JP2001026412A - New production of carbon material coated with metal oxide - Google Patents

New production of carbon material coated with metal oxide

Info

Publication number
JP2001026412A
JP2001026412A JP11199566A JP19956699A JP2001026412A JP 2001026412 A JP2001026412 A JP 2001026412A JP 11199566 A JP11199566 A JP 11199566A JP 19956699 A JP19956699 A JP 19956699A JP 2001026412 A JP2001026412 A JP 2001026412A
Authority
JP
Japan
Prior art keywords
carbon
carbon material
reaction
oxides
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11199566A
Other languages
Japanese (ja)
Other versions
JP3940528B2 (en
Inventor
Shunsaku Kato
俊作 加藤
Shinko Ri
眞昊 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAWAKEN SANGYO GIJUTSU SHINK
KAGAWAKEN SANGYO GIJUTSU SHINKO ZAIDAN
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
KAGAWAKEN SANGYO GIJUTSU SHINK
KAGAWAKEN SANGYO GIJUTSU SHINKO ZAIDAN
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAWAKEN SANGYO GIJUTSU SHINK, KAGAWAKEN SANGYO GIJUTSU SHINKO ZAIDAN, Agency of Industrial Science and Technology filed Critical KAGAWAKEN SANGYO GIJUTSU SHINK
Priority to JP19956699A priority Critical patent/JP3940528B2/en
Publication of JP2001026412A publication Critical patent/JP2001026412A/en
Application granted granted Critical
Publication of JP3940528B2 publication Critical patent/JP3940528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a carbon material, e.g. carbon fibers coated with a ceramic material and expected to fine wide application to new fields of a composite material, an electronic material, etc., by a relatively low temperature energy- saving method. SOLUTION: An aqueous solution containing urea and metalic salts and a carbon material are put in a microwave transmissive vessel and irradiated with microwaves under pressure to uniformly precipitate metal oxides and multiple metal oxides onto the surface of the carbon. The metal oxides are ferromagnetic oxides and their multiple oxides and may be selected from iron oxide and ferrites that the iron multiple oxides. Reaction is carried out under microwave-hydrothermal conditions of <=200 deg.C reaction temperature, several atm to 30 atm pressure and several min to about 1 hr reaction time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業の属する技術分野】本発明は、金属酸化物でコー
ティングした炭素材料の製造方法に関する。
The present invention relates to a method for producing a carbon material coated with a metal oxide.

【0002】[0002]

【従来の技術】マイクロ波は、電磁波のうち波長が1cm
から1m(周波数30GHzから300MHz)ほどの、非常に短
い波長のものである。このマイクロ波を用いた加熱方式
は非接触加熱法である。分子内の双極子を持つものは電
界内で配向分極を生じ、電界の変化によって分極が回転
運動し、内部摩擦にって加熱されるものである。従来の
加熱法は表面からの加熱であり、熱伝導の悪い物質の加
熱には長い時間を要するが、マイクロ波では内部から瞬
時に加熱あるいは局所加熱される。すなわち、加熱した
い部位を選択的な加熱が可能である。
2. Description of the Related Art Microwaves have a wavelength of 1 cm among electromagnetic waves.
From 1 m (frequency 30 GHz to 300 MHz). This heating method using microwaves is a non-contact heating method. Those having a dipole in the molecule generate orientation polarization in an electric field, and the polarization rotates due to a change in the electric field, and is heated by internal friction. The conventional heating method is heating from the surface, and it takes a long time to heat a substance having poor heat conductivity. However, in the case of a microwave, heating or local heating is performed instantaneously from the inside. That is, it is possible to selectively heat a portion to be heated.

【0003】その特性を用いて水熱反応に応用したプロ
セスをマイクロ波−水熱(microwave- hydrothermal)
プロセスという。この方法はテフロンや石英などのマイ
クロ波透過性の容器に溶媒と試料を入れ、マイクロ波を
照射しながら容器内の温度と圧力を制御し、反応を行わ
せるものである。容器は密閉容器のみならず、加圧下ポ
ンプで試料溶液を連続的に反応部に送液する連続反応装
置をも利用できる。従来の水熱方法に比べて急速加熱で
きるのみならず、反応速度が著しく短くなること、また
均一な材料が合成できること、及び収率が高いことなど
が知られている。既往の研究ではマイクロ波−水熱プロ
セスでセラミックス微粉末や単結晶等が合成されてお
り、マイクロ波−水熱法は新しい省エネルギー・省資源
のプロセスとして注目されている。
[0003] A process applied to a hydrothermal reaction by using its characteristics is applied to microwave-hydrothermal.
It is called a process. In this method, a solvent and a sample are put in a microwave-permeable container such as Teflon or quartz, and the temperature and pressure in the container are controlled while irradiating the microwave to cause a reaction. As the container, not only a closed container, but also a continuous reaction device that continuously sends the sample solution to the reaction unit by a pump under pressure can be used. It is known that not only rapid heating can be performed as compared with the conventional hydrothermal method, but also that the reaction rate is significantly reduced, that a uniform material can be synthesized, and that the yield is high. In previous studies, ceramic fine powders and single crystals were synthesized by a microwave-hydrothermal process, and the microwave-hydrothermal method has attracted attention as a new energy-saving and resource-saving process.

【0004】[0004]

【発明が解決しようとする課題】本発明での目的は、複
合材料、電子材料等の新しい分野に幅広い応用が期待で
きるセラミック物質で被覆した炭素繊維などの炭素材料
を比較的低温且つ省エネルギー法で製造するものであ
る。この素材は特に広帯域の電磁波吸収性の素材として
の展開が期待されるものである。
SUMMARY OF THE INVENTION An object of the present invention is to produce a carbon material such as a carbon fiber coated with a ceramic material, which is expected to be widely applied to new fields such as a composite material and an electronic material, by a relatively low temperature and energy saving method. It is manufactured. This material is expected to be developed especially as a broadband electromagnetic wave absorbing material.

【0005】[0005]

【課題を解決するための手段】マイクロ波−水熱条件で
のセラミックスコーティングの研究はこれまで報告され
ていない。本発明者らは、水熱反応のプロセスとマイク
ロ波加熱法の長所を生かした複合プロセスにより、水溶
液中で炭素繊維等の炭素材料表面にフェライトなどの複
合酸化物の薄膜を形成させることに初めて成功した。本
発明は、マイクロ波透過性の容器に尿素及び金属塩を含
む溶液及び炭素材料を入れ、マイクロ波を照射すること
により、炭素表面に均一に沈殿させることを特徴とする
金属酸化物でコーティングした炭素材料の製造方法を要
旨としている。なお、マイクロ波反応装置内に設置した
チューブラー型の連続反応容器に尿素及び金属塩を含む
水溶液に炭素材料を懸濁させた水溶液をポンプで連続加
圧注入して、マイクロ波照射して連続反応させることを
含むものである。
SUMMARY OF THE INVENTION No studies have been reported on ceramic coatings under microwave-hydrothermal conditions. The present inventors have for the first time formed a thin film of a complex oxide such as ferrite on the surface of a carbon material such as a carbon fiber in an aqueous solution by a complex process utilizing the advantages of a hydrothermal reaction process and a microwave heating method. Successful. According to the present invention, a solution containing urea and a metal salt and a carbon material are placed in a microwave-permeable container, and are coated with a metal oxide that is uniformly precipitated on a carbon surface by irradiating the microwave. The gist is a method for producing a carbon material. An aqueous solution in which a carbon material is suspended in an aqueous solution containing urea and a metal salt is continuously injected under pressure into a tubular continuous reaction vessel installed in a microwave reactor by a pump, and is continuously irradiated by microwave irradiation. The reaction is included.

【0006】上記金属酸化物は、好ましくは強磁性酸化
鉄及び又は複合酸化鉄、より具体的には、ジンクフェラ
イト、マンガンフェライト、コバルトフェライト、ニッ
ケルフェライト、ジンクニッケルフェライト、ジンクマ
ンガンフェライト、ジンクコバルトフェライトなどのフ
ェライト類から選択される強磁性酸化鉄及び又は複合酸
化鉄である。ただし、これらに限定されるものではな
く、電磁波吸収性を有する酸化物及び又は複合酸化物で
ある。
The metal oxide is preferably a ferromagnetic iron oxide and / or a composite iron oxide, more specifically, zinc ferrite, manganese ferrite, cobalt ferrite, nickel ferrite, zinc nickel ferrite, zinc manganese ferrite, zinc cobalt ferrite. And ferromagnetic iron oxides and / or composite iron oxides selected from ferrites. However, the present invention is not limited to these, and includes oxides and / or composite oxides having electromagnetic wave absorbing properties.

【0007】上記の金属塩は、水溶性鉄塩である塩化
物、硝酸塩、硫酸塩などであり、これらの塩類及び尿素
を溶解させた水溶液に炭素材料を入れ、マイクロ波を照
射して所定の温度、圧力に加熱して、炭素材料表面で加
水分解させて、金属酸化物を沈析させて、表面にフェラ
イトなどの磁性酸化物をコーティングした炭素材料の製
造方法を要旨とする。
The above-mentioned metal salts are water-soluble iron salts such as chlorides, nitrates and sulfates. A carbon material is put into an aqueous solution in which these salts and urea are dissolved, and a predetermined amount is irradiated by microwave irradiation. A gist of the present invention is a method for producing a carbon material in which a metal oxide is precipitated by heating to a temperature and a pressure to cause hydrolysis on the surface of the carbon material, and a magnetic oxide such as ferrite is coated on the surface.

【0008】炭素材料はマイクロ波吸収性であり、マイ
クロ波照射により急速に加熱されるため、表面が高温に
なり尿素の分解を促進し、金属塩が炭素表面で加水分解
させて沈析して表面コーティングされるものである。
[0008] The carbon material is microwave-absorbing and is rapidly heated by microwave irradiation, so that the surface becomes hot and accelerates the decomposition of urea, and the metal salt is hydrolyzed and precipitated on the carbon surface. The surface is to be coated.

【0009】本発明における反応温度は200℃以下、
圧力は30気圧以下の条件になるようにマイクロ波出力
を制御しながら加熱して均一加水分解するものであり、
反応時間は数分から1時間程度である。従来法である均
一沈殿水熱法では水溶液中で均一に沈殿を生じるため炭
素材料表面に沈殿させてコーティングすることが困難で
あるのみならず、反応終結には長時間を要する。 本発
明のマイクロ波−水熱法ではマイクロ波吸収性で加熱さ
れやすい炭素材料を鉄塩及び尿素を含む水溶液に分散さ
せ、マイクロ波照射により、炭素材料が局所的に加熱さ
れ高温になり、表面で加水分解が進行するために炭素表
面に酸化鉄等が析出コーティングされるものであり、従
来法に比べて短時間に析出・製造されるものである。
The reaction temperature in the present invention is 200 ° C. or less,
The pressure is controlled by heating the microwave output so that the pressure becomes 30 atmospheric pressure or less, and the mixture is uniformly hydrolyzed.
The reaction time is about several minutes to one hour. In the conventional homogeneous precipitation hydrothermal method, precipitation occurs uniformly in an aqueous solution, so that not only is it difficult to precipitate and coat the surface of the carbon material, but also it takes a long time to complete the reaction. In the microwave-hydrothermal method of the present invention, a carbon material that is microwave-absorbable and easily heated is dispersed in an aqueous solution containing an iron salt and urea, and the carbon material is locally heated to a high temperature by microwave irradiation, and the surface is heated. As the hydrolysis proceeds, iron oxide or the like is deposited and coated on the carbon surface, and is deposited and manufactured in a shorter time than the conventional method.

【0010】本発明で製造される強磁性酸化鉄及び又は
複合酸化鉄コーティング炭素材料は、炭素材料が持つ導
電性に由来する高周波電磁波吸収性と強磁性体である酸
化鉄などによる電磁波吸収性を併せ持つ材料であり、低
周波から高周波までの広帯域電磁波吸収性などの電磁気
的機能性材料として開発が期待されているものである。
[0010] The ferromagnetic iron oxide and / or composite iron oxide coated carbon material produced in the present invention has a high frequency electromagnetic wave absorbing property derived from the conductivity of the carbon material and an electromagnetic wave absorbing property due to ferromagnetic iron oxide and the like. It is a material that has both properties and is expected to be developed as an electromagnetically functional material such as a broadband electromagnetic wave absorbing material from low frequencies to high frequencies.

【0011】[0011]

【発明の実施の形態】炭素材料としては、レーヨンやア
クリル繊維などの有機繊維や精製した石油ピッチを紡糸
して作った繊維を不活性気体中で熱処理し炭化して作っ
た炭素繊維あるいは多孔質化した活性炭素繊維などの繊
維状の炭素材料及び水処理や排気ガス処理に用いられる
粉末活性炭やゴミの充填材などとして用いられているカ
ーボンブラックなどの粉末状の炭素材料等を使用する。
金属塩としては、製造目的に応じて金属塩を選択するも
のであり、電磁波吸収性材料として利用する場合は、吸
収特性の優れた酸化物あるいは複合酸化物を選択するも
のである。電磁波吸収性の優れた酸化鉄及び複合酸化
鉄、例えば、フェライト、ジンクフェライト、マンガン
フェライト、コバルトフェライト、ニッケルフェライト
などの酸化物、ジンクニッケルフェライト、ジンクマン
ガンフェライト、ジンクカッパーフェライトなどの複合
酸化物が炭素材料表面に析出させるものであり、金属塩
の濃度は0.1Mから5M濃度であり、複合酸化物では、亜鉛
などの金属塩は鉄塩に対して化学量論量用いた。
BEST MODE FOR CARRYING OUT THE INVENTION As a carbon material, a carbon fiber produced by spinning an organic fiber such as rayon or acrylic fiber or a fiber produced by spinning a refined petroleum pitch in an inert gas and carbonizing the same is used. Fibrous carbon materials such as activated carbon fibers and powdered carbon materials such as powdered activated carbon used for water treatment and exhaust gas treatment and carbon black used as a filler for dust are used.
As the metal salt, a metal salt is selected according to the production purpose. When the metal salt is used as an electromagnetic wave absorbing material, an oxide or a composite oxide having excellent absorption characteristics is selected. Iron oxide and composite iron oxide with excellent electromagnetic wave absorption, for example, oxides such as ferrite, zinc ferrite, manganese ferrite, cobalt ferrite, nickel ferrite, and composite oxides such as zinc nickel ferrite, zinc manganese ferrite, and zinc copper ferrite. The metal salt was deposited on the surface of the carbon material, and the concentration of the metal salt was 0.1 M to 5 M. In the composite oxide, the metal salt such as zinc was used in a stoichiometric amount with respect to the iron salt.

【0012】尿素の作用について説明する。尿素は高温
の水熱条件では分解し、(1)式の反応によりアンモニ
アと炭酸ガスを発生する。アンモニアがアルカリ源とな
り中和反応が進行する。 CO(NH2)2 + H2O = 2NH3 + CO2 (1) 2NH3 + 2H2O = 2NH4+ + 2OH- (2) 中和滴定法では中和剤液滴の近傍が高アルカリとなり、
沈殿が不均一に生成する。これに対し、尿素法では反応
が溶液中で均一に進行し、沈殿が均一に生成する。マイ
クロ波−水熱法ではマイクロ波照射により反応が促進さ
れ、高速に反応が進行するものである。尿素濃度は金属
塩濃度より若干高めとすることが望ましい。
The action of urea will be described. Urea decomposes under high-temperature hydrothermal conditions, and generates ammonia and carbon dioxide gas by the reaction of equation (1). Ammonia becomes an alkali source and the neutralization reaction proceeds. CO (NH 2 ) 2 + H2O = 2NH3 + CO2 (1) 2NH3 + 2H2O = 2NH4 + + 2OH- (2) In the neutralization titration method, the vicinity of the neutralizing agent droplet becomes highly alkaline,
A precipitate forms heterogeneously. On the other hand, in the urea method, the reaction proceeds uniformly in the solution, and the precipitate is uniformly formed. In the microwave-hydrothermal method, the reaction is accelerated by microwave irradiation, and the reaction proceeds at a high speed. It is desirable that the urea concentration be slightly higher than the metal salt concentration.

【0013】マイクロ波の照射について説明する。マイ
クロ波加熱に用いられる周波数は電波法に定められてお
り、一般的に2.45GHzの周波数のマイクロ波が用いられ
ている。マイクロ波は分子内の双極子モーメントが大き
いものが電磁波による配向運動により生じる摩擦熱であ
り、内部から加熱されるものである。水や炭素材料は誘
電損失係数が大きく、マイクロ波で加熱されやすい。分
子レベルでの極性基部分の局所・選択的加熱が可能で、
高速・高収率反応が期待できる新規なプロセスとして注
目されてきている。本発明では、炭素材料のマイクロ波
吸収性を利用することにより、炭素材料を局所的に高速
加熱し、表面での反応を促進し、表面に高速コーティン
グすることを見出したものである。
The microwave irradiation will be described. The frequency used for microwave heating is defined by the Radio Law, and microwaves with a frequency of 2.45 GHz are generally used. Microwaves, which have a large dipole moment in the molecule, are frictional heat generated by the alignment motion by the electromagnetic wave and are heated from the inside. Water and carbon materials have a large dielectric loss coefficient and are easily heated by microwaves. Local and selective heating of the polar group at the molecular level is possible,
It has been attracting attention as a novel process that can expect a high-speed and high-yield reaction. In the present invention, it has been found that by utilizing the microwave absorbency of the carbon material, the carbon material is locally heated at a high speed, the reaction on the surface is promoted, and the surface is coated at a high speed.

【0014】[0014]

【作用】200℃以下の比較的低温条件、例えば120
℃で合成したものについても、後処理としての高温熱処
理も必要なく、炭素表面に結晶性のよいセラミックス酸
化物の膜が形成される。鉄系酸化物では電磁波吸収材
料、触媒材料などとして、新しい幅広い分野に応用が期
待される。なお、酸化鉄のみならず、各種の金属酸化物
でコーティングした炭素材料の開発も可能であり、光触
媒機能などを有する多孔性材料の製造、分解触媒や合成
触媒として表面積の大きな高機能性材料の開発にも応用
が可能な方法である。
A relatively low temperature condition of 200 ° C. or less, for example, 120 ° C.
Also in the case of the one synthesized at a temperature of ° C., a high-temperature heat treatment as a post-treatment is not required, and a ceramic oxide film having good crystallinity is formed on the carbon surface. Iron-based oxides are expected to be applied to a wide range of new fields as electromagnetic wave absorbing materials and catalyst materials. In addition, it is possible to develop not only iron oxide but also carbon materials coated with various metal oxides, manufacture porous materials having photocatalytic functions, etc., and use high-performance materials with large surface areas as decomposition catalysts and synthesis catalysts. This method can be applied to development.

【0015】[0015]

【実施例】本発明の詳細を実施例で説明する。本願発明
はこれら実施例によって何ら限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to embodiments. The present invention is not limited by these examples.

【0016】実施例1 FeCl3×6H2O,ZnCl2および尿素からなる出発原料を蒸留
水に所定濃度溶解して用いる。FeCl3×6H2Oの濃度は0.2
mol/L、尿素の濃度は0.8mol/Lである。亜鉛はZn:Feモ
ル比を0.5以上の組成となるように溶解する。溶液が完
全に溶解して透明になった後、ピッチ法で製造された炭
素繊維0.25gを攪拌しながら添加する。30分間攪拌した
後、テフロン製反応容器に移し、所定のマイクロ波−水
熱条件下で処理した。そのマイクロ波反応装置は周波数
2.45GHz、最高出力が最高1000ワットで、出力は0〜100
%の間で制御できる。また、最高圧力は200bar(窒素で
制御)、最高温度300℃で使用でき、出力、温度、圧力
および反応時間はパソコンでで制御される。本実験のマ
イクロ波-水熱処理の条件は180℃、1時間、出力800W、
窒素の圧力50barで行った。反応の間、尿素(CO(N
H2)2)はNH3とCO2に分解することにより、均一な酸化物
の沈殿を生成する沈殿剤として作用する。反応後、得ら
れた炭素繊維を分離し、蒸留水でよく洗浄した。洗浄さ
れた繊維を100℃,2時間で乾燥した。炭素繊維にコーテ
ィングされた生成物はX線回折装置により同定した。膜
のミクロ構造は走査電子顕微鏡で観察した。原料の炭素
繊維とマイクロ波−水熱条件下(Zn/Fe=0.75の組成)で
コーティングされた炭素繊維のX線回折パターンを図1
に示す。処理後のX線回折パターンは炭素繊維以外にZn-
フェライトの回折パターンが認められた。マイクロ波−
水熱法によって、炭素繊維の表面に酸化物の膜が比較的
低温、且つ、短時間にコーティングできることを見出し
た。
Example 1 A starting material composed of FeCl 3 × 6H 2 O, ZnCl 2 and urea is dissolved in distilled water at a predetermined concentration and used. FeCl 3 × 6H 2 O concentration 0.2
mol / L, the concentration of urea is 0.8 mol / L. Zinc dissolves such that the molar ratio of Zn: Fe becomes 0.5 or more. After the solution is completely dissolved and becomes transparent, 0.25 g of carbon fiber produced by the pitch method is added with stirring. After stirring for 30 minutes, the mixture was transferred to a Teflon-made reaction vessel and treated under predetermined microwave-hydrothermal conditions. The microwave reactor has a frequency
2.45GHz, the maximum output is up to 1000 watts, the output is 0-100
% Can be controlled. It can be used at a maximum pressure of 200 bar (controlled by nitrogen) and a maximum temperature of 300 ° C, and the output, temperature, pressure and reaction time are controlled by a personal computer. The conditions of microwave-hydrothermal treatment in this experiment were 180 ° C, 1 hour, output 800W,
The test was carried out at a nitrogen pressure of 50 bar. During the reaction, urea (CO (N
H 2 ) 2 ) acts as a precipitant, which breaks down into NH 3 and CO 2 to produce a uniform oxide precipitate. After the reaction, the obtained carbon fiber was separated and washed well with distilled water. The washed fiber was dried at 100 ° C. for 2 hours. The product coated on the carbon fiber was identified by X-ray diffractometer. The microstructure of the film was observed with a scanning electron microscope. Figure 1 shows the X-ray diffraction pattern of the raw carbon fiber and the carbon fiber coated under microwave-hydrothermal conditions (composition of Zn / Fe = 0.75).
Shown in The X-ray diffraction pattern after the treatment is Zn-
A diffraction pattern of ferrite was observed. Microwave
It has been found that the surface of carbon fibers can be coated with an oxide film at a relatively low temperature in a short time by a hydrothermal method.

【0017】実施例2 出発溶液中の亜鉛濃度の影響を調べるために、実施例1
の水溶液及び同一の条件で、亜鉛濃度のみをZn/Feを0.5
-0.75に変化させて炭素繊維表面へのコーティング実験
を行った。その結果、得られた炭素繊維表面のX線回折
パターンを図2に示す。ほとんどがZn-フェライトの回折
パターンであるが、Znの比率が低い場合、2q=36°付近
に小さな未同定のピークが認められたが、Znの比率が高
くなるにつれてZn−フェライトのピークのみとなり、ピ
ークも高くなり、Zn/Fe=0.75組成のサンプルでは結晶性
のよいZn-フェライト(ZnO・Fe2O3)のみが炭素繊維表面
に生成していることが認められた。既往の研究では尿素
の代わりにアンモニアを使ってフェライト粉末を沈殿さ
せているが、pHが7以上になるとZnの微量成分が溶液の
なかに残存すると報告されている[たとえば、M.Rozman
and M.Drofenik, J. Am. Ceram. Soc. 78[9] 2449-2455
(1995)]。したがって、本法でも反応中に尿素が分解
し、溶液のpHが上昇して、Zn成分が溶液の中に溶けるこ
とが考えられる。そのためマイクロ波−水熱方法におい
てもZnFe2O4の化学量論的組成よりZnの濃度を増やす必
要があることを認めた。図3に元の炭素繊維と処理後の
繊維の走査電子顕微鏡(SEM)で観察した写真を示す。
処理前後の繊維のミクロ構造が明らかに違うことが分か
った。X線回折法に加えて、SEM写真でも炭素繊維の表面
に膜が生成されたことが証明された。マイクロ波-水熱
反応下で、炭素繊維がマイクロ波で加熱されながら、フ
ェライトがそれらの表面に核として生成され、結論的に
は炭素表面にZn-フェライトがコーティングされいるこ
とが明らかになった。
Example 2 In order to investigate the effect of the zinc concentration in the starting solution, Example 1 was used.
Solution and the same conditions, only Zn concentration
A coating experiment on the carbon fiber surface was performed by changing to -0.75. As a result, the obtained X-ray diffraction pattern of the carbon fiber surface is shown in FIG. Almost all are diffraction patterns of Zn-ferrite, but when the Zn ratio is low, a small unidentified peak was observed around 2q = 36 °, but as the Zn ratio increased, only the Zn-ferrite peak became The peak also became higher, and it was confirmed that only Zn-ferrite (ZnO.Fe2O3) having good crystallinity was formed on the carbon fiber surface in the sample having a Zn / Fe = 0.75 composition. Previous studies have reported that ferrite powder is precipitated using ammonia instead of urea, but traces of Zn remain in solution at pH 7 and above [eg, M. Rozman
and M. Drofenik, J. Am. Ceram. Soc. 78 [9] 2449-2455
(1995)]. Therefore, it is considered that urea is decomposed during the reaction, the pH of the solution is increased, and the Zn component is dissolved in the solution. Therefore, it was recognized that it is necessary to increase the Zn concentration in the microwave-hydrothermal method from the stoichiometric composition of ZnFe 2 O 4 . FIG. 3 shows photographs of the original carbon fiber and the treated fiber observed by a scanning electron microscope (SEM).
It was found that the microstructure of the fiber before and after treatment was obviously different. In addition to the X-ray diffraction method, SEM photographs also proved that a film was formed on the surface of the carbon fiber. Under microwave-hydrothermal reactions, ferrite was generated as nuclei on their surfaces while carbon fibers were heated by microwaves, which eventually revealed that carbon surfaces were coated with Zn-ferrite. .

【0018】[0018]

【発明の効果】マイクロ波−水熱法を使って炭素材料表
面に金属酸化物、複合酸化物の膜を生成させるという報
告は本発明が始めてである。本方法の特徴は炭素材料の
マイクロ波吸収性を利用して表面に効率よくコーティン
グすること、反応速度も従来の水熱法に比べ大きいこと
である。それゆえ、本発明の方法は省エネルギー法で選
択的に炭素材料表面にセラミックス物質を被覆するのに
有用である。出発の金属材料を選択することにより、電
磁波吸収性の優れた材料の製造及び光触媒機能を有する
材料のほか、触媒材料や電子材料など新しい機能性材料
の開発により幅広い分野に応用できると期待される。
The present invention is the first report that a metal oxide or composite oxide film is formed on the surface of a carbon material by using a microwave-hydrothermal method. The features of this method are that the surface is efficiently coated by utilizing the microwave absorbency of the carbon material, and that the reaction rate is higher than that of the conventional hydrothermal method. Therefore, the method of the present invention is useful for selectively coating a ceramic material on the surface of a carbon material by an energy saving method. By selecting the starting metal material, it is expected that it can be applied to a wide range of fields by developing new functional materials such as catalyst materials and electronic materials, in addition to manufacturing materials with excellent electromagnetic wave absorption and photocatalytic materials. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 マイクロ波-水熱反応前後の炭素繊維のX線回
折パターンを示す図である。 (a)処理前の炭素繊維、 (b) 処理後の炭素繊維 (Zn/
Fe=0.75)
FIG. 1 shows X-ray diffraction patterns of carbon fibers before and after a microwave-hydrothermal reaction. (A) Carbon fiber before treatment, (b) Carbon fiber after treatment (Zn /
(Fe = 0.75)

【図2】 マイクロ波-水熱反応した炭素繊維のZn濃度
変化によるX線回折パターンを示す図である。 (a)Zn/Fe=0.5, (b) Zn/Fe=0.6, (c) Zn/Fe=0.75
FIG. 2 is a view showing an X-ray diffraction pattern according to a change in Zn concentration of a carbon fiber subjected to microwave-hydrothermal reaction. (A) Zn / Fe = 0.5, (b) Zn / Fe = 0.6, (c) Zn / Fe = 0.75

【図3】 マイクロ波-水熱反応前後の炭素繊維の走査
電子顕微鏡写真である。 (a)処理前の炭素繊維, (b)処理後の炭素繊維 (Zn/F
e=0.75)
FIG. 3 is a scanning electron micrograph of a carbon fiber before and after a microwave-hydrothermal reaction. (a) Carbon fiber before treatment, (b) Carbon fiber after treatment (Zn / F
e = 0.75)

【手続補正書】[Procedure amendment]

【提出日】平成11年7月19日(1999.7.1
9)
[Submission date] July 19, 1999 (1999.7.1)
9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 9/00 D06M 11/12 (72)発明者 李 眞昊 香川県高松市木太町7区3299−1 フォレ スト木太105号 Fターム(参考) 4G046 CA00 CB01 CB08 CC01 CC05 4G075 AA15 AA24 AA30 AA62 AA63 BA05 BA06 BD15 CA26 CA57 4L031 AA27 BA09 CA06 CA09 CB03 DA00 5E321 BB22 BB51 GG11 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H05K 9/00 D06M 11/12 (72) Inventor Lee Mae-ho 3299-1, Kitamachi 7-ku, Takamatsu-shi, Kagawa Prefecture Forest Kota 105 F term (reference) 4G046 CA00 CB01 CB08 CC01 CC05 4G075 AA15 AA24 AA30 AA62 AA63 BA05 BA06 BD15 CA26 CA57 4L031 AA27 BA09 CA06 CA09 CB03 DA00 5E321 BB22 BB51 GG11

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 マイクロ波透過性の容器に尿素及び金属
塩を含む水溶液及び炭素材料をいれ、加圧下にマイクロ
波を照射することにより、炭素表面に金属酸化物及び複
合金属酸化物を均一沈殿させることを特徴とする金属酸
化物でコーティングした炭素材料の製造方法。
1. An aqueous solution containing urea and a metal salt and a carbon material are placed in a microwave-permeable container, and microwaves are applied under pressure to uniformly precipitate metal oxides and composite metal oxides on the carbon surface. A method for producing a carbon material coated with a metal oxide.
【請求項2】 金属酸化物としては強磁性酸化物及びそ
れらの複合酸化物である請求項1の金属酸化物でコーテ
ィングした炭素材料の製造方法。
2. The method for producing a carbon material coated with a metal oxide according to claim 1, wherein the metal oxide is a ferromagnetic oxide or a composite oxide thereof.
【請求項3】 上記の金属酸化物が鉄酸化物及び鉄複合
酸化物であるフェライト類から選択される請求項2の金
属酸化物でコーティングした炭素材料の製造方法。
3. The method for producing a carbon material coated with a metal oxide according to claim 2, wherein the metal oxide is selected from ferrites which are iron oxides and iron composite oxides.
【請求項4】 反応温度は200℃以下、圧力は数気圧か
ら30気圧、反応時間は数分から1時間程度のマイクロ波
−水熱条件で反応を行うことを特徴とする請求項1から
4のいずれかの金属酸化物でコーティングした炭素材料
の製造方法。
4. The reaction according to claim 1, wherein the reaction is carried out under microwave-hydrothermal conditions of a reaction temperature of 200 ° C. or less, a pressure of several atmospheres to 30 atmospheres, and a reaction time of several minutes to 1 hour. A method for producing a carbon material coated with any one of metal oxides.
JP19956699A 1999-07-13 1999-07-13 Novel production method of carbon material coated with metal oxide Expired - Fee Related JP3940528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19956699A JP3940528B2 (en) 1999-07-13 1999-07-13 Novel production method of carbon material coated with metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19956699A JP3940528B2 (en) 1999-07-13 1999-07-13 Novel production method of carbon material coated with metal oxide

Publications (2)

Publication Number Publication Date
JP2001026412A true JP2001026412A (en) 2001-01-30
JP3940528B2 JP3940528B2 (en) 2007-07-04

Family

ID=16409969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19956699A Expired - Fee Related JP3940528B2 (en) 1999-07-13 1999-07-13 Novel production method of carbon material coated with metal oxide

Country Status (1)

Country Link
JP (1) JP3940528B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180372A (en) * 2000-12-15 2002-06-26 Toho Tenax Co Ltd Carbon fiber coated with metal oxide and method for producing the same
JP2004155596A (en) * 2001-09-28 2004-06-03 Mamoru Aizawa Manufacturing process of sheet-like hydroxyapatite particle
JP2005194132A (en) * 2004-01-07 2005-07-21 National Institute Of Advanced Industrial & Technology Method for heating activated carbon
JP2008136950A (en) * 2006-12-01 2008-06-19 Hinomaru Carbo Techno Co Ltd Environment improving material, structure for improving environment and method for improving peripheral environment
KR100941148B1 (en) 2008-05-29 2010-02-10 연세대학교 산학협력단 Method for carbon coating on metal oxide
JP2012012736A (en) * 2010-07-02 2012-01-19 Japan Fine Ceramics Center Method of manufacturing coil-shaped carbon fiber with supported magnetic material as ultra wide band electromagnetic wave absorber
JP2012025687A (en) * 2010-07-22 2012-02-09 National Institute Of Advanced Industrial Science & Technology Method for producing biaryl compound, and catalyst for microwave reaction utilizable for the same
JP2013526775A (en) * 2010-05-10 2013-06-24 コリア インスティチュ−ト オブ マシナリ− アンド マテリアルズ Broadband electromagnetic wave absorber and manufacturing method thereof
CN105259216A (en) * 2015-11-18 2016-01-20 济南大学 Preparing method and application of alcohol gas sensitive sensor based on ferroferric oxide hybridization carbon materials
KR101812698B1 (en) 2015-08-28 2018-01-30 전북대학교산학협력단 Manufacturing method for carbonfiber grown metal oxide

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180372A (en) * 2000-12-15 2002-06-26 Toho Tenax Co Ltd Carbon fiber coated with metal oxide and method for producing the same
JP2004155596A (en) * 2001-09-28 2004-06-03 Mamoru Aizawa Manufacturing process of sheet-like hydroxyapatite particle
JP2005194132A (en) * 2004-01-07 2005-07-21 National Institute Of Advanced Industrial & Technology Method for heating activated carbon
JP2008136950A (en) * 2006-12-01 2008-06-19 Hinomaru Carbo Techno Co Ltd Environment improving material, structure for improving environment and method for improving peripheral environment
KR100941148B1 (en) 2008-05-29 2010-02-10 연세대학교 산학협력단 Method for carbon coating on metal oxide
JP2013526775A (en) * 2010-05-10 2013-06-24 コリア インスティチュ−ト オブ マシナリ− アンド マテリアルズ Broadband electromagnetic wave absorber and manufacturing method thereof
US9929475B2 (en) 2010-05-10 2018-03-27 Korea Institute Of Machinery & Materials Waveband electromagnetic wave absorber and method for manufacturing same
JP2012012736A (en) * 2010-07-02 2012-01-19 Japan Fine Ceramics Center Method of manufacturing coil-shaped carbon fiber with supported magnetic material as ultra wide band electromagnetic wave absorber
JP2012025687A (en) * 2010-07-22 2012-02-09 National Institute Of Advanced Industrial Science & Technology Method for producing biaryl compound, and catalyst for microwave reaction utilizable for the same
KR101812698B1 (en) 2015-08-28 2018-01-30 전북대학교산학협력단 Manufacturing method for carbonfiber grown metal oxide
CN105259216A (en) * 2015-11-18 2016-01-20 济南大学 Preparing method and application of alcohol gas sensitive sensor based on ferroferric oxide hybridization carbon materials

Also Published As

Publication number Publication date
JP3940528B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
Kurian et al. Effect of preparation conditions on nickel zinc ferrite nanoparticles: a comparison between sol–gel auto combustion and co-precipitation methods
Peymanfar et al. Tailoring energy band gap and microwave absorbing features of graphite-like carbon nitride (g-C3N4)
JP2001026412A (en) New production of carbon material coated with metal oxide
Dippong et al. A possible formation mechanism and photocatalytic properties of CoFe2O4/PVA-SiO2 nanocomposites
Melvin et al. Electromagnetic wave absorption properties of barium titanate/carbon nanotube hybrid nanocomposites
Sari et al. Green synthesis of magnetite (Fe3O4) nanoparticles using Graptophyllum pictum leaf aqueous extract
JP2008504202A (en) Method for producing iron oxide nanoparticles
Meena et al. Optical, electrochemical and photocatalytic properties of sunlight driven Cu doped manganese ferrite synthesized by solution combustion synthesis
JP4027590B2 (en) Rapid production method for crystalline ferrite fine powder
Zhang et al. Peanut-shaped nanoribbon bundle superstructures of malachite and copper oxide
CN108675336A (en) The method that microwave cooperates with auxiliary liquid phase synthesis nanometer rare earth oxide ball with the double outfields of ultrasonic wave
Rezaei et al. Photo-catalyst and magnetic investigation of BaFe 12 O 19–ZnO nanoparticles and nanocomposites
Asiabani et al. Green synthesis of magnetic and photo-catalyst PbFe 12 O 19− PbS nanocomposites by lemon extract: nano-sphere PbFe 12 O 19 and star-like PbS
Kaur et al. Comparative evaluation of photocatalytic performance of hexagonal ferrites procured via sol-gel route
CN113428891A (en) Preparation method and application of nano cadmium sulfide
Stoia et al. Nanosized zinc and magnesium ferrites obtained from PVA–metal nitrates’ solutions
KR20100016887A (en) Manufacturing method of nano zinc oxide powders by hydrothermal method
JP2002180372A (en) Carbon fiber coated with metal oxide and method for producing the same
JP4180338B2 (en) Method for producing sea urchin zinc oxide
Khanjani et al. Ultrasound-assisted coating of silk yarn with sphere-like Mn3O4 nanoparticles
Byrappa Novel hydrothermal solution routes of advanced high melting nanomaterials processing
JP4737577B2 (en) Manufacturing method of acicular zinc oxide
CN114044540A (en) A-site and B-site co-doped perovskite type electromagnetic wave-absorbing material and preparation method thereof
CN114717839B (en) Article with super-hydrophobic surface and preparation method thereof
Gaidhane et al. Nanocrystalline α-Fe2O3: a superparamagnetic material for w-LED application and waste water treatment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees