. 8 is a plan view showing an example of a conventional liquid crystal sealing element.

【図9】従来の液晶封止素子の他の例を示す斜視図。FIG. 9 is a perspective view showing another example of a conventional liquid crystal sealing element.

【図10】図9の液晶封止素子のA−A’線断面図。FIG. 10 is a sectional view taken along line A-A ′ of the liquid crystal sealing element of FIG. 9;

【図11】図9の液晶封止素子のB−B’線断面図。FIG. 11 is a sectional view taken along line B-B ′ of the liquid crystal sealing element in FIG. 9;

【符号の説明】[Explanation of symbols]

1:半導体レーザ 4:位相補正素子(液晶封止素子) 6:対物レンズ 8:光記録媒体 301、302、802、804:基板 304、404、901:シール剤 303、403、904:液晶層 306、406、905:光軸 305、405、902:封止口 1: Semiconductor laser 4: Phase correction element (liquid crystal sealing element) 6: Objective lens 8: Optical recording medium 301, 302, 802, 804: Substrate 304, 404, 901: Sealant 303, 403, 904: Liquid crystal layer 306 , 406, 905: Optical axis 305, 405, 902: Sealing port

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】直線偏光である光を出射する半導体レーザ
と、出射された前記光の位相を変化させる位相補正素子
と、位相が変化させられた前記光を光記録媒体に集光す
る対物レンズと、前記光の前記光記録媒体からの反射光
を検出する光検出器とを備える光ヘッド装置であって、 前記位相補正素子は、対向する2枚の透明基板間に液晶
層が挟持され、前記透明基板の外縁部がシール剤により
封止された構造を有し、 前記シール剤と前記液晶層とが接する境界線の形状が楕
円であり、前記楕円の長軸の短軸に対する長さの比が
1.0以上かつ1.3以下であることを特徴とする光ヘ
ッド装置。
1. A semiconductor laser that emits light that is linearly polarized light, a phase correction element that changes the phase of the emitted light, and an objective lens that condenses the light whose phase has been changed on an optical recording medium. And a photodetector that detects light reflected from the optical recording medium of the light, wherein the phase correction element has a liquid crystal layer sandwiched between two opposing transparent substrates, The transparent substrate has a structure in which an outer edge portion is sealed with a sealant, and a shape of a boundary line where the sealant and the liquid crystal layer are in contact is an ellipse, and a length of a major axis of the ellipse with respect to a minor axis is smaller. An optical head device having a ratio of 1.0 or more and 1.3 or less.
【請求項2】前記長軸の前記短軸に対する長さの比が
1.0である請求項1に記載の光ヘッド装置。
2. The optical head device according to claim 1, wherein a ratio of a length of the major axis to the minor axis is 1.0.
【請求項3】直線偏光である光を出射する半導体レーザ
と、出射された前記光の位相を変化させる位相補正素子
と、位相が変化させられた前記光を光記録媒体に集光す
る対物レンズと、前記光の前記光記録媒体からの反射光
を検出する光検出器とを備える光ヘッド装置であって、 前記位相補正素子は、対向する2枚の透明基板間に液晶
層が挟持され、前記透明基板の外縁部がシール剤により
封止された構造を有し、 前記シール剤と前記液晶層とが接する境界線の形状が多
角形であり、前記液晶層と前記光の光軸との交点から、
前記多角形の各辺に下した垂線のうち、最長の垂線の最
短の垂線に対する長さの比が1.0以上かつ1.3以下
であることを特徴とする光ヘッド装置。
3. A semiconductor laser that emits linearly polarized light, a phase correction element that changes the phase of the emitted light, and an objective lens that condenses the phase-changed light on an optical recording medium. And a photodetector that detects light reflected from the optical recording medium of the light, wherein the phase correction element has a liquid crystal layer sandwiched between two opposing transparent substrates, The transparent substrate has a structure in which an outer edge portion is sealed with a sealant, and a shape of a boundary line where the sealant and the liquid crystal layer are in contact is a polygon, and the boundary between the liquid crystal layer and the optical axis of the light is From the intersection,
An optical head device, wherein a ratio of a length of a longest perpendicular line to a shortest perpendicular line among perpendicular lines dropped on each side of the polygon is 1.0 or more and 1.3 or less.
JP2000389386A 2000-10-06 2000-12-21 Optical head device Pending JP2002184017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000389386A JP2002184017A (en) 2000-10-06 2000-12-21 Optical head device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000307951 2000-10-06
JP2000-307951 2000-10-06
JP2000389386A JP2002184017A (en) 2000-10-06 2000-12-21 Optical head device

Publications (1)

Publication Number Publication Date
JP2002184017A true JP2002184017A (en) 2002-06-28

Family

ID=26601696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000389386A Pending JP2002184017A (en) 2000-10-06 2000-12-21 Optical head device

Country Status (1)

Country Link
JP (1) JP2002184017A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112058A (en) * 1996-10-08 1998-04-28 Asahi Glass Co Ltd Optical head device
JP2000235727A (en) * 1998-12-15 2000-08-29 Matsushita Electric Ind Co Ltd Optical device, optical head using same and optical recording and reproducing device
JP2000298873A (en) * 1999-04-12 2000-10-24 Asahi Glass Co Ltd Phase correction liquid-crystal cell of optical head device
JP2000353333A (en) * 1999-06-10 2000-12-19 Sony Corp Optical pickup device and optical disk device
JP2002083442A (en) * 2000-06-30 2002-03-22 Asahi Glass Co Ltd Optical head device
JP2002100064A (en) * 2000-09-27 2002-04-05 Asahi Glass Co Ltd Optical head device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112058A (en) * 1996-10-08 1998-04-28 Asahi Glass Co Ltd Optical head device
JP2000235727A (en) * 1998-12-15 2000-08-29 Matsushita Electric Ind Co Ltd Optical device, optical head using same and optical recording and reproducing device
JP2000298873A (en) * 1999-04-12 2000-10-24 Asahi Glass Co Ltd Phase correction liquid-crystal cell of optical head device
JP2000353333A (en) * 1999-06-10 2000-12-19 Sony Corp Optical pickup device and optical disk device
JP2002083442A (en) * 2000-06-30 2002-03-22 Asahi Glass Co Ltd Optical head device
JP2002100064A (en) * 2000-09-27 2002-04-05 Asahi Glass Co Ltd Optical head device

Similar Documents

Publication Publication Date Title
JP4692489B2 (en) Liquid crystal diffractive lens element and optical head device
CN1993748B (en) Liquid crystal lens element and optical head device
JP3620145B2 (en) Optical head device
US6084848A (en) Two-dimensional near field optical memory head
JP2009015995A (en) Liquid crystal diffractive lens element and optical head device
JP2003045065A (en) Liquid crystal end-sealing element and optical head device
JP3544461B2 (en) Optical element for optical pickup, method for manufacturing optical element for optical pickup, and optical pickup
JP4370723B2 (en) Optical head device
JP2002184017A (en) Optical head device
US7835252B2 (en) Optical head apparatus
JP2003045065A5 (en)
JP2002357715A (en) Grating-integrated azimuth rotator and optical head device
JP4419229B2 (en) Optical head device
JP3885251B2 (en) Optical anisotropic diffraction grating, driving method thereof, and optical head device using the same
JP4720028B2 (en) Diffraction element and optical head device
JP4337255B2 (en) Optical head device
JP4379062B2 (en) Optical device
JP2002250815A (en) Phase plate for two wavelengths and optical head device
JP4479134B2 (en) Optical head device
JP2007250168A (en) Optical head device
JP4696883B2 (en) Phase correction element and optical head device
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP4254455B2 (en) Optical head device
JP2000298873A (en) Phase correction liquid-crystal cell of optical head device
JP2001043549A (en) Optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406