JP2002180372A - Carbon fiber coated with metal oxide and method for producing the same - Google Patents

Carbon fiber coated with metal oxide and method for producing the same

Info

Publication number
JP2002180372A
JP2002180372A JP2000381809A JP2000381809A JP2002180372A JP 2002180372 A JP2002180372 A JP 2002180372A JP 2000381809 A JP2000381809 A JP 2000381809A JP 2000381809 A JP2000381809 A JP 2000381809A JP 2002180372 A JP2002180372 A JP 2002180372A
Authority
JP
Japan
Prior art keywords
metal oxide
carbon fiber
coated
fiber
coated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000381809A
Other languages
Japanese (ja)
Inventor
Yasuhisa Nagata
康久 永田
Yoshinobu Suzuki
慶宜 鈴木
Shunsaku Kato
俊作 加藤
Shinko Ri
李眞昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Kagawa Industry Support Foundation
Original Assignee
Kagawa Industry Support Foundation
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagawa Industry Support Foundation, Toho Tenax Co Ltd filed Critical Kagawa Industry Support Foundation
Priority to JP2000381809A priority Critical patent/JP2002180372A/en
Publication of JP2002180372A publication Critical patent/JP2002180372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)
  • Woven Fabrics (AREA)
  • Paper (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a carbon fiber coated with a metal oxide, or the like, having characteristic mechanical properties of carbon fiber comprising high strength and high elastic modulus while maintaining the characteristic feature of metal oxide. SOLUTION: The carbon fiber, strand, or the like, coated with the metal oxide and having a tensile load at break of >=1.5 g and a tensile elongation of >=0.5% is produced by covering a carbon fiber having a diameter of 3-10 μm with 1-100 wt.% metal oxide based on the weight of the fiber. The metal oxide is deposited on the surface of the carbon fiber by immersing a carbon fiber having a diameter of 3-10 μm, a tensile load at break of >=1.5 g and a tensile elongation of >=0.5% in a solution of a metal oxide precursor and irradiating with microwave radiation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属酸化物被覆炭
素繊維、同ストランド、同チョップドファイバー、及び
これらを用いた金属酸化物被覆炭素繊維組織構造体、並
びにこれらの製造方法に関する。これらは、炭素繊維の
持つ優れた比強度・比弾性率などの機械的性質と、炭素
繊維の表面に被覆された金属酸化物が持つ固有の性質、
例えば磁性、透磁率性、超伝導性等の性質を兼備してい
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal oxide-coated carbon fiber, a strand thereof, a chopped fiber thereof, a metal oxide-coated carbon fiber tissue structure using the same, and a production method thereof. These are the mechanical properties such as excellent specific strength and specific elastic modulus of carbon fiber, the unique properties of metal oxide coated on the surface of carbon fiber,
For example, it has properties such as magnetism, magnetic permeability, and superconductivity.

【0002】[0002]

【従来の技術】炭素繊維にプラスチック、セラミック
ス、金属のような異種の素材を単に被覆して複合材料を
製造する技術は比較的基本的な技術であり、簡便な手法
によりそれらを作製することができるため、広く実施さ
れ、製品も出回っている。
2. Description of the Related Art The technique of manufacturing a composite material by simply coating different kinds of materials such as plastics, ceramics, and metal on carbon fiber is a relatively basic technique, and it is difficult to manufacture them by a simple method. They are widely implemented and products are available because they can.

【0003】近年、高性能炭素繊維強化プラスチック等
の出現に見られる複合材料の性能、用途の進展の一方向
として、強化繊維である繊維素材に別機能を有する素材
を被覆させて、両者の特性を兼備した高機能繊維強化プ
ラスチックを開発する試みがなされており、種々の複合
強化繊維が開発されつつある。
In recent years, as one of the developments in the performance and use of composite materials seen in the emergence of high-performance carbon fiber reinforced plastics and the like, a fiber material which is a reinforcing fiber is coated with a material having another function, and the characteristics of both materials are improved. Attempts have been made to develop high-performance fiber-reinforced plastics having both of these properties, and various composite reinforcing fibers are being developed.

【0004】このような複合強化繊維は、強化繊維自体
の高い強度や弾性率を生かす用途を持つだけでなく、強
化繊維表面に被覆した素材の持つ電気的性質等の機能を
兼備するものである。
[0004] Such a reinforced fiber not only has a use to make use of the high strength and elastic modulus of the reinforced fiber itself, but also has a function such as an electric property of a material coated on the surface of the reinforced fiber. .

【0005】一方、金属酸化物の中でも、磁性酸化物は
磁気テープなどの磁気記録媒体に用いられているだけで
なく、導電性や表面吸着能、電磁波吸収機能面で幅広い
用途が期待されている。特に、昨今の情報通信機器の高
度な発達により、外界には多種多様の電波が飛び交って
おり、これに関連してコンピューターや制御装置を誤作
動させる電磁波障害が大きな社会問題になっている。
On the other hand, among metal oxides, magnetic oxides are not only used for magnetic recording media such as magnetic tapes, but are also expected to be widely used in terms of conductivity, surface adsorption ability, and electromagnetic wave absorbing function. . In particular, due to the recent advanced development of information and communication equipment, various kinds of radio waves are circulating in the outside world, and in connection with this, electromagnetic interference that causes malfunctions of computers and control devices has become a major social problem.

【0006】近年このような電磁波を反射あるいは吸収
する材料の開発が進展しており、特に磁性酸化物である
フェライト等は電磁波の広い周波数領域で電磁波吸収性
が高いため、これを電磁波吸収体として用いて成形物を
製造する技術の開発も進められている。
In recent years, the development of materials that reflect or absorb such electromagnetic waves has been advanced. In particular, ferrite, which is a magnetic oxide, has high electromagnetic wave absorption in a wide frequency range of electromagnetic waves. The development of technology for manufacturing molded articles using the same is also underway.

【0007】炭素材料に金属酸化物を被覆する技術は、
特開平10―208541号等により公知である。しか
し、これら従来技術による場合は、一本一本の炭素繊維
表面を強固かつ均一に一定量の金属酸化物を被覆するこ
とはできず、しかも機械的性質に優れた金属酸化物被覆
炭素繊維を製造するまでには至っていない。
A technique for coating a carbon material with a metal oxide is as follows.
It is known from Japanese Patent Application Laid-Open No. 10-208541. However, in the case of these conventional techniques, it is not possible to apply a certain amount of metal oxide to the surface of each carbon fiber firmly and uniformly, and to obtain a metal oxide-coated carbon fiber having excellent mechanical properties. It has not been manufactured yet.

【0008】炭素繊維表面へ金属酸化物を被覆させる手
段としては、従来サイズ剤のような糊状物質に金属酸化
物を混ぜ込んでサイジングする方法、金属酸化物の前駆
体溶液でメッキする方法、CVDのような化学蒸着によ
り被覆する方法などが検討されている。しかし、何れの
方法も金属酸化物の付着状態、連続化によるコストダウ
ン、金属酸化物の純度や結晶性などの面で、充分満足で
きるものではない。
Means for coating the surface of the carbon fiber with the metal oxide include a conventional method of sizing by mixing the metal oxide with a pasty substance such as a sizing agent, a method of plating with a precursor solution of the metal oxide, A method of coating by chemical vapor deposition such as CVD has been studied. However, none of these methods is sufficiently satisfactory in terms of the adhesion state of the metal oxide, cost reduction by continuity, purity and crystallinity of the metal oxide, and the like.

【0009】また、炭素繊維表面に金属酸化物を被覆さ
せる場合、400℃以上の高温で処理する技術も報告さ
れている。この方法による場合は、高温を用いるので製
造方法が煩雑となり、又エネルギー的にも無駄が多い。
更に、上記技術のように高温で金属酸化物を被覆する場
合は、その過程で炭素繊維が脆性化する等の繊維特性の
劣化問題がある。
In addition, a technique has been reported in which, when a metal oxide is coated on the carbon fiber surface, the carbon fiber is treated at a high temperature of 400 ° C. or higher. In the case of this method, a high temperature is used, so that the manufacturing method becomes complicated and energy is wasted.
Further, when a metal oxide is coated at a high temperature as in the above technique, there is a problem of deterioration of fiber properties such as embrittlement of carbon fibers in the process.

【0010】[0010]

【発明が解決しようとする課題】本発明者は、炭素繊維
に磁性、透磁率性、超伝導性等の金属酸化物の有する機
能を付与すべく、高強度・高弾性率炭素繊維に比較的簡
便なプロセスで過大なエネルギーを用いずに金属酸化物
を被覆・複合させた繊維の開発を鋭意検討した結果、マ
イクロ波を利用することにより炭素繊維の高強度・高弾
性率を損ねることなく均一に金属酸化物を被覆した金属
酸化物被覆炭素繊維フィラメント、ストランド、チョッ
プドファイバー、及びそれらを用いた織物、不織布等の
組織構造体を製造できることを知得し、本発明を完成す
るに至ったものである。
SUMMARY OF THE INVENTION The inventor of the present invention has proposed a method of imparting high strength and high modulus carbon fibers to carbon fibers in order to impart the functions of metal oxides such as magnetism, magnetic permeability and superconductivity to the carbon fibers. As a result of intensive studies on the development of a fiber coated and composited with a metal oxide using a simple process and without using excessive energy, the use of microwaves enabled uniform and high-strength carbon fibers without impairing their high strength and elastic modulus. That they can produce metal oxide-coated carbon fiber filaments, strands, chopped fibers, and woven fabrics and nonwoven fabrics using them, and have completed the present invention. It is.

【0011】従って、本発明の目的とするところは、金
属酸化物の特性を維持しつつ、炭素繊維の機械的特性で
ある高強度・高弾性率を維持した金属酸化物被覆炭素繊
維等を提供することにある。本発明の他の目的は、より
簡便な、省エネルギー型の上記金属酸化物被覆炭素繊維
等の製造方法を提供することにある。本発明の更なる目
的は、以下の記述により理解される。
Accordingly, it is an object of the present invention to provide a metal oxide-coated carbon fiber or the like which maintains the mechanical properties of a carbon fiber while maintaining the high strength and high modulus of elasticity while maintaining the properties of the metal oxide. Is to do. Another object of the present invention is to provide a simpler method for producing the above-mentioned metal oxide-coated carbon fiber or the like of the energy-saving type. Further objects of the present invention will be understood by the following description.

【0012】[0012]

【課題を解決するための手段】上記課題を解決する本発
明は以下に記載するものである。
The present invention for solving the above-mentioned problems is as described below.

【0013】〔1〕 直径が3〜10μmの炭素繊維を
前記繊維の質量に対して1〜100質量%の金属酸化物
で被覆してなり、引っ張り荷重が1.5g以上、引っ張
り伸度が0.5%以上であることを特徴とする金属酸化
物被覆炭素繊維。
[1] A carbon fiber having a diameter of 3 to 10 μm is coated with a metal oxide in an amount of 1 to 100% by mass based on the mass of the fiber, and has a tensile load of 1.5 g or more and a tensile elongation of 0%. Metal oxide-coated carbon fiber characterized by being at least 5%.

【0014】〔2〕 〔1〕に記載の金属酸化物被覆炭
素繊維を100〜100,000本集束してなる金属酸
化物被覆炭素繊維ストランドであって、前記ストランド
の引っ張り強度が200kgf/mm2以上、引っ張り
弾性率が20tonf/mm2以上であることを特徴と
する金属酸化物被覆炭素繊維ストランド、又はそれらを
長さ1〜100mmにカットしてなるチョップドファイ
バー。
[2] A metal oxide-coated carbon fiber strand obtained by bundling 100 to 100,000 metal oxide-coated carbon fibers according to [1], wherein the strand has a tensile strength of 200 kgf / mm 2. As described above, a metal oxide-coated carbon fiber strand having a tensile elastic modulus of 20 tonf / mm 2 or more, or a chopped fiber obtained by cutting them into a length of 1 to 100 mm.

【0015】〔3〕 水、油類、熱硬化性樹脂、又は熱
可塑性樹脂からなるストランド集束剤を金属酸化物被覆
炭素繊維の質量に対して1〜10wt%含有する請求項
2に記載の金属酸化物被覆炭素繊維ストランド又は金属
酸化物被覆チョップドファイバー。
[3] The metal according to claim 2, wherein the strand sizing agent comprising water, oils, thermosetting resin or thermoplastic resin is contained in an amount of 1 to 10 wt% based on the mass of the metal oxide-coated carbon fiber. Oxide-coated carbon fiber strand or metal oxide-coated chopped fiber.

【0016】〔4〕 〔2〕又は〔3〕に記載の金属酸
化物被覆炭素繊維ストランド、又はチョップドファイバ
ーを用いて構成された金属酸化物被覆炭素繊維組織構造
体。
[4] A metal oxide-coated carbon fiber tissue structure comprising the metal oxide-coated carbon fiber strand or chopped fiber according to [2] or [3].

【0017】〔5〕 金属酸化物被覆炭素繊維組織構造
体が、織物、不織布、合成紙、又はフェルトである
〔4〕に記載の金属酸化物被覆炭素繊維組織構造体。
[5] The metal oxide-coated carbon fiber tissue structure according to [4], wherein the metal oxide-coated carbon fiber tissue structure is a woven fabric, a nonwoven fabric, a synthetic paper, or a felt.

【0018】〔6〕 直径が3〜10μm、引っ張り荷
重が1.5g以上、引っ張り伸度が0.5%以上の炭素
繊維、又は前記炭素繊維を用いて製造したストランド、
チョップドファイバー若しくは構造体を、金属酸化物の
前駆体溶液に浸漬させてマイクロ波を照射することによ
り炭素繊維表面に金属酸化物を付着させた、金属酸化物
被覆炭素繊維、金属酸化物被覆炭素繊維ストランド、金
属酸化物被覆チョップドファイバー又は金属酸化物被覆
炭素繊維構造体の製造方法。
[6] A carbon fiber having a diameter of 3 to 10 μm, a tensile load of 1.5 g or more, and a tensile elongation of 0.5% or more, or a strand produced using the carbon fiber,
A metal oxide-coated carbon fiber, a metal oxide-coated carbon fiber in which a chopped fiber or a structure is immersed in a precursor solution of a metal oxide and irradiated with microwaves to attach the metal oxide to the carbon fiber surface. A method for producing a strand, a metal oxide-coated chopped fiber or a metal oxide-coated carbon fiber structure.

【0019】[0019]

【発明の実施の形態】本発明の金属酸化物被覆炭素繊維
の製造原料となる炭素繊維としては、市販されている一
般的なフェノール樹脂、レーヨン、ポリアクリロニトリ
ル等の高分子繊維、石油系ピッチ、炭素系ピッチ、液晶
系ピッチ等のピッチ系繊維等を原料とする炭素繊維の何
れも使用でき、特に限定されるものではない。しかし、
製造の容易さ及び得られる品質の安定性等の観点から、
主としてポリアクリロニトリル系繊維(ポリアクリロニ
トリル、及び極性基を有する単量体を共重合させたポリ
アクリロニトリル)を不活性ガス雰囲気下、1000〜
3000℃にて焼成して作られるポリアクリロニトリル
系の炭素繊維が高強度・高弾性率を与える炭素繊維とし
て好ましい。これら炭素繊維及びその製造方法自体は周
知である。
BEST MODE FOR CARRYING OUT THE INVENTION As carbon fibers used as a raw material for producing the metal oxide-coated carbon fibers of the present invention, commercially available polymer fibers such as phenol resin, rayon and polyacrylonitrile, petroleum pitch, Any carbon fiber made from pitch-based fibers such as carbon-based pitch and liquid-crystal-based pitch can be used, and is not particularly limited. But,
From the viewpoint of ease of production and stability of the obtained quality,
A polyacrylonitrile fiber (polyacrylonitrile and polyacrylonitrile obtained by copolymerizing a monomer having a polar group) is mainly treated with an inert gas atmosphere at 1000 to 1000
Polyacrylonitrile-based carbon fibers produced by firing at 3000 ° C. are preferable as carbon fibers giving high strength and high elastic modulus. These carbon fibers and a method for producing the carbon fibers are well known.

【0020】本発明に於て用いるポリアクリロニトリル
系炭素繊維は、フィラメントの単繊維直径が3〜10μ
m、繊維比重1.6〜2.0、引っ張り伸度が0.5%
以上、好ましくは引っ張り伸度が1〜3%、引っ張り荷
重が1.5g以上、好ましくは引っ張り荷重が10〜3
0gの性能を有するものが望ましい。
The polyacrylonitrile-based carbon fiber used in the present invention has a filament single fiber diameter of 3 to 10 μm.
m, fiber specific gravity 1.6-2.0, tensile elongation 0.5%
As described above, the tensile elongation is preferably 1 to 3%, the tensile load is 1.5 g or more, and preferably the tensile load is 10 to 3%.
Those having a performance of 0 g are desirable.

【0021】本発明に於て用いるアクリル系炭素繊維フ
ィラメントを集束して形成したストランドは、引っ張り
強さ200kgf/mm2以上、好ましくは引っ張り強
さ300〜1000kgf/mm2、ストランドの引っ
張り弾性率20tonf/mm2以上、好ましくは引っ
張り弾性率20〜60tonf/mm2の性能を有する
ものが望ましい。
The strands formed by focusing the acrylic carbon fiber filaments used At a present invention, the tensile strength of 200 kgf / mm 2 or more, preferably a tensile strength of 300~1000kgf / mm 2, hit the strands
A material having a tensile elasticity of 20 tonf / mm 2 or more, preferably a tensile elasticity of 20 to 60 tonf / mm 2 is desirable.

【0022】炭素繊維は、その表面にカルボン酸基や水
酸基のような官能基を持ち、炭素繊維表面に深さ0.5
μm以下の繊維長さ方向に連続してつながった皺を複数
持つものが好ましい。このような形状の炭素繊維は金属
酸化物の付着を高めるので、機械的特性に優れた金属酸
化物被覆炭素繊維を得ることができる。
The carbon fiber has a functional group such as a carboxylic acid group or a hydroxyl group on its surface, and has a depth of 0.5 cm on the carbon fiber surface.
Those having a plurality of continuously connected wrinkles in the fiber length direction of μm or less are preferable. Since the carbon fiber having such a shape enhances the adhesion of the metal oxide, a metal oxide-coated carbon fiber having excellent mechanical properties can be obtained.

【0023】本発明の金属酸化物被覆炭素繊維は、湿式
法により製造することが望ましい。
The metal oxide-coated carbon fiber of the present invention is desirably produced by a wet method.

【0024】湿式法による場合は、炭素繊維を金属酸化
物の前駆体溶液である金属アルコキシド、金属塩化物、
金属硫化物、金属硝酸塩、金属酢酸塩等の水溶性アルコ
キシド又は塩類の水や有機溶媒若しくはこれらの混合物
溶液に浸漬させ、炭素繊維表面に金属イオンあるいは化
合物を供給、吸着させながら、加熱酸化反応により炭素
繊維表面にフェライト化合物等の金属酸化物被膜を生成
させるものである。
In the case of the wet method, carbon fibers are mixed with metal alkoxide, metal chloride,
By immersing in a water-soluble alkoxide such as metal sulfide, metal nitrate, or metal acetate or a solution of salts in water or an organic solvent or a mixture thereof, and supplying and adsorbing metal ions or compounds on the carbon fiber surface, a heating oxidation reaction is performed. This is to form a metal oxide film such as a ferrite compound on the carbon fiber surface.

【0025】溶媒としては、一般に水を用いることが好
ましい。
In general, it is preferable to use water as the solvent.

【0026】前駆体溶液中に溶解させる金属イオンとし
ては、Fe、Ni、Cr、Mn、Cu、Zn、Co、A
l、Si、Ti、Zr、Ga、Sn、V等がある。前駆
体溶液として、メチルアルコール、エチルアルコール、
アセトン等の有機溶媒が含まれていても構わない。少量
の酸や塩基が溶液中に含まれても良い。
The metal ions to be dissolved in the precursor solution include Fe, Ni, Cr, Mn, Cu, Zn, Co, A
1, Si, Ti, Zr, Ga, Sn, V and the like. As a precursor solution, methyl alcohol, ethyl alcohol,
An organic solvent such as acetone may be contained. A small amount of acid or base may be included in the solution.

【0027】前駆体溶液中の金属イオン濃度は特に制限
がないが、金属酸化物を炭素繊維表面に均一に被覆させ
るには、10M/L以下が好ましく、特に0.1〜1M
/Lが好ましい。
The metal ion concentration in the precursor solution is not particularly limited, but is preferably 10 M / L or less, particularly 0.1 to 1 M in order to uniformly coat the metal oxide on the carbon fiber surface.
/ L is preferred.

【0028】上記前駆体溶液には、アンモニアのような
塩基性化合物、あるいは尿素系化合物等を共存させるこ
とが好ましい。
It is preferable that a basic compound such as ammonia or a urea-based compound coexist in the precursor solution.

【0029】加熱酸化反応は、前記前駆体溶液に炭素繊
維を浸漬させた後、加熱することにより、炭素繊維表面
に金属酸化物を被覆する反応である。
The thermal oxidation reaction is a reaction in which the carbon fiber is immersed in the precursor solution and then heated to coat the surface of the carbon fiber with a metal oxide.

【0030】加熱酸化反応は、マイクロ波を照射して行
うことが好ましい。マイクロ波を照射しながら常圧下又
は加圧下で加熱処理をすることにより金属酸化物を炭素
繊維に被覆できる。
The thermal oxidation reaction is preferably performed by irradiating a microwave. By performing a heat treatment under normal pressure or under pressure while irradiating microwaves, the metal oxide can be coated on the carbon fibers.

【0031】マイクロ波を照射することにより到達する
前駆体溶液の温度は、溶媒の種類や圧力により異なる
が、400℃以下が好ましく、特に100〜300℃が
好ましい。最高温度までの昇温速度は5〜50℃/分が
好ましい。
The temperature of the precursor solution reached by microwave irradiation varies depending on the type and pressure of the solvent, but is preferably 400 ° C. or lower, particularly preferably 100 to 300 ° C. The heating rate to the maximum temperature is preferably 5 to 50 ° C./min.

【0032】圧力は2000kPa以下、特に500〜
1000kPaが好ましい。加圧する媒体は、窒素やア
ルゴンなどの不活性ガスが好ましい。
The pressure is 2000 kPa or less, especially 500 to
1000 kPa is preferred. The medium to be pressurized is preferably an inert gas such as nitrogen or argon.

【0033】反応時間は、最高温度で10時間以下、通
常2〜5時間が好ましい。
The reaction time is preferably 10 hours or less at the maximum temperature, usually 2 to 5 hours.

【0034】操作としては、マイクロ波透過性の反応容
器に金属酸化物の前駆体溶液、及び炭素繊維を入れ、こ
れにマイクロ波を照射することにより繊維自体を加熱す
るものである。これにより、加熱された炭素繊維表面に
均一に金属酸化物が被覆する。 あるいは、炭素繊維と
前駆体溶液とをマイクロ波透過性の反応容器に外部から
連続的に供給しながら、これにマイクロ波を連続的に照
射してもよい。この方法による場合は、短繊維状の金属
酸化物被覆炭素繊維は勿論、連続した長繊維状の金属酸
化物被覆炭素繊維を製造することもできる。反応容器に
用いるマイクロ波透過性の材質としては、テフロン(登
録商標)や石英等が例示できる。
As an operation, a precursor solution of a metal oxide and carbon fibers are placed in a microwave-permeable reaction vessel, and the fibers themselves are heated by irradiating them with microwaves. As a result, the heated carbon fiber surface is uniformly coated with the metal oxide. Alternatively, while continuously supplying the carbon fiber and the precursor solution to the microwave-permeable reaction vessel from the outside, the microwave may be continuously irradiated to the reaction vessel. According to this method, continuous long-fiber metal oxide-coated carbon fibers can be produced as well as short fibrous metal oxide-coated carbon fibers. Teflon (registered trademark), quartz, and the like can be exemplified as the microwave-permeable material used for the reaction vessel.

【0035】マイクロ波は周波数0.3〜30GHzの
電磁波である。一般に用いることができる周波数は、電
波法により2.45GHzと定められているが、何れの
周波数のマイクロ波でも上記加熱酸化反応に利用でき
る。
Microwaves are electromagnetic waves having a frequency of 0.3 to 30 GHz. The frequency that can be generally used is determined to be 2.45 GHz by the Radio Law, but any microwave can be used for the above-mentioned thermal oxidation reaction.

【0036】炭素繊維質量に対する金属酸化物の被覆質
量は任意に設定できるが、好ましくは炭素繊維1gに対
し、金属酸化物質量は1g以下、特に0.02〜0.5
gが好ましい。
The coating mass of the metal oxide with respect to the mass of the carbon fiber can be set arbitrarily. Preferably, the mass of the metal oxide is 1 g or less, particularly 0.02 to 0.5 g per 1 g of the carbon fiber.
g is preferred.

【0037】上記マイクロ波を用いて製造する金属酸化
物被覆炭素繊維は、繊維表面に結晶性の高いフェライト
等の金属酸化物被膜を有する。前駆体溶液に浸漬された
炭素繊維にマイクロ波を照射すると、炭素繊維表面を短
時間に200℃以上の高温にできるので、金属酸化物の
結晶化が早く起こると思われる。
The metal oxide-coated carbon fiber produced by using the microwave has a metal oxide coating such as ferrite having high crystallinity on the fiber surface. When the microwave is irradiated on the carbon fiber immersed in the precursor solution, the surface of the carbon fiber can be heated to a high temperature of 200 ° C. or more in a short time, so that the crystallization of the metal oxide is thought to occur quickly.

【0038】前記金属塩等を含む前駆体溶液を用いる場
合、最終的に炭素繊維に被覆される金属酸化物は、F
e、Ni、Cr、Mn、Cu、Zn、Co、Al、S
i、Ti、Zr、Ga、Sn、V等の少なくとも一種類
以上の金属を含む酸化物となる。
When a precursor solution containing the metal salt or the like is used, the metal oxide finally coated on the carbon fibers is F
e, Ni, Cr, Mn, Cu, Zn, Co, Al, S
An oxide containing at least one or more metals such as i, Ti, Zr, Ga, Sn, and V is obtained.

【0039】金属酸化物の中でも、磁性酸化物であるN
iフェライト、Mnフェライト、Znフェライト、Co
フェライト、ZnNiフェライト、ZnMnフェライ
ト、ZnCoフェライト等のフェライト化合物を被覆し
た炭素繊維は、電磁波吸収機能を発揮し、工業的に有益
なものである。
Among the metal oxides, the magnetic oxide N
i ferrite, Mn ferrite, Zn ferrite, Co
Carbon fibers coated with ferrite compounds such as ferrite, ZnNi ferrite, ZnMn ferrite, and ZnCo ferrite exhibit an electromagnetic wave absorbing function and are industrially useful.

【0040】また得られる金属酸化物被覆炭素繊維は、
原料炭素繊維の諸物性値を低下させること無く維持して
おり、高性能である。即ち、得られる金属酸化物被覆炭
素繊維単繊維フィラメントの引っ張り荷重は1.5g以
上、引っ張り伸度は0.5%以上で、原料炭素繊維の強
度と同等である。また、上記金属酸化物被覆炭素繊維を
100〜100,000集束したストランドの引っ張り
強度は200kgf/mm2以上、 引っ張り弾性率は2
0tonf/mm2以上である。
The obtained metal oxide-coated carbon fiber is
Maintains various physical property values of raw carbon fiber without lowering, and has high performance. That is, the obtained metal oxide-coated carbon fiber single fiber filament has a tensile load of 1.5 g or more and a tensile elongation of 0.5% or more, which is equivalent to the strength of the raw carbon fiber. Further, a strand obtained by bundling the above metal oxide-coated carbon fibers in a bundle of 100 to 100,000 has a tensile strength of 200 kgf / mm 2 or more and a tensile elastic modulus of 2
0 tonf / mm 2 or more.

【0041】本発明の金属酸化物被覆炭素繊維は、取扱
性を良くするために、公知の強化繊維に採用されている
集束剤処理を行うことができる。
The metal oxide-coated carbon fiber of the present invention can be subjected to a sizing agent treatment used for known reinforcing fibers in order to improve handleability.

【0042】集束剤としては、一般に市販されている無
機、又は有機集束剤の何れも使用できる。特に、炭素繊
維用集束剤であるエポキシ樹脂、ウレタン樹脂、ポリエ
ステル樹脂、ビスマレイミド樹脂、イミド樹脂、アミド
樹脂等の単独、又は二種以上の組合せを使用することが
できる。特に、エポキシ樹脂とウレタン樹脂の単独ある
いは二種以上を組合せた集束剤が好ましく、これらによ
り集束したストランドは開繊性が良く、加工時に拡がり
性が良い。
As the sizing agent, any of commercially available inorganic or organic sizing agents can be used. In particular, an epoxy resin, a urethane resin, a polyester resin, a bismaleimide resin, an imide resin, an amide resin, and the like, which are sizing agents for carbon fibers, can be used alone or in combination of two or more. In particular, a sizing agent composed of an epoxy resin and a urethane resin alone or in combination of two or more types is preferable. Strands bundled with these resins have good spreadability and good spreadability during processing.

【0043】集束剤の使用量は、金属酸化物被覆炭素繊
維に対し0.5〜3.0質量%が好ましい。
The amount of the sizing agent used is preferably 0.5 to 3.0% by mass based on the metal oxide-coated carbon fibers.

【0044】金属酸化物被覆炭素繊維は、生産性向上や
物性等を考慮して、単繊維フィラメント100〜10
0,000本を合わせて1ストランドとして取扱い、こ
れをボビンに巻き取った製品形態にすると、取扱等の際
に都合がよい場合がある。用途によっては、ストランド
を分割したり、反対に複数本合わせ絡めて1ストランド
とし、ボビンに巻き取って製品としても良い。
The metal oxide-coated carbon fiber is made of a single fiber filament of 100 to 10 in consideration of productivity improvement and physical properties.
If a total of 000 pieces are handled as one strand and the product is wound into a bobbin, it may be convenient in handling or the like. Depending on the application, the strand may be divided or, conversely, a plurality of strands may be entangled to form one strand, which may be wound on a bobbin to form a product.

【0045】金属酸化物被覆炭素繊維ストランドは、長
さ1〜100mmの短繊維にカットしてチョップドファ
イバーとしても良い。このものは、一般的な方法により
抄紙して合成紙としたり、マトリックス樹脂と混練して
成形体にしても良い。
The metal oxide-coated carbon fiber strand may be cut into short fibers having a length of 1 to 100 mm into chopped fibers. This may be made into a synthetic paper by papermaking by a general method, or may be kneaded with a matrix resin to form a molded article.

【0046】集束剤で処理して得られる金属酸化物被覆
炭素繊維ストランドに、新たに別の集束剤処理を施して
集束性を高めた後、短繊維状にカットして使用すること
もできる。
The metal fiber-coated carbon fiber strand obtained by the treatment with the sizing agent may be subjected to another sizing agent treatment to improve the sizing property, and then cut into short fibers for use.

【0047】金属酸化物被覆炭素繊維を用いて、織物、
不織布、合成紙、フェルト等の金属酸化物被覆炭素繊維
組織構造体を製造することもできる。この場合、公知の
製造方法を利用して、それぞれ組織や繊維目付の異なる
構造体を製造できる。
Using a metal oxide-coated carbon fiber, a woven fabric,
A metal oxide-coated carbon fiber tissue structure such as a nonwoven fabric, a synthetic paper, or a felt can also be produced. In this case, structures having different structures and different basis weights can be manufactured using known manufacturing methods.

【0048】更に、金属酸化物が被覆されていない炭素
繊維を用いて炭素繊維組織構造体を予め製造しておき、
これを金属酸化物の前駆体溶液中でマイクロ波加熱をす
ることにより、フェライト等の金属酸化物を被覆させた
構造体を製造しても良い。
Further, a carbon fiber tissue structure is manufactured in advance using carbon fibers not coated with a metal oxide,
This may be subjected to microwave heating in a metal oxide precursor solution to produce a structure coated with a metal oxide such as ferrite.

【0049】本発明の、織物、不織布、合成紙、フェル
トなどの金属酸化物被覆炭素繊維組織構造体は、本発明
の金属酸化物被覆炭素繊維とストランドの引っ張り強度
200kgf/mm2未満の低強度の炭素繊維、あるい
は引っ張り弾性率が20tonf/mm2未満の低弾性
率炭素繊維を併用して製造したものであっても良い。ま
た炭素繊維の他に、以下の強化繊維を金属酸化物被覆炭
素繊維と併用して用いることもできる。他の強化繊維と
しては無機、有機繊維の何れであっても良く、天然高分
子、合成高分子繊維の他、ガラス繊維、芳香族アラミド
繊維、芳香族ポリアミド繊維、ボロン繊維、アルミナ繊
維、炭化ケイ素繊維等が例示ができる。
The metal oxide-coated carbon fiber tissue structure such as woven fabric, nonwoven fabric, synthetic paper, and felt of the present invention has a low strength of less than 200 kgf / mm 2 of tensile strength between the metal oxide-coated carbon fiber and the strand. Or a low modulus carbon fiber having a tensile modulus of less than 20 tonf / mm 2 . In addition to the carbon fibers, the following reinforcing fibers can be used in combination with the metal oxide-coated carbon fibers. Other reinforcing fibers may be any of inorganic and organic fibers, and include natural fibers, synthetic polymer fibers, glass fibers, aromatic aramid fibers, aromatic polyamide fibers, boron fibers, alumina fibers, and silicon carbide. Fibers and the like can be exemplified.

【0050】以下、実施例、比較例により本発明を更に
具体的に説明する。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

【0051】[0051]

【実施例】実施例1 500mlの円筒状のテフロン容器に、FeCl3・6
2Oの濃度が0.2M/L、尿素の濃度が0.8M/
L、コバルト濃度がCo:Fe=1:5(モル比)の水
溶液を300ml入れた。更に1.0gの炭素繊維(ベ
スファイトHTA−12K、直径7μm、単繊維の引っ
張り加重15g、引っ張り伸度1.5%)を水溶液に浸
し、テフロン容器内部を減圧にすることにより脱泡させ
た。このテフロン容器をステンレス製オートクレーブ反
応装置に入れた後、オートクレーブ内を窒素ガスで10
00kPaに加圧した。反応装置内にマイクロ波を照射
し、昇温速度20℃/分で200℃まで加熱し、200
℃で1時間保った。その後、マイクロ波の照射を停止し
て冷却し、50℃になったとき圧力を常圧に戻した。
EXAMPLE 1 A 500 ml cylindrical Teflon container was charged with FeCl 3 .6.
The concentration of H 2 O is 0.2 M / L, and the concentration of urea is 0.8 M / L.
L, 300 ml of an aqueous solution having a cobalt concentration of Co: Fe = 1: 5 (molar ratio) was added. Further, 1.0 g of carbon fiber (Vesfite HTA-12K, diameter of 7 μm, tensile load of single fiber of 15 g, tensile elongation of 1.5%) was immersed in the aqueous solution, and the inside of the Teflon container was degassed by reducing the pressure. . After placing the Teflon container in a stainless steel autoclave reactor, the inside of the autoclave was purged with nitrogen gas for 10 minutes.
The pressure was increased to 00 kPa. The reactor was irradiated with microwaves and heated to 200 ° C. at a heating rate of 20 ° C./min.
C. for 1 hour. Thereafter, the microwave irradiation was stopped and cooling was performed. When the temperature reached 50 ° C., the pressure was returned to normal pressure.

【0052】オートクレーブを開放し、テフロン容器を
取り出した。メッシュろ過で炭素繊維と水溶液とを分離
し、炭素繊維を蒸留水で洗浄した。105℃で2時間乾
燥させた炭素繊維の表面は茶褐色に変色し、磁石に反応
する磁性を示した。
The autoclave was opened, and the Teflon container was taken out. The carbon fiber and the aqueous solution were separated by mesh filtration, and the carbon fiber was washed with distilled water. The surface of the carbon fiber dried at 105 ° C. for 2 hours turned brown and showed magnetism that reacted to a magnet.

【0053】得られた繊維を走査型電子顕微鏡(SE
M)で観察した。炭素繊維表面には、約1μmの膜厚で
均一な金属酸化物と思われる物質が付着していた。炭素
繊維表面に生成した物質の広角X線回折、金属分析よ
り、この物質がCoFeの磁性酸化物であることが確認
された。処理前後の炭素繊維の質量変化より算出した磁
性酸化物の付着量は炭素繊維質量を基準(100質量
%)として5.0質量%であった。
The obtained fiber was subjected to a scanning electron microscope (SE).
M). A substance considered to be a uniform metal oxide with a thickness of about 1 μm adhered to the carbon fiber surface. Wide-angle X-ray diffraction and metal analysis of the substance formed on the carbon fiber surface confirmed that this substance was a magnetic oxide of CoFe. The attached amount of the magnetic oxide calculated from the change in the mass of the carbon fiber before and after the treatment was 5.0 mass% based on the mass of the carbon fiber (100 mass%).

【0054】この磁性炭素繊維被覆炭素繊維は、単繊維
の引っ張り荷重が13g、引っ張り伸度が1.0%であ
り、フィラメントが12,000本集合して構成された
ストランドの引っ張り強度は350kgf/mm2、引
っ張り弾性率は26tonf/mm2 であった。
This magnetic carbon fiber-coated carbon fiber has a tensile load of a single fiber of 13 g, a tensile elongation of 1.0%, and a strand composed of 12,000 filaments has a tensile strength of 350 kgf / mm 2 , and the tensile modulus was 26 tonf / mm 2 .

【0055】このCoFe磁性炭素繊維被覆炭素繊維を
細かく粉砕し(平均長さ0.5mm)、エポキシ樹脂に
30質量%混ぜて、厚さ2.0mmの平板状の成形体を
製造した。成形体の電磁波吸収特性を評価したところ、
周波数800MHzにおいて10dBとなり、電磁波吸
収特性が確認された。
This CoFe magnetic carbon fiber-coated carbon fiber was finely pulverized (average length: 0.5 mm) and mixed with an epoxy resin in an amount of 30% by mass to produce a 2.0 mm-thick flat molded product. When the electromagnetic wave absorption characteristics of the molded body were evaluated,
It became 10 dB at a frequency of 800 MHz, and the electromagnetic wave absorption characteristics were confirmed.

【0056】比較例1 実施例1で使用した炭素繊維(ベスファイトHTA−1
2K)を、フェライトを被覆することなく細かく粉砕
し、実施例1と同様にして樹脂に混ぜて成形体を製造し
た。成形体の電磁波吸収特性を評価したところ、周波数
800MHzにおいて5dBであった。電磁波吸収特性
はあったが実施例1の場合より吸収特性が劣っていた。
Comparative Example 1 The carbon fiber (Vesfite HTA-1) used in Example 1 was used.
2K) was finely pulverized without coating with ferrite, and mixed with a resin in the same manner as in Example 1 to produce a molded article. When the electromagnetic wave absorption characteristics of the molded body were evaluated, it was 5 dB at a frequency of 800 MHz. Although there was electromagnetic wave absorption characteristics, the absorption characteristics were inferior to those of Example 1.

【0057】実施例2 500mlの円筒状のテフロン容器に、FeCl3・6
2Oの濃度が0.2M/L、尿素の濃度が0.8M/
L、塩化ニッケルの濃度が0.1M/Lの水溶液を30
0ml入れた。更に1.0gの炭素繊維(ベスファイト
HTA−12K、直径7μm、単繊維の引っ張り加重1
5g、引っ張り伸度1.5%)を水溶液に浸し、テフロ
ン容器内部を減圧にすることにより脱泡させた。このテ
フロン容器をステンレス製オートクレーブ反応装置に入
れた後、オートクレーブ内を窒素ガスで500kPaに
加圧した。反応装置内にマイクロ波を照射し、昇温速度
20℃/分で200℃まで加熱し、200℃で1時間保
った。その後、マイクロ波の照射を停止して冷却し、5
0℃になったとき圧力を常圧に戻した。
Example 2 A 500 ml cylindrical Teflon container was charged with FeCl 3 .6.
The concentration of H 2 O is 0.2 M / L, and the concentration of urea is 0.8 M / L.
L, an aqueous solution having a nickel chloride concentration of 0.1 M / L
0 ml was added. Further, 1.0 g of carbon fiber (Vesfight HTA-12K, diameter 7 μm, tensile load 1 of single fiber)
(5 g, tensile elongation 1.5%) was immersed in an aqueous solution, and the inside of the Teflon container was degassed by reducing the pressure. After placing the Teflon container in a stainless steel autoclave reactor, the inside of the autoclave was pressurized to 500 kPa with nitrogen gas. The reactor was irradiated with microwaves, heated to 200 ° C. at a heating rate of 20 ° C./min, and kept at 200 ° C. for 1 hour. After that, the microwave irradiation was stopped and cooling was performed.
When the temperature reached 0 ° C., the pressure was returned to normal pressure.

【0058】オートクレーブを開放し、テフロン容器を
取り出した。メッシュろ過で炭素繊維と水溶液とを分離
し、炭素繊維を蒸留水で洗浄した。105℃で2時間乾
燥させた炭素繊維の表面は茶褐色に変色し、磁石に反応
する磁性を示した。
The autoclave was opened, and the Teflon container was taken out. The carbon fiber and the aqueous solution were separated by mesh filtration, and the carbon fiber was washed with distilled water. The surface of the carbon fiber dried at 105 ° C. for 2 hours turned brown and showed magnetism that reacted to a magnet.

【0059】得られた繊維を走査型電子顕微鏡(SE
M)で観察した。炭素繊維表面には、約1μmの膜厚で
均一な金属酸化物と思われる物質が付着していた。炭素
繊維表面に生成した物質の広角X線回折、金属分析よ
り、この物質がNiFeの磁性酸化物であることが確認
された。処理前後の炭素繊維の質量変化より算出した磁
性酸化物の付着量は炭素繊維質量を基準(100質量
%)として5.0質量%であった。
The obtained fiber was subjected to a scanning electron microscope (SE).
M). A substance considered to be a uniform metal oxide with a thickness of about 1 μm adhered to the carbon fiber surface. Wide-angle X-ray diffraction and metal analysis of the substance formed on the carbon fiber surface confirmed that this substance was a magnetic oxide of NiFe. The attached amount of the magnetic oxide calculated from the change in the mass of the carbon fiber before and after the treatment was 5.0 mass% based on the mass of the carbon fiber (100 mass%).

【0060】この磁性炭素繊維被覆炭素繊維は、単繊維
の引っ張り荷重が12g、引っ張り伸度が1.2%であ
り、フィラメントが12,000本集合して構成された
ストランドの引っ張り強度は340kgf/mm2、引
っ張り弾性率は25tonf/mm2 であった。
This magnetic carbon fiber-coated carbon fiber has a tensile load of a single fiber of 12 g, a tensile elongation of 1.2%, and a strand composed of 12,000 filaments having a tensile strength of 340 kgf / mm 2 , and the tensile modulus was 25 tonf / mm 2 .

【0061】このNiFe磁性炭素繊維被覆炭素繊維を
細かく粉砕し(平均長さ0.5mm)、エポキシ樹脂に
50質量%混ぜて、厚さ2.0mmの平板状の成形体を
製造した。成形体の電磁波吸収特性を評価したところ、
周波数800MHzにおいて20dBとなり、電磁波吸
収特性が確認された。
The NiFe magnetic carbon fiber-coated carbon fiber was finely pulverized (average length: 0.5 mm) and mixed with an epoxy resin in an amount of 50% by mass to produce a 2.0 mm-thick flat molded product. When the electromagnetic wave absorption characteristics of the molded body were evaluated,
It became 20 dB at a frequency of 800 MHz, and the electromagnetic wave absorption characteristics were confirmed.

【0062】実施例3 市販の炭素繊維(ベスファイトHTA−6K)を1g採
取し、50mlの50質量%硫酸チタン水溶液に浸漬さ
せた後、50%アンモニア水をpH7になるまで徐々に
加えた。粥状になった溶液から炭素繊維を取出し、水
洗、乾燥させ、540℃で3時間乾燥させた。繊維の色
は殆ど変化がなく、黒色であった。
Example 3 1 g of commercially available carbon fiber (Vesfite HTA-6K) was sampled, immersed in 50 ml of a 50% by mass aqueous solution of titanium sulfate, and 50% aqueous ammonia was gradually added until the pH reached 7. The carbon fiber was taken out from the porridge solution, washed with water, dried, and dried at 540 ° C. for 3 hours. The color of the fiber was almost unchanged and was black.

【0063】広角X線回折、及び走査型電子顕微鏡によ
る観察によって、繊維表面には酸化チタンがコーティン
グされている事が確認でき、処理前後の重量変化からコ
ーティング量は約5質量%であることがわかった。
It was confirmed by wide-angle X-ray diffraction and scanning electron microscopy that the fiber surface was coated with titanium oxide. From the weight change before and after the treatment, the coating amount was about 5% by mass. all right.

【0064】この酸化チタン被覆炭素繊維は、単繊維の
引っ張り荷重が20g、引っ張り伸度が0.8%であ
り、フィラメントが6,000本集合して構成されたス
トランドの引っ張り強度は420kgf/mm2、引っ
張り弾性率は24tonf/mm2 であった。
The titanium oxide-coated carbon fiber has a single fiber tensile load of 20 g, a tensile elongation of 0.8%, and a strand composed of 6,000 filaments having a tensile strength of 420 kgf / mm. 2. The tensile modulus was 24 tonf / mm 2 .

【0065】この繊維の耐熱酸化性を評価するため、空
気中で500℃で3時間処理した後の繊維重量変化を測
定したところ、処理前後の重量変化率は3%であった。
酸化チタンをコーティングする前と同じ炭素繊維の同条
件における重量変化は10%であり、酸化チタンのコー
ティングによる耐熱酸化性の向上が認められた。
To evaluate the thermal oxidation resistance of the fiber, the weight change after the fiber was treated at 500 ° C. for 3 hours in air was measured, and the weight change before and after the treatment was 3%.
The weight change of the same carbon fiber under the same conditions as before the coating with titanium oxide was 10%, and improvement in heat-resistant oxidation resistance by the coating of titanium oxide was recognized.

【0066】[0066]

【発明の効果】本発明の金属酸化物被覆炭素繊維は、金
属酸化物の持つ特性と、炭素繊維の持つ特性とを併せ持
つもので、両者を複合することにより両者の特性が損わ
れる等の不都合はない。即ち、力学的強度等は炭素繊維
が本来持っていたものと同等であり、金属酸化物の持つ
特性は維持されている。従って、金属酸化物がフェライ
ト系磁性体の場合は、これを被覆した本発明金属酸化物
被覆炭素繊維は高い電波吸収機能等を発揮することがで
きる。特に、本発明金属酸化物被覆炭素繊維を用いて組
織構造体を構成する場合は、強度の強い構造体を得るこ
とができ有用なものである。
The metal oxide-coated carbon fiber of the present invention has both the characteristics of the metal oxide and the characteristics of the carbon fiber. There is no. That is, the mechanical strength and the like are the same as those originally possessed by the carbon fiber, and the characteristics of the metal oxide are maintained. Therefore, when the metal oxide is a ferrite-based magnetic material, the metal oxide-coated carbon fiber of the present invention coated with the ferrite magnetic material can exhibit a high radio wave absorption function and the like. In particular, when a tissue structure is formed using the metal oxide-coated carbon fiber of the present invention, a structure having high strength can be obtained, which is useful.

【0067】本発明の製造方法は、マイクロ波を用いて
加熱酸化処理をするので、比較的短時間で簡便に金属酸
化物被覆炭素繊維を製造することができ、更に省エネル
ギー型の製造方法として好ましいものである。
In the production method of the present invention, since the heat oxidation treatment is carried out by using microwaves, the metal oxide-coated carbon fiber can be produced easily in a relatively short time, and is preferable as an energy-saving production method. Things.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) D03D 15/12 D06B 19/00 B 4L048 D06B 19/00 D06M 10/00 A 4L055 D06M 10/00 15/55 15/55 D21H 13/50 D21H 13/50 D06M 101:40 // D06M 101:40 11/12 (72)発明者 鈴木 慶宜 静岡県駿東郡長泉町上土狩234 東邦レー ヨン株式会社研究所内 (72)発明者 加藤 俊作 香川県高松市林町2217番地43 財団法人香 川県産業技術振興財団付属研究所 高温高 圧流体技術研究所内 (72)発明者 李眞昊 香川県高松市林町2217番地43 財団法人香 川県産業技術振興財団付属研究所 高温高 圧流体技術研究所内 Fターム(参考) 3B154 AA14 AB03 AB09 AB20 AB22 AB23 BA60 BB12 BB22 BB32 BD17 BD20 BE04 BF06 BF10 BF18 DA06 DA30 4L031 AA27 AB01 BA09 BA33 CB03 DA15 4L033 AA09 AB01 AC11 AC12 CA45 CA49 CA50 CA55 DA06 4L036 MA04 MA33 MA35 PA17 PA26 RA24 UA06 UA25 4L037 AT02 AT05 CS03 FA01 FA02 PA53 UA04 4L048 AA05 AA32 AA34 AA47 AA48 AA49 AA52 AA56 CA00 CA01 CA05 4L055 AF03 AF44 AF47 EA01 EA16 FA13 FA30 GA01 GA03 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) D03D 15/12 D06B 19/00 B 4L048 D06B 19/00 D06M 10/00 A 4L055 D06M 10/00 15/55 15/55 D21H 13/50 D21H 13/50 D06M 101: 40 // D06M 101: 40 11/12 (72) Inventor Yoshinori Suzuki 234 Kamidogari, Nagaizumi-cho, Sunto-gun, Shizuoka Pref. Toho Rayon Co., Ltd. (72) Inventor Shunsaku Kato 2217-43 Hayashi-cho, Takamatsu-shi, Kagawa Prefecture Kagawa Prefectural Industrial Technology Promotion Institute Research Institute Attached to High-Temperature High-Pressure Fluid Research Institute (72) F-term (reference) in Laboratory for High Temperature and High Pressure Fluid Technology, attached to Kawaken Industrial Technology Promotion Foundation 3B154 AA14 AB03 AB09 AB20 AB22 AB23 BA60 BB12 BB2 2 BB32 BD17 BD20 BE04 BF06 BF10 BF18 DA06 DA30 4L031 AA27 AB01 BA09 BA33 CB03 DA15 4L033 AA09 AB01 AC11 AC12 CA45 CA49 CA50 CA55 DA06 4L036 MA04 MA33 MA35 PA17 PA26 RA24 UA06 UA25 4L037 AT02 FA05 A03 A03 A03 A03 A03 A03 A03 A03 A03 A03 A03 A03 A03 A03 A03 AA49 AA52 AA56 CA00 CA01 CA05 4L055 AF03 AF44 AF47 EA01 EA16 FA13 FA30 GA01 GA03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 直径が3〜10μmの炭素繊維を前記繊
維の質量に対して1〜100質量%の金属酸化物で被覆
してなり、引っ張り荷重が1.5g以上、引っ張り伸度
が0.5%以上であることを特徴とする金属酸化物被覆
炭素繊維。
A carbon fiber having a diameter of 3 to 10 μm is coated with a metal oxide in an amount of 1 to 100% by mass based on the mass of the fiber, and has a tensile load of 1.5 g or more and a tensile elongation of 0.1%. A metal oxide-coated carbon fiber having a content of 5% or more.
【請求項2】 請求項1に記載の金属酸化物被覆炭素繊
維を100〜100,000本集束してなる金属酸化物
被覆炭素繊維ストランドであって、前記ストランドの引
っ張り強度が200kgf/mm2以上、引っ張り弾性
率が20tonf/mm2以上であることを特徴とする
金属酸化物被覆炭素繊維ストランド、又はそれらを長さ
1〜100mmにカットしてなるチョップドファイバ
ー。
2. A metal oxide-coated carbon fiber strand obtained by bundling 100 to 100,000 metal oxide-coated carbon fibers according to claim 1, wherein the strand has a tensile strength of 200 kgf / mm 2 or more. And metal oxide-coated carbon fiber strands having a tensile elastic modulus of 20 tonf / mm 2 or more, or chopped fibers obtained by cutting them into a length of 1 to 100 mm.
【請求項3】 水、油類、熱硬化性樹脂、又は熱可塑性
樹脂からなるストランド集束剤を金属酸化物被覆炭素繊
維の質量に対して1〜10wt%含有する請求項2に記
載の金属酸化物被覆炭素繊維ストランド又は金属酸化物
被覆チョップドファイバー。
3. The metal oxide according to claim 2, wherein the strand sizing agent comprising water, oils, thermosetting resin, or thermoplastic resin is contained in an amount of 1 to 10% by weight based on the mass of the metal oxide-coated carbon fiber. Object coated carbon fiber strand or metal oxide coated chopped fiber.
【請求項4】 請求項2又は3に記載の金属酸化物被覆
炭素繊維ストランド、又はチョップドファイバーを用い
て構成された金属酸化物被覆炭素繊維組織構造体。
4. A metal oxide-coated carbon fiber tissue structure comprising the metal oxide-coated carbon fiber strand according to claim 2 or 3, or a chopped fiber.
【請求項5】 金属酸化物被覆炭素繊維組織構造体が、
織物、不織布、合成紙、又はフェルトである請求項4に
記載の金属酸化物被覆炭素繊維組織構造体。
5. The metal oxide-coated carbon fiber tissue structure,
The metal oxide-coated carbon fiber tissue structure according to claim 4, which is a woven fabric, a nonwoven fabric, a synthetic paper, or a felt.
【請求項6】 直径が3〜10μm、引っ張り荷重が
1.5g以上、引っ張り伸度が0.5%以上の炭素繊
維、又は前記炭素繊維を用いて製造したストランド、チ
ョップドファイバー若しくは構造体を、金属酸化物の前
駆体溶液に浸漬させてマイクロ波を照射することにより
炭素繊維表面に金属酸化物を付着させる、金属酸化物被
覆炭素繊維、金属酸化物被覆炭素繊維ストランド、金属
酸化物被覆チョップドファイバー又は金属酸化物被覆炭
素繊維構造体の製造方法。
6. A carbon fiber having a diameter of 3 to 10 μm, a tensile load of 1.5 g or more, and a tensile elongation of 0.5% or more, or a strand, chopped fiber or structure manufactured using the carbon fiber, A metal oxide-coated carbon fiber, a metal oxide-coated carbon fiber strand, a metal oxide-coated chopped fiber, which is immersed in a precursor solution of the metal oxide and irradiated with microwaves to attach the metal oxide to the carbon fiber surface. Alternatively, a method for producing a metal oxide-coated carbon fiber structure.
JP2000381809A 2000-12-15 2000-12-15 Carbon fiber coated with metal oxide and method for producing the same Pending JP2002180372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000381809A JP2002180372A (en) 2000-12-15 2000-12-15 Carbon fiber coated with metal oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000381809A JP2002180372A (en) 2000-12-15 2000-12-15 Carbon fiber coated with metal oxide and method for producing the same

Publications (1)

Publication Number Publication Date
JP2002180372A true JP2002180372A (en) 2002-06-26

Family

ID=18849743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000381809A Pending JP2002180372A (en) 2000-12-15 2000-12-15 Carbon fiber coated with metal oxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP2002180372A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180370A (en) * 2000-12-15 2002-06-26 Toho Tenax Co Ltd Carbon fiber for metal oxide coating and method for producing the same
JP2009235650A (en) * 2008-03-28 2009-10-15 Toyota Central R&D Labs Inc Fibrous carbon-based insulator, resin composite material containing the fibrous carbon-based insulator, and method for manufacturing the fibrous carbon-based insulator
WO2011007548A1 (en) 2009-07-14 2011-01-20 川崎重工業株式会社 Electrical storage device provided with fiber electrodes, and method for producing same
WO2011007549A1 (en) 2009-07-14 2011-01-20 川崎重工業株式会社 Fiber electrode and fiber cell, and method for producing same, facility for producing fiber electrode and fiber cell
JP2015507100A (en) * 2011-12-07 2015-03-05 トウホウ テナックス ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツングToho Tenax Europe GmbH Carbon fiber for composites with improved conductivity
US9065139B2 (en) 2009-02-04 2015-06-23 National Institute Of Advanced Industrial Science And Technology Fiber electrode for lithium secondary battery, fabrication method therefor, and lithium secondary battery including fiber electrode
US10655238B2 (en) * 2015-08-28 2020-05-19 Industrial Cooperation Foundation Chonbuk National University Manufacturing method for carbonfiber grown metal oxide
CN113818103A (en) * 2015-03-31 2021-12-21 帝人株式会社 Carbon fiber and method for producing carbon fiber
CN114561727A (en) * 2022-02-28 2022-05-31 青铜峡市仁和纺织科技有限公司 Radiation-proof yarn combining wave-absorbing technology and shielding technology
CN115044843A (en) * 2022-06-29 2022-09-13 东北大学 Preparation method of rolled carbon fiber reinforced aluminum alloy composite material

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156026A (en) * 1982-03-03 1983-09-16 Hirochiku:Kk Preparation of carbon fiber
JPS58169532A (en) * 1982-03-16 1983-10-06 エレクトロ・メタロイド・コ−ポレ−シヨン Yarn and tow comprising high strength metal coated fiber, method of producing same and product
JPS6141370A (en) * 1984-08-02 1986-02-27 工業技術院長 Carbon fiber having alumina layer provided to surface thereof
JPS6175875A (en) * 1984-09-17 1986-04-18 出光興産株式会社 Surface modifeed carbon fiber and its production
JPS6245725A (en) * 1986-08-15 1987-02-27 Hirochiku:Kk Production of carbon fiber
JPS62107038A (en) * 1985-10-31 1987-05-18 サリバン・マイニング・コ−ポレ−シヨン Metal oxide film of carbonaceous fiber
JPS636169A (en) * 1986-06-27 1988-01-12 東邦レーヨン株式会社 Metal coated carbon fiber and blended fiber paper
JPH01139850A (en) * 1987-11-25 1989-06-01 Toho Rayon Co Ltd Sheet for molding conductive material
JPH01183577A (en) * 1988-01-19 1989-07-21 Osaka Gas Co Ltd Carbon fiber having treated surface, method for said surface treatment, composite material using said carbon fiber and production thereof
JPH0284542A (en) * 1988-01-21 1990-03-26 Boeing Co:The Method for plating fabric sheet and outermost layer of synthetic material laminate
JPH02234973A (en) * 1989-03-08 1990-09-18 Idemitsu Kosan Co Ltd Production of high-strength carbon fiber
JPH04136268A (en) * 1990-09-25 1992-05-11 Nippon Felt Kogyo Kk Production of metallized nonwoven fabric
JPH07268111A (en) * 1994-08-29 1995-10-17 Mitsubishi Chem Corp Composite material using carbon fiber
JPH11117179A (en) * 1997-10-08 1999-04-27 Toho Rayon Co Ltd Metal-coated carbon fiber chopped strand, its production and fiber-reinforced thermoplastic resin composition and molded article produced by using the strand
JP2000017569A (en) * 1998-06-26 2000-01-18 Toray Ind Inc Oxidation-resistant carbon fiber and its production
JP2000044306A (en) * 1998-07-31 2000-02-15 Showa Denko Kk Modified lightweight aggregate, its production and its lightweight cement molded product
JP2001026412A (en) * 1999-07-13 2001-01-30 Agency Of Ind Science & Technol New production of carbon material coated with metal oxide
JP2002180370A (en) * 2000-12-15 2002-06-26 Toho Tenax Co Ltd Carbon fiber for metal oxide coating and method for producing the same

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156026A (en) * 1982-03-03 1983-09-16 Hirochiku:Kk Preparation of carbon fiber
JPS58169532A (en) * 1982-03-16 1983-10-06 エレクトロ・メタロイド・コ−ポレ−シヨン Yarn and tow comprising high strength metal coated fiber, method of producing same and product
JPS6141370A (en) * 1984-08-02 1986-02-27 工業技術院長 Carbon fiber having alumina layer provided to surface thereof
JPS6175875A (en) * 1984-09-17 1986-04-18 出光興産株式会社 Surface modifeed carbon fiber and its production
JPS62107038A (en) * 1985-10-31 1987-05-18 サリバン・マイニング・コ−ポレ−シヨン Metal oxide film of carbonaceous fiber
JPS636169A (en) * 1986-06-27 1988-01-12 東邦レーヨン株式会社 Metal coated carbon fiber and blended fiber paper
JPS6245725A (en) * 1986-08-15 1987-02-27 Hirochiku:Kk Production of carbon fiber
JPH01139850A (en) * 1987-11-25 1989-06-01 Toho Rayon Co Ltd Sheet for molding conductive material
JPH01183577A (en) * 1988-01-19 1989-07-21 Osaka Gas Co Ltd Carbon fiber having treated surface, method for said surface treatment, composite material using said carbon fiber and production thereof
JPH0284542A (en) * 1988-01-21 1990-03-26 Boeing Co:The Method for plating fabric sheet and outermost layer of synthetic material laminate
JPH02234973A (en) * 1989-03-08 1990-09-18 Idemitsu Kosan Co Ltd Production of high-strength carbon fiber
JPH04136268A (en) * 1990-09-25 1992-05-11 Nippon Felt Kogyo Kk Production of metallized nonwoven fabric
JPH07268111A (en) * 1994-08-29 1995-10-17 Mitsubishi Chem Corp Composite material using carbon fiber
JPH11117179A (en) * 1997-10-08 1999-04-27 Toho Rayon Co Ltd Metal-coated carbon fiber chopped strand, its production and fiber-reinforced thermoplastic resin composition and molded article produced by using the strand
JP2000017569A (en) * 1998-06-26 2000-01-18 Toray Ind Inc Oxidation-resistant carbon fiber and its production
JP2000044306A (en) * 1998-07-31 2000-02-15 Showa Denko Kk Modified lightweight aggregate, its production and its lightweight cement molded product
JP2001026412A (en) * 1999-07-13 2001-01-30 Agency Of Ind Science & Technol New production of carbon material coated with metal oxide
JP2002180370A (en) * 2000-12-15 2002-06-26 Toho Tenax Co Ltd Carbon fiber for metal oxide coating and method for producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180370A (en) * 2000-12-15 2002-06-26 Toho Tenax Co Ltd Carbon fiber for metal oxide coating and method for producing the same
JP2009235650A (en) * 2008-03-28 2009-10-15 Toyota Central R&D Labs Inc Fibrous carbon-based insulator, resin composite material containing the fibrous carbon-based insulator, and method for manufacturing the fibrous carbon-based insulator
US9065139B2 (en) 2009-02-04 2015-06-23 National Institute Of Advanced Industrial Science And Technology Fiber electrode for lithium secondary battery, fabrication method therefor, and lithium secondary battery including fiber electrode
US9281539B2 (en) 2009-07-14 2016-03-08 Kawasakai Jukogyo Kabushiki Kaisha Electrical storage device including fiber electrode, and method of fabricating the same
WO2011007549A1 (en) 2009-07-14 2011-01-20 川崎重工業株式会社 Fiber electrode and fiber cell, and method for producing same, facility for producing fiber electrode and fiber cell
WO2011007548A1 (en) 2009-07-14 2011-01-20 川崎重工業株式会社 Electrical storage device provided with fiber electrodes, and method for producing same
JP2015507100A (en) * 2011-12-07 2015-03-05 トウホウ テナックス ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツングToho Tenax Europe GmbH Carbon fiber for composites with improved conductivity
CN113818103A (en) * 2015-03-31 2021-12-21 帝人株式会社 Carbon fiber and method for producing carbon fiber
CN113818103B (en) * 2015-03-31 2024-02-13 帝人株式会社 Carbon fiber and method for producing carbon fiber
US10655238B2 (en) * 2015-08-28 2020-05-19 Industrial Cooperation Foundation Chonbuk National University Manufacturing method for carbonfiber grown metal oxide
CN114561727A (en) * 2022-02-28 2022-05-31 青铜峡市仁和纺织科技有限公司 Radiation-proof yarn combining wave-absorbing technology and shielding technology
CN115044843A (en) * 2022-06-29 2022-09-13 东北大学 Preparation method of rolled carbon fiber reinforced aluminum alloy composite material
CN115044843B (en) * 2022-06-29 2023-09-22 东北大学 Preparation method of rolled carbon fiber reinforced aluminum alloy composite material

Similar Documents

Publication Publication Date Title
Meng et al. Design of porous C@ Fe 3 O 4 hybrid nanotubes with excellent microwave absorption
Feng et al. Development of Fe/Fe3O4@ C composite with excellent electromagnetic absorption performance
US9725314B2 (en) Continuous process for the production of carbon nanofiber reinforced continuous fiber preforms and composites made therefrom
KR900004784B1 (en) Novel carbon fibrils method for producing it and compositions containing same
EP2261404B1 (en) CNT-infused fiber and fiber tow
US6358878B1 (en) Carbon fibril-forming metal catalysts
US20080182108A1 (en) Vapor grown carbon fiber reinforced composite materials and methods of making and using same
JPS62500943A (en) carbon fibril
CN110552193B (en) Modified ultrahigh molecular weight polyethylene fiber, fabric and preparation method and application thereof
CN109610159B (en) Preparation method for catalytic growth of carbon nanotubes on surface of carbon fiber fabric by using bimetallic catalyst
JP2002180372A (en) Carbon fiber coated with metal oxide and method for producing the same
CN107365567B (en) Wave-absorbing material with carbon fiber surface coated with magnetic ferrite carbon nano-tubes and preparation method and application thereof
CN110437800B (en) Co/ZrO2/C electromagnetic wave absorbing material and preparation method and application thereof
CN111962182B (en) Superfine metal-PAN (polyacrylonitrile) -based carbon fiber and preparation method thereof
CN112537764A (en) Carbon-based porous composite wave absorbing agent based on natural loofah sponge and preparation method thereof
CN101100374A (en) Ni-Zn ferrite fibre and preparing process thereof
CN111710991A (en) Spiral carbon nano coil/core-shell structure magnetic nano particle composite material, preparation method and application thereof in electromagnetic wave field
Liu et al. Three-dimensional porous nanocomposite of highly dispersed Fe3 O4 nanoparticles on carbon nanofibers for high-performance microwave absorbents
CN105040163B (en) The method that material obsorbing radar waves are prepared by template of collagenous fibres
Zhu et al. One-pot synthesis of Cu@ porous nitrogen–doped carbon (Cu@ PNC) for high-efficiency electromagnetic wave absorption
US20080128649A1 (en) Synthesis of Nanocomposites Including Metal Oxides and Metallic Alloys
Ge et al. Excellent microwave absorbing properties of Fe/MnO@ C composites with three carbon skeleton structures
JPH0536521B2 (en)
CN111019603A (en) Cobaltosic oxide/carbon fiber composite material and preparation method and application thereof
JP2002180370A (en) Carbon fiber for metal oxide coating and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426