JPH02234973A - Production of high-strength carbon fiber - Google Patents

Production of high-strength carbon fiber

Info

Publication number
JPH02234973A
JPH02234973A JP5389489A JP5389489A JPH02234973A JP H02234973 A JPH02234973 A JP H02234973A JP 5389489 A JP5389489 A JP 5389489A JP 5389489 A JP5389489 A JP 5389489A JP H02234973 A JPH02234973 A JP H02234973A
Authority
JP
Japan
Prior art keywords
titanium dioxide
carbon fiber
carbon fibers
fiber
pref
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5389489A
Other languages
Japanese (ja)
Inventor
Koji Yamada
幸治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP5389489A priority Critical patent/JPH02234973A/en
Publication of JPH02234973A publication Critical patent/JPH02234973A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Abstract

PURPOSE:To obtain the title fiber excellent in mechanical strength such as tensile strength and elastic modulus by making ultrafinely particulate titanium dioxide adhere to the surface of carbon fiber followed by heat treatment at elevated temperatures in an inert gas atmosphere. CONSTITUTION:Carbon fiber is dipped in pref. a titanium dioxide sol and put to ultrasonic treatment to make ultrafinely particulate titanium dioxide (pref. <=500Angstrom in average size) adhere uniformly to the surface of the carbon fiber. The resultant carbon fiber is heat-treated in an inert gas atmosphere at 1,550 - 3,100 (pref. 2,000 - 2,400) deg.C, thus obtaining the objective fiber.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、機械的強度の優れた炭素繊維の製造方法、さ
らに詳しくいえば炭素繊維に特定の処理を施して、機械
的強度を向上させる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing carbon fibers with excellent mechanical strength, and more specifically, to a method for improving mechanical strength by subjecting carbon fibers to specific treatments. It is something.

従来の技術 炭素繊維は、耐熱性、導電性、耐食性などの物性に優れ
I;材料であり、プラスチックス、セメント、その他の
補強材、充てん剤として広く使用されているが、近年、
これの単独利用がはかられるようになった結果、機械的
強度の向上が要求され、原料組成の選択、紡糸条件、焼
成条件などの調整などにより、高強度の炭素繊維を得る
試みが多数行われている。
Conventional technology Carbon fiber is a material with excellent physical properties such as heat resistance, conductivity, and corrosion resistance, and is widely used as a reinforcing material and filler for plastics, cement, and other materials.
As a result of the independent use of carbon fibers, improvements in mechanical strength were required, and many attempts were made to obtain high-strength carbon fibers by adjusting the raw material composition, spinning conditions, firing conditions, etc. It is being said.

しかしながら、このような方法はいずれも、原料組成の
差異により、紡糸条件、焼成条件が微妙に異なるため、
再現性よく高強度の炭素繊維を得ることが非常に困難で
あり、工業的に実施するには必ずしも満足すべきものと
はいえない。
However, all of these methods require slightly different spinning and firing conditions due to differences in raw material composition.
It is very difficult to obtain high-strength carbon fibers with good reproducibility, and it is not necessarily satisfactory for industrial implementation.

他方において、炭素繊維の表面に改質剤、例えばチタン
酸エステルやホウ酸エステル及びテトラアルキルアンモ
ニウムヒドロキシドなどの溶液を含浸させ焼成する方法
(特開昭55 − 3346号公報、特開昭58−91
870号公報)が知られているが、これらの方法は、耐
食性、化学的安定性の付与には有効であるが、改質剤の
被覆が単に炭素繊維表面と物理的に結合しているだけで
あるので、剥離しやすい上に機械的強度の向上にはほと
んど役立っていない。
On the other hand, there is a method in which the surface of carbon fiber is impregnated with a solution of a modifier, such as a titanate ester, a borate ester, or a tetraalkylammonium hydroxide, and then fired (JP-A-55-3346, JP-A-58- 91
Although these methods are effective in imparting corrosion resistance and chemical stability, they do not require that the modifier coating is merely physically bonded to the carbon fiber surface. Therefore, it is easy to peel off and is of little use in improving mechanical strength.

したがって、炭素繊維、特に機械的強度の低いことが欠
点となっているピッチ系炭素繊維について簡単な処理で
、機械的強度を向上させる技術の出現が強く要望されて
いた。
Therefore, there has been a strong demand for a technology to improve the mechanical strength of carbon fibers, particularly pitch-based carbon fibers which suffer from low mechanical strength, through a simple process.

発明が解決しようとする課題 本発明は、炭素繊維表面に改質剤を塗布し、焼成すると
いう簡単な処理で、機械的強度の高い炭素繊維を得る方
法を提供することを目的としてなされたものである。
Problems to be Solved by the Invention The purpose of the present invention is to provide a method for obtaining carbon fibers with high mechanical strength by a simple process of applying a modifier to the surface of carbon fibers and firing them. It is.

課題を解決するだめの手段 本発明者は炭素繊維表面を補強する処理法を開発するた
めに鋭意研究を重ねた結果、平均粒径の細かい超微粒子
状二酸化チタンを炭素繊維の表面に付着させて、特定条
件で熱処理し、炭素繊維の表面を改質することによって
前記目的を達成できることを見出し、この知見に基づい
て本発明を完成するに至った。
As a result of extensive research in order to develop a treatment method for reinforcing the surface of carbon fibers, the inventors of the present invention have developed a method of adhering ultrafine titanium dioxide with a fine average particle size to the surface of carbon fibers. It was discovered that the above object can be achieved by heat-treating under specific conditions to modify the surface of carbon fibers, and based on this knowledge, the present invention was completed.

すなわち、本発明は、炭素繊維表面に超微粒子状二酸化
チタンを均一に付着させ、不活性ガス雰囲気下において
、1550〜3100℃の範囲の温度で熱処理すること
を特徴とする高強度炭素繊維の製造方法に関するもので
ある。
That is, the present invention is a method for producing high-strength carbon fibers, which is characterized in that ultrafine titanium dioxide particles are uniformly adhered to the surface of carbon fibers, and then heat-treated at a temperature in the range of 1550 to 3100°C in an inert gas atmosphere. It is about the method.

以下、本発明を詳細に説明する。The present invention will be explained in detail below.

本発明において用いられる炭素繊維は、ピッチ系あるい
はポリアクリロニトリル系のいずれを原料として得られ
たものでもよい。使用する炭素繊維の径は1〜15μ程
度のものが適している。
The carbon fiber used in the present invention may be obtained using either pitch-based or polyacrylonitrile-based raw materials. The carbon fiber used preferably has a diameter of about 1 to 15 microns.

超微粒子状二酸化チタンは、平均粒径500人以下のも
のを使用するのが好ましいが、特に好ましくは200人
以下のものである。また、その際の二酸化チタンは、ア
モルファスでも、ルチル型又はアナターゼ型の結晶性の
ものでもかまわない。超微粒子状二酸化チタンを炭素繊
維に付着させる方法としては、二酸化チタン粒子の分散
液を塗布あるいは浸漬することによって行われる。その
際の溶媒としてはアルコール、ケトン、ベンゼン、トル
エン、キシレン、酢酸エチルなどのエステル類が用いら
れる。
The ultrafine titanium dioxide particles preferably have an average particle size of 500 particles or less, particularly preferably 200 particles or less. Further, the titanium dioxide used in this case may be amorphous, or may be a rutile type or anatase type crystalline type. Ultrafine titanium dioxide particles are attached to carbon fibers by coating or dipping them in a dispersion of titanium dioxide particles. As the solvent in this case, esters such as alcohol, ketone, benzene, toluene, xylene, and ethyl acetate are used.

この超微粒子状二酸化チタン分散液は、上記溶媒より選
択した溶媒に界面活性剤や分散剤を添加したものであり
、必要ならば物理的分散処理例えば超音波、ポールミル
、ホモジナイザー等により、調製したものでよい。そし
て、二酸化チタンの付着状態は炭素繊維表面に均一分散
させるが、この場合少なくとも二酸化チタン粒子間にす
き間があく状態にすべきである。
This ultrafine titanium dioxide dispersion is prepared by adding a surfactant or a dispersant to a solvent selected from the above solvents, and if necessary, it is prepared by physical dispersion treatment such as ultrasound, a pole mill, a homogenizer, etc. That's fine. The adhesion state of titanium dioxide should be such that it is uniformly dispersed on the carbon fiber surface, but in this case, there should be at least a gap between the titanium dioxide particles.

本発明方法で使用する二酸化チタン分散液の濃度は20
%以下がよいが、好ましくは帆01−10%であり、特
に好ましくは0.Ol〜1%である。浸漬する場合には
そのままつけてもよいが、撹拌した方がよく、特に好ま
しくは超音波をあてるとよい結果が得られる。
The concentration of the titanium dioxide dispersion used in the method of the present invention is 20
% or less, preferably 01-10%, particularly preferably 0. It is 1%. In the case of immersion, it may be applied as is, but it is better to stir it, and particularly preferably to apply ultrasonic waves to obtain good results.

この発明の熱処理条件として、使用温度は1550〜3
l00゜Cの範囲であるが、好ましくは2000〜31
00℃、特に好ましくは2000〜2400℃の温度範
囲である。この熱処理員度が1550℃以上になると、
二酸化チタンが溶けて炭素繊維中に入らないので、補強
効果を得ることができない。また、熱処理温度が310
0°Cを超えると、二酸化チタンが炭素と反応して生成
した炭化チタンが溶融してしまうので、それ以上強度は
上らず無意味である。この熱処理は不活性ガス雰囲気中
で実施され、その際の不活性ガスは、アルゴン、窒素な
どが通常用いられる。
As the heat treatment conditions of this invention, the operating temperature is 1550-3
100°C, preferably 2000-31
The temperature range is 00°C, particularly preferably 2000 to 2400°C. When this heat treatment temperature exceeds 1550℃,
Since titanium dioxide does not melt and enter the carbon fiber, no reinforcing effect can be obtained. In addition, the heat treatment temperature is 310
If the temperature exceeds 0°C, the titanium carbide produced by the reaction of titanium dioxide with carbon will melt, so the strength will not increase any further and it is meaningless. This heat treatment is performed in an inert gas atmosphere, and the inert gas used at that time is usually argon, nitrogen, or the like.

発明の効果 この発明方法によると、炭素繊維は被覆層によって、化
学的に安定するのみならず、機械的強度特に引張強度及
び弾性率において、従来のものよりも3111程度向上
したものを製造することができる。
Effects of the Invention According to the method of this invention, carbon fibers that are not only chemically stable due to the coating layer, but also have improved mechanical strength, particularly tensile strength and elastic modulus, by about 3111 compared to conventional carbon fibers can be manufactured. Can be done.

この繊維はマイクロエレクトロード、センサー感知部、
電気機器の素材として単独で利用することをはじめ、種
々の用途に好適に用いられる。
This fiber is a microelectrode, a sensor sensing part,
It is suitably used for a variety of purposes, including being used alone as a material for electrical equipment.

実施例 次に実施例によりこの発明をさらに詳細に説明するが、
この発明はこれらの例によってなんら限定されるもので
はない。先ず、この発明に用いる分散液を示す。
EXAMPLES Next, the present invention will be explained in more detail by examples.
This invention is not limited in any way by these examples. First, the dispersion used in this invention will be described.

参考例1(分散液Aの調製) 分散溶媒にトルエンを用い、ドデシルベンゼンスルホン
酸ナトリウムを二酸化チタンに対し、30重量%添加し
た溶液とし、この溶液中の二酸化チタン粒子(平均粒径
200A)を超音波処理(15分)によって分散させる
ことにより、次の組成のゾルを得た。
Reference Example 1 (Preparation of Dispersion A) Using toluene as a dispersion solvent, a solution was prepared in which 30% by weight of sodium dodecylbenzenesulfonate was added to titanium dioxide, and titanium dioxide particles (average particle size 200A) in this solution were A sol having the following composition was obtained by dispersing by ultrasonication (15 minutes).

成    分 トルエン 含有量 99.22重量% 二酸化チタン 0.6重量% 参考例2(分散液Bの調製) 分散溶媒にエタノールを用い、1%二酸化チタン分散液
を前記の方法と同様の方法で次の組成のゾルを調製した
Ingredients Toluene content: 99.22% by weight Titanium dioxide 0.6% by weight Reference example 2 (Preparation of dispersion B) Using ethanol as the dispersion solvent, a 1% titanium dioxide dispersion was prepared in the same manner as described above. A sol with the following composition was prepared.

成 エタノール 二酸化チタン 分 含有量 98.67重量% 1.0重量% ドデシルベンゼンスルホン酸 ナトリウム          0.33重量%実施例
l 原料の炭素繊維は石油系の残油を熱改質処理して、メソ
フェーズビッチを製造し、溶融紡糸不融化した後、15
50゜Cで炭化したもので3000フィラメント、フィ
ラメント径は12.4μであった。この炭素繊維の単繊
維試験法による引張強度は217ky/ mra”、弾
性率は20.9L/ ram”であった。
Synthetic ethanol Titanium dioxide content 98.67% by weight 1.0% by weight Sodium dodecylbenzenesulfonate 0.33% by weight Example 1 The raw material carbon fiber is made by thermally reforming petroleum-based residual oil to form mesophase binder. After manufacturing and melt spinning infusibility, 15
The filament was carbonized at 50°C and had a diameter of 3,000 filaments of 12.4μ. This carbon fiber had a tensile strength of 217 ky/mra'' and an elastic modulus of 20.9 L/ram'' according to the single fiber test method.

この炭素繊維を0,6%ゾル二酸化チタン溶液(分散液
A)に含浸し、1分間超音波を照射し、これを真空乾燥
した後、アルゴン雰囲気中で2000’Oで熱処理した
。作成したフィラメントの引張強度は287k9/ r
ats”、弾性率51.2t/m+*”であり、明らか
に強度、弾性率が向上した。得られた改質炭素繊維につ
きX線回折による分析の結果、表面の二酸化チタンが炭
化チタンに変換されていることが確認された。また、電
子顕微鏡による観察から0.03μ程度のホールが多数
表面に形成されていた。これは二酸化チタンが炭素繊維
と反応し、炭素繊維中に浸透したためと考えられる。
This carbon fiber was impregnated with a 0.6% sol titanium dioxide solution (dispersion A), irradiated with ultrasonic waves for 1 minute, dried in vacuum, and then heat-treated at 2000'O in an argon atmosphere. The tensile strength of the created filament is 287k9/r
ats'' and elastic modulus of 51.2 t/m+*'', clearly improving the strength and elastic modulus. As a result of X-ray diffraction analysis of the obtained modified carbon fiber, it was confirmed that the titanium dioxide on the surface was converted to titanium carbide. Furthermore, observation using an electron microscope revealed that many holes of about 0.03 μm were formed on the surface. This is thought to be because titanium dioxide reacted with the carbon fibers and penetrated into the carbon fibers.

実施例2 原料炭素繊維は、市販のピッチ系炭素繊維をクロロホル
ム溶液中で超音波洗浄を3回、各lO分行った後、乾燥
させたものを用いた。この炭素繊維は、2000フィラ
メント、フィラメントffllO.1μであった。単繊
維試験法による引張強度は292k9/諺が1弾性率は
56.0t/+*m″であった。
Example 2 As raw material carbon fibers, commercially available pitch-based carbon fibers were subjected to ultrasonic cleaning three times in a chloroform solution for 10 minutes each time, and then dried. This carbon fiber has 2000 filaments, filaments ffllO. It was 1μ. The tensile strength according to the single fiber test method was 292k9/modulus of elasticity was 56.0t/+*m''.

上記炭素繊維を実施例1と同様の処理を行ったところ引
張強度326kg/ rim”,弾性率56.OL/+
u+”C’あった。
When the above carbon fiber was treated in the same manner as in Example 1, the tensile strength was 326 kg/rim" and the elastic modulus was 56.OL/+
There was u+"C'.

実施例3 実施例lと同様の炭素繊維で.1%ゾル二酸化チタン溶
液(分散液B)に含浸した。後の処理は実施例lと同様
に行った。引張強度は280729/ am”、弾性率
は53.3L/mm’であった。
Example 3 Using carbon fiber similar to Example 1. It was impregnated with a 1% sol titanium dioxide solution (dispersion B). The subsequent treatments were carried out in the same manner as in Example 1. The tensile strength was 280,729/am'' and the elastic modulus was 53.3 L/mm'.

実施例4 PAN系炭素繊維( 3000フィラメント、フィラメ
ント径7.7μ、引張強度279&g/mm’,弾性率
18.6t/arm”)を実施例lと同様な方法で処理
した。その結果、改質された炭素繊維は引張強度320
k9/ rRが、弾性率4 1 L/in”であった。
Example 4 PAN-based carbon fiber (3000 filament, filament diameter 7.7μ, tensile strength 279g/mm', elastic modulus 18.6t/arm") was treated in the same manner as in Example 1. As a result, modification The carbon fiber has a tensile strength of 320
k9/rR had an elastic modulus of 4 1 L/in''.

比較例 分散液に浸す本処理をすることなしに、実施例lで用い
た炭素繊維をそのまま2000℃で炭化した。
Comparative Example The carbon fibers used in Example 1 were carbonized as they were at 2000° C. without the main treatment of immersing them in the dispersion liquid.

このフィラメントは引張強度199.3Jlg/ mr
n”、弾性率35.2t/mm”で、機械的強度の向上
は認められなかった。
This filament has a tensile strength of 199.3 Jlg/mr
n'' and elastic modulus of 35.2 t/mm'', no improvement in mechanical strength was observed.

Claims (1)

【特許請求の範囲】 1 炭素繊維表面に超微粒子状二酸化チタンを均一に付
着させ、不活性ガス雰囲気下において、1550〜31
00℃の範囲の温度で熱処理することを特徴とする高強
度炭素繊維の製造方法。 2 超微粒子状二酸化チタンが平均粒径500Å以下の
ものである請求項1記載の製造方法。 3 炭素繊維を二酸化チタンゾル中に浸せきし、超音波
処理して炭素繊維表面に超微粒子状二酸化チタンを均一
に付着させる請求項1記載の製造方法。
[Claims] 1. Ultrafine titanium dioxide particles are uniformly adhered to the surface of carbon fibers, and in an inert gas atmosphere, the carbon fibers are heated to 1550 to 31
A method for producing high-strength carbon fiber, characterized by heat treatment at a temperature in the range of 00°C. 2. The manufacturing method according to claim 1, wherein the ultrafine titanium dioxide particles have an average particle size of 500 Å or less. 3. The manufacturing method according to claim 1, wherein the carbon fibers are immersed in a titanium dioxide sol and subjected to ultrasonic treatment to uniformly adhere ultrafine titanium dioxide particles to the surface of the carbon fibers.
JP5389489A 1989-03-08 1989-03-08 Production of high-strength carbon fiber Pending JPH02234973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5389489A JPH02234973A (en) 1989-03-08 1989-03-08 Production of high-strength carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5389489A JPH02234973A (en) 1989-03-08 1989-03-08 Production of high-strength carbon fiber

Publications (1)

Publication Number Publication Date
JPH02234973A true JPH02234973A (en) 1990-09-18

Family

ID=12955434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5389489A Pending JPH02234973A (en) 1989-03-08 1989-03-08 Production of high-strength carbon fiber

Country Status (1)

Country Link
JP (1) JPH02234973A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180372A (en) * 2000-12-15 2002-06-26 Toho Tenax Co Ltd Carbon fiber coated with metal oxide and method for producing the same
JP2012184535A (en) * 2011-02-18 2012-09-27 Toray Ind Inc Carbon fiber base material and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180372A (en) * 2000-12-15 2002-06-26 Toho Tenax Co Ltd Carbon fiber coated with metal oxide and method for producing the same
JP2012184535A (en) * 2011-02-18 2012-09-27 Toray Ind Inc Carbon fiber base material and method for producing the same

Similar Documents

Publication Publication Date Title
Sun et al. Multi-scale structure construction of carbon fiber surface by electrophoretic deposition and electropolymerization to enhance the interfacial strength of epoxy resin composites
Sharma et al. Effect of CNTs growth on carbon fibers on the tensile strength of CNTs grown carbon fiber-reinforced polymer matrix composites
JP4094670B2 (en) “Carbon fibers, acrylic fibers, and methods for producing them”
WO2017147623A1 (en) A Method to Manufacture Carbon Fibers through Graphene Composites and the Use Thereof
Preda et al. Functionalization of basalt fibers with ZnO nanostructures by electroless deposition for improving the interfacial adhesion of basalt fibers/epoxy resin composites
Wei et al. Bioprocess‐inspired microscale additive manufacturing of multilayered TiO2/polymer composites with enamel‐like structures and high mechanical properties
CN109864042A (en) A kind of nano-graphene preparing high thermal conductivity silk freshens food and educates silkworm method and its product
Wu et al. Synergistic modification of carbon fiber by electrochemical oxidation and sizing treatment and its effect on the mechanical properties of carbon fiber reinforced composites
Safi et al. Effects of chemical surface pretreatment on tensile properties of a single glass fiber and the glass fiber reinforced epoxy composite
Ma et al. The architecture of carbon fiber-TiO2 nanorods hybrid structure in supercritical water for reinforcing interfacial and impact properties of CF/epoxy composites
Sharma et al. Comparative study of the effect of fiber surface treatments on the flexural and interlaminar shear strength of carbon fiber-reinforced composites
US9315385B2 (en) Increasing the specific strength of spun carbon nanotube fibers
JPH02234973A (en) Production of high-strength carbon fiber
RU2475463C1 (en) Method of modifying surface of inorganic fibre, modified fibre and composite material
Rong et al. A novel method to graft carbon nanotube onto carbon fiber by the use of a binder
JPS62276075A (en) Carbon fiber and its production
CN104761154B (en) A kind of method that utilization organic macromolecule material makees catalyst preparation ITO nano wires
JP4141035B2 (en) Method for producing acrylonitrile fiber for carbon fiber production
CN110528271A (en) A kind of preparation method and applications of char sucrose modified carbon fiber
WO2016084842A1 (en) Carbon-fiber-reinforced plastic, method for producing carbon fibers, and method for producing carbon-fiber-reinforced plastic
Santiago et al. XPS study of sizing removal from carbon fibers
JPH1025627A (en) Acrylic carbon fiber
JPS58214527A (en) Carbon fiber bundle of high strength and elongation
JPH02160922A (en) Heat treatment
Konada et al. Effect of surface treatments on tensile and flexural properties of carbon fiber reinforced friction material