JP2005194132A - Method for heating activated carbon - Google Patents

Method for heating activated carbon Download PDF

Info

Publication number
JP2005194132A
JP2005194132A JP2004001747A JP2004001747A JP2005194132A JP 2005194132 A JP2005194132 A JP 2005194132A JP 2004001747 A JP2004001747 A JP 2004001747A JP 2004001747 A JP2004001747 A JP 2004001747A JP 2005194132 A JP2005194132 A JP 2005194132A
Authority
JP
Japan
Prior art keywords
activated carbon
coating material
heating
solvent
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004001747A
Other languages
Japanese (ja)
Other versions
JP4872060B2 (en
Inventor
Satoru Kobayashi
悟 小林
Nobuyuki Kikukawa
伸行 菊川
Motoya Mori
元哉 毛利
Juichi Yanagi
寿一 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Japan Enviro Chemicals Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Japan Enviro Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Japan Enviro Chemicals Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004001747A priority Critical patent/JP4872060B2/en
Publication of JP2005194132A publication Critical patent/JP2005194132A/en
Application granted granted Critical
Publication of JP4872060B2 publication Critical patent/JP4872060B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for heating activated carbon, by which a solvent or gas adsorbed by the activated carbon can be easily and stably desorbed and recovered without using steam; and to provide a method for recovering the solvent using the same. <P>SOLUTION: In the case when the surface of the activated carbon is heated by irradiation with microwave or the like after covering the surface of the activated carbon with a heat resistant, insulative covering material having a thickness of ≥0.0005 and ≤1.0 mm, the temperature of the activated carbon itself can be uniformly raised easily in a short time without causing spark discharge and accordingly causing combustion of the activated carbon even when the surface is irradiated with microwave or the like in an atmosphere containing oxygen. Since this method can be carried out even in a small scale apparatus, it becomes possible to recover solvents volatilized in air, in small scale business places handling solvents, such as dry cleaning stores or painting stores. It is applicable also to pyrogenetic reaction using activated carbon catalist. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐熱性且つ電気絶縁性被覆材で表面が被覆された活性炭にマイクロ波を照射するか、高周波を印加することにより活性炭を加熱する方法に関する。またその被覆活性炭を用いて溶剤又はガスを吸着させた後、簡単な方法で該活性炭を加熱し、吸着されていた溶剤又はガスを回収する方法に関する。さらに、本活性炭の加熱方法を応用した触媒反応方法に関する。   The present invention relates to a method for heating activated carbon by irradiating the activated carbon whose surface is coated with a heat-resistant and electrically insulating coating material with microwaves or applying a high frequency. Further, the present invention relates to a method for recovering the adsorbed solvent or gas by heating the activated carbon by a simple method after adsorbing the solvent or gas using the coated activated carbon. Furthermore, it is related with the catalytic reaction method which applied the heating method of this activated carbon.

溶剤を大量に扱う工場では、揮散する溶剤を活性炭に吸着させ、後に脱着させて回収する方法が広く用いられている。しかし、吸着した溶剤の脱離方法は水蒸気加熱方式が一般的であり、ボイラー、コンデンサ、デカンタなどが必要である。また脱離した溶剤と水の分離が困難であり、溶剤回収装置が大型となるので設備コスト、ランニングコストも高くつく。このため、ドライクリーニング店や塗装工場など溶剤を扱う小規模事業所などでは溶剤回収装置があまり装備されておらず、溶剤の一部は大気中へ放散されているのが現状である。ガスの精製や、悪臭ガス、有害ガスの吸着、除去にも活性炭が用いられるが、これらのガスを吸着した活性炭を加熱することにより活性炭からガスを離脱させる場合も、溶剤の場合と同じ事情が存在する。   In factories that handle a large amount of solvent, a method is widely used in which a volatilizing solvent is adsorbed on activated carbon and later desorbed and recovered. However, the method of desorbing the adsorbed solvent is generally a steam heating method, and requires a boiler, a condenser, a decanter, and the like. In addition, separation of the desorbed solvent and water is difficult, and the solvent recovery apparatus becomes large, resulting in high equipment costs and running costs. For this reason, small-scale establishments that handle solvents, such as dry cleaning shops and paint factories, are not equipped with much solvent recovery devices, and the present situation is that a part of the solvent is diffused into the atmosphere. Activated carbon is also used for gas purification, malodorous gas, and adsorption and removal of toxic gases, but heating the activated carbon that has adsorbed these gases causes the same situation as in the case of solvents. Exists.

また、活性炭は種々の化学反応の触媒あるいは触媒用担体として用いられているが、触媒反応では一般に加熱が必要な場合が多い。この場合には、処理するガスや装置全体を大掛かりな装置により加熱する必要があり、且つ多量のエネルギーが消費される。   Activated carbon is used as a catalyst for various chemical reactions or as a catalyst carrier. In general, the catalytic reaction often requires heating. In this case, it is necessary to heat the gas to be processed and the entire apparatus with a large apparatus, and a large amount of energy is consumed.

溶媒やガスを吸着した活性炭から水蒸気により溶媒やガスを脱離させる代わりに、活性炭に直接マイクロ波を照射するかまたは高周波を印加して活性炭を加熱し、吸着した溶剤やガスを脱離させる方法が考えられる。しかし、活性炭は電気的絶縁破壊が起こりやすく、マイクロ波を照射した場合に放電現象が起こって火花が飛び、活性炭が着火、燃焼、爆発するという大きな問題点がある。
これを防ぐために、活性炭を充填した層に不活性ガスを循環させる方法が提案されている(特許文献1)。しかしながら、この方法では加熱が均一に行うことができず、また装置内全体を不活性ガスで置換する必要があり、装置が重厚、大型化し、経費が嵩むと言う問題点がある。
Instead of desorbing the solvent or gas from the activated carbon that has adsorbed the solvent or gas with water vapor, the activated carbon is directly irradiated with microwaves or the activated carbon is heated to desorb the adsorbed solvent or gas. Can be considered. However, activated carbon is prone to electrical breakdown, and there is a major problem in that when a microwave is irradiated, a discharge phenomenon occurs and sparks fly, and the activated carbon ignites, burns, and explodes.
In order to prevent this, a method of circulating an inert gas through a layer filled with activated carbon has been proposed (Patent Document 1). However, in this method, heating cannot be performed uniformly, and it is necessary to replace the entire inside of the apparatus with an inert gas, so that there is a problem that the apparatus becomes heavy and large, and the cost increases.

特許文献2において、活性炭と非電導物質を混合してプレスするか、活性炭の外表面を非電導物質で覆うことにより活性炭同士の接触点を減少させ、火花の発生を抑制しようという提案がなされており、実施例では活性炭とゼオライトを7:3の比率で混合し、プレスする方法が示されている。しかし、この方法で得られたペレットは、マイクロ波による活性炭の加熱効率が低く、溶剤蒸気などの吸脱着量も極めて少ないので、そのままでは実用的ではない。すなわち、具体的に非電導物質をどの程度、どのようにして活性炭と組み合わせるかは明確ではなく、吸着性能とマイクロ波加熱可能な性能をバランスよく併せ持つ実用的な吸着剤は提案されていない。
特開平6-31163号公報 日本特許第3044279号公報
In Patent Document 2, a proposal has been made to reduce the number of contact points between activated carbons by suppressing the generation of sparks by mixing and pressing activated carbon and a non-conductive substance or covering the outer surface of the activated carbon with a non-conductive substance. In Examples, activated carbon and zeolite are mixed at a ratio of 7: 3 and pressed. However, the pellets obtained by this method are not practical as they are because the heating efficiency of activated carbon by microwaves is low and the amount of adsorption / desorption of solvent vapor and the like is extremely small. That is, it is not clear how and how the non-conductive substance is combined with the activated carbon, and no practical adsorbent having a good balance between adsorption performance and performance capable of microwave heating has been proposed.
JP-A-6-31163 Japanese Patent No. 3044279

そこで水蒸気を用いないで簡便な方法により活性炭から溶剤が脱離、回収できれば、小規模な事業所でも簡単な設備で溶剤回収が可能となり、大気汚染の防止につながるはずである。本発明は、水蒸気を用いることなく、活性炭に吸着した溶剤やガスを安全且つ容易に脱離、回収することができる活性炭の加熱方法および、その方法を用いた溶剤回収方法を提供しようとするものである。さらにはガスの精製や悪臭ガス、有害ガスの除去に使用した活性炭を、安全かつ効率よく再生する方法も提供する。   Therefore, if the solvent can be desorbed and recovered from the activated carbon by a simple method without using water vapor, it will be possible to recover the solvent with simple equipment even in a small-scale office, which should lead to prevention of air pollution. The present invention intends to provide a heating method of activated carbon that can safely and easily desorb and recover the solvent and gas adsorbed on the activated carbon without using water vapor, and a solvent recovery method using the method. It is. Furthermore, the present invention also provides a method for safely and efficiently regenerating activated carbon used for gas purification, odor gas and harmful gas removal.

また、活性炭を用いた触媒反応装置において、活性炭を効率よく加熱、昇温させることができれば、小型の設備による省エネルギー運転が可能となる。本発明は触媒である活性炭自体を安全且つ効率よく加熱、昇温させることができる活性炭を用いた触媒反応方法を提供するものである。   In addition, in a catalytic reaction apparatus using activated carbon, if the activated carbon can be efficiently heated and heated, energy-saving operation by a small facility becomes possible. The present invention provides a catalytic reaction method using activated carbon which can heat and raise the temperature of activated carbon itself as a catalyst safely and efficiently.

本発明者らはマイクロ波加熱等による溶剤回収用吸着剤について鋭意検討した結果、活性炭の表面を、耐熱性且つ電気絶縁性被覆材で、ある特定な厚みに被覆して、活性炭の粒子同士が直接接触しないようにした結果、活性炭本来の溶剤吸着性能は低下させることなく、しかもこの被覆活性炭に空気中(酸素の存在下)でマイクロ波等を照射しても、火花放電が発生せず、従って活性炭が発火、燃焼することなく、安全且つ容易に、しかも短時間内に効率よく活性炭自体の温度を目的とする温度にまで加熱することができることを見出した。   As a result of intensive studies on an adsorbent for solvent recovery by microwave heating or the like, the present inventors coated the surface of activated carbon with a heat-resistant and electrically insulating coating material to a specific thickness, and the activated carbon particles As a result of avoiding direct contact, the original solvent adsorption performance of the activated carbon does not deteriorate, and even if this coated activated carbon is irradiated with microwaves in the air (in the presence of oxygen), no spark discharge occurs, Accordingly, it has been found that the activated carbon can be heated to the target temperature safely and easily and efficiently within a short time without ignition and combustion.

即ち本発明は、
(1)耐熱性且つ電気絶縁性被覆材により0.0005mm以上、1.0mm以下の厚みで被覆された活性炭にマイクロ波を照射するか又は高周波を印加する活性炭の加熱方法、
(2)被覆材が、200℃以下では物理的、化学的に安定な耐熱性被覆材である(1)記載の活性炭の加熱方法、
(3)被覆材が、1Ωm以上の電気比抵抗を有する電気絶縁性被覆材である(1)又は(2)記載の活性炭の加熱方法、
(4)活性炭に含まれる灰分が15重量%以下である(1)記載の活性炭の加熱方法、
(5)被覆材により被覆される活性炭の形状が粒状であり、その平均粒子径が0.1mm以上、20mm以下であり、かつ、被覆材は粉末でありその平均粒子径が0.1μm以上、100μm以下である(1)記載の活性炭の加熱方法、
(6)被覆材が、無機系の酸化物、粘土鉱物又はフェライト化合物である(1)〜(3)のいずれかに記載の活性炭の加熱方法、
(7)水ガラスを用いて、被覆材粒子を表面に固着した(1)記載の活性炭の加熱方法、
(8)耐熱性且つ電気絶縁性被覆材により0.0005mm以上、1.0mm以下の厚みで被覆された活性炭を充填塔に充填し、溶剤又はガスを吸着させた後、マイクロ波を照射または高周波を印加し、加熱することにより吸着した溶剤又はガスを脱離させる溶剤回収方法、及び
(9)耐熱性且つ電気絶縁性被覆材により0.0005mm以上、1.0mm以下の厚みで被覆され、触媒成分を担持していてもよい活性炭を、反応器に充填した後、マイクロ波を照射または高周波を印加し、加熱することによって反応を促進させる触媒反応方法、
である。
That is, the present invention
(1) A method of heating activated carbon in which activated carbon coated with a heat-resistant and electrically insulating coating material with a thickness of 0.0005 mm or more and 1.0 mm or less is irradiated with microwaves or applied with a high frequency,
(2) The method for heating activated carbon according to (1), wherein the coating material is a heat-resistant coating material that is physically and chemically stable at 200 ° C. or lower,
(3) The method for heating activated carbon according to (1) or (2), wherein the coating material is an electrically insulating coating material having an electrical resistivity of 1 Ωm or more,
(4) The method for heating activated carbon according to (1), wherein the ash content in the activated carbon is 15% by weight or less,
(5) The shape of the activated carbon covered with the coating material is granular, the average particle diameter is 0.1 mm or more and 20 mm or less, and the coating material is powder and the average particle diameter is 0.1 μm or more, The method for heating activated carbon according to (1), which is 100 μm or less,
(6) The method for heating activated carbon according to any one of (1) to (3), wherein the coating material is an inorganic oxide, clay mineral, or ferrite compound,
(7) The method for heating activated carbon according to (1), wherein the coating material particles are fixed to the surface using water glass,
(8) Activated carbon coated with a heat-resistant and electrically insulating coating material with a thickness of 0.0005 mm or more and 1.0 mm or less is packed in a packed tower, adsorbed with solvent or gas, and then irradiated with microwaves or high frequency And a solvent recovery method for desorbing the adsorbed solvent or gas by heating, and (9) a catalyst coated with a heat-resistant and electrically insulating coating material with a thickness of 0.0005 mm or more and 1.0 mm or less. Activated carbon which may carry a component, after filling the reactor, irradiation with microwaves or application of high frequency and heating, the catalytic reaction method to promote the reaction,
It is.

活性炭表面に種々の物質を被覆し、新たな物性や機能を付与する技術は、従来から多数報告されているが、それらのほとんどは親水性の向上や微粉発生の抑制などが目的であり、本発明のようなマイクロ波等による加熱、溶媒回収、加熱触媒反応促進を目的としたものは少なかった。
活性炭に疎水性ゼオライトを混合し、成形した吸着剤にマイクロ波をあてて加熱する例があるが、このような方法では、ゼオライトを効率よく活性炭の表面に均一に被覆することは困難である。本加熱方法の最も重要な点は、いかに活性炭自身の持つ吸着性能を損なわずに活性炭表面に均一に被覆材を被覆できるかということである。
Many techniques have been reported so far for coating activated carbon surfaces with various substances and imparting new physical properties and functions, but most of them are aimed at improving hydrophilicity and suppressing the generation of fine powder. There were few things for the purpose of heating by microwave etc. like invention, solvent collection | recovery, and heating catalyst reaction promotion.
There is an example in which hydrophobic zeolite is mixed with activated carbon and microwaves are applied to the formed adsorbent and heated. However, in such a method, it is difficult to efficiently coat the surface of the activated carbon uniformly. The most important point of this heating method is how to uniformly coat the activated carbon surface without impairing the adsorption performance of the activated carbon itself.

本発明の被覆活性炭を用いると、マイクロ波照射装置あるいは高周波印加装置と簡単なコンデンサがあれば、小規模装置によっても加熱による溶剤又はガスの回収や加熱触媒反応が可能となり、また装置内を不活性ガスで置換する必要もない。また活性炭の吸着性能も低下が少ないので、装置も大きくなることはない。   When the coated activated carbon of the present invention is used, if a microwave irradiation device or a high-frequency application device and a simple condenser are used, a solvent or gas can be recovered by heating or a catalytic reaction can be performed even with a small-scale device. There is no need to replace with active gas. In addition, since the adsorption performance of activated carbon is small, the apparatus does not become large.

本発明に使用される活性炭は、その表面をシリカ、アルミナ、チタニア、タルク、モンモリロナイトなどの無機系物質、あるいはフッ素樹脂、フェノール樹脂、ポリエステル樹脂等の樹脂類といった耐熱性と電気絶縁性を有する被覆材で被覆した活性炭である。被覆のない活性炭の場合には、部分加熱が起こったり、昇温温度が安定せず、また火花放電が起こり、活性炭自体が発火、燃焼してしまう可能性がある。これに対し、本発明に使用する被覆活性炭ではマイクロ波照射の出力に応じて均一且つ安定した昇温温度を保持することができる。この性質を利用すれば、溶剤等を吸着した活性炭から溶剤を安全且つ簡便に脱離させることができる。
高周波印加で加熱する場合、被覆材は磁性体であるのが望ましい。
The activated carbon used in the present invention has a coating having heat resistance and electrical insulation on the surface thereof, such as inorganic substances such as silica, alumina, titania, talc, montmorillonite, or resins such as fluororesin, phenol resin, polyester resin, etc. Activated carbon coated with a material. In the case of activated carbon with no coating, partial heating may occur, the temperature rise may not be stable, spark discharge may occur, and the activated carbon itself may ignite and burn. In contrast, the coated activated carbon used in the present invention can maintain a uniform and stable temperature rise according to the output of microwave irradiation. If this property is used, the solvent can be safely and easily desorbed from the activated carbon adsorbed with the solvent.
When heating by applying a high frequency, the coating material is preferably a magnetic material.

本発明に用いられる活性炭は、溶剤、ガスの回収や加熱触媒反応に適した活性炭であればどのようなものでも良い。しかし、活性炭中に含まれる灰分が多いと、溶剤を吸着した際の発熱量が大きく、また発火点も下がるので、活性炭中に含まれる灰分が15重量%以下ものが好ましく、10重量%以下のものがさらに好ましく、7%以下のものが最も好ましく用いられる。この低灰分率の活性炭は、灰分の少ない原料を用いるか、あるいは活性炭や活性炭の原料を水、塩酸等の酸を含んだ水溶液で洗浄することによって得ることができる。   The activated carbon used in the present invention may be any activated carbon suitable for solvent and gas recovery and heat catalytic reaction. However, if the amount of ash contained in the activated carbon is large, the calorific value when adsorbing the solvent is large and the ignition point is lowered, so that the amount of ash contained in the activated carbon is preferably 15% by weight or less, preferably 10% by weight or less. More preferred are those with 7% or less. The activated carbon having a low ash content can be obtained by using a raw material with low ash content or by washing the raw material of activated carbon or activated carbon with an aqueous solution containing an acid such as water or hydrochloric acid.

活性炭の原料は植物の果実(やし殻、キャンドルナッツ殻など)、石炭(褐炭、瀝青炭、無煙炭など)、ピッチ、タール、木粉(おが屑など)、合成樹脂(フェノール樹脂、塩化ビニリデン樹脂など)など一般的に用いられるものであればなんでも良い。このなかでは果実、特にヤシ殻由来のものや石炭、特に瀝青炭由来のものが安定的供給や性能面で好ましい。   The raw materials for activated carbon are plant fruits (such as palm husk and candle nut husk), coal (brown coal, bituminous coal, anthracite, etc.), pitch, tar, wood flour (such as sawdust), and synthetic resins (phenol resin, vinylidene chloride resin, etc.) Anything that is generally used can be used. Of these, fruits, particularly those derived from coconut shells, and coals, particularly those derived from bituminous coal, are preferred in terms of stable supply and performance.

賦活方法も特に限定されるものではない。たとえば「活性炭工業、重化学工業通信社(1974)、p.23〜p.37」の方法で製造される水蒸気、酸素、炭酸ガスなどの活性ガスで賦活された賦活炭や、リン酸、塩化亜鉛などを用いた薬品賦活炭などの活性炭が用いられる。原料の賦活活性炭のBET比表面積は、500〜2500m/g、好ましくは700〜2000m/g、最も好ましくは800〜1800m/gである。 The activation method is not particularly limited. For example, activated charcoal activated by an active gas such as water vapor, oxygen, carbon dioxide gas, phosphoric acid, zinc chloride manufactured by the method of “activated carbon industry, heavy chemical industry communication company (1974), p.23-p.37” Activated carbon such as chemical activated charcoal using etc. is used. The BET specific surface area of the activated carbon as a raw material is 500 to 2500 m 2 / g, preferably 700 to 2000 m 2 / g, and most preferably 800 to 1800 m 2 / g.

活性炭の粒度は特に限定されないが、装置に充填して使用する際に、ガスを通過させた場合の圧力損失や吸着速度の点から、通常は平均粒子径が0.1mm以上、20mm以下のものが用いられる。好ましくは0.3mm以上、10mm以下mm、より好ましくは0.5mm以上、5mm以下である。   The particle size of the activated carbon is not particularly limited, but the average particle size is usually 0.1 mm or more and 20 mm or less from the viewpoint of pressure loss and adsorption speed when gas is passed when filling the apparatus. Is used. Preferably they are 0.3 mm or more and 10 mm or less mm, More preferably, they are 0.5 mm or more and 5 mm or less.

被覆される活性炭の形状は破砕状のものや成形体(円柱状、球状など)に成形して用いる。成形は粉末活性炭を成型して所定の形状にしても良いし、あらかじめ成形した原料を賦活して活性炭にしてもよい。これらの中で特に、球状のものは、被覆する物質を活性炭表面に均一な厚みに被覆し易いので好ましい。
活性炭を球状に成型するには、転動造粒機などを用いても良いし、マルメライザーのような装置でペレット状に押し出したものを球状化するなどの方法がある。
The activated carbon to be coated is formed into a crushed shape or a molded body (columnar shape, spherical shape, etc.). The molding may be performed by molding powdered activated carbon into a predetermined shape, or by activating a previously molded raw material into activated carbon. Of these, spherical ones are particularly preferable because the substance to be coated is easily coated on the activated carbon surface with a uniform thickness.
In order to form the activated carbon into a spherical shape, a rolling granulator or the like may be used, and there are methods such as spheroidizing what is extruded into a pellet form with an apparatus such as a Malmerizer.

本発明に用いられる耐熱性、電気的絶縁性被覆材は、200℃以下では発火したり、熱変化を受けず物理的、化学的に安定であり、電気絶縁破壊が起こりにくい材料、即ち電気絶縁体であれば良い。より具体的には、200℃以下の温度では、発火せず、熱変化を受けない耐熱性を有し、電気比抵抗(体積抵抗率)が1Ωm以上、好ましくは、10Ωm以上、更に好ましくは10Ωm以上のものである。この被覆剤の具体例の中で、無機系物質としては、アルミナ(電気比抵抗約1012Ωm)、シリカ(電気比抵抗約1010Ωm)、ジルコニア(電気比抵抗約1012Ωm)、チタニア(電気比抵抗約1011Ωm)、酸化鉄(電気比抵抗約1011Ωm)、酸化カルシウム(電気比抵抗約1010Ωm)などの無機酸化物、鉄ニッケルフェライト(電気比抵抗約1010Ωm)、鉄ジルコニウムフェライト(電気比抵抗約10Ωm)、ニッケル亜鉛フェライト(電気比抵抗約1010Ωm)などの軟磁性フェライト、イットリウム鉄ガーネット(電気比抵抗約1010Ωm)などのガーネット系フェライトなどのフェライト化合物、鉄クロムなどの合金、ニッケル(電気比抵抗約10Ωm)などの金属単体、更にはカオリン(電気比抵抗約1011Ωm)、タルク(電気比抵抗約1012Ωm)、セピオライト(電気比抵抗約1011Ωm)、ベントナイト(電気比抵抗約1011Ωm)などの粘土鉱物、ソーダ石灰ガラス(電気比抵抗約1011Ωm)、水ガラス(電気比抵抗約1010Ωm)、ホウケイ酸ガラス(電気比抵抗約1013Ωm)などのガラス類が挙げられる。有機系物質としては、フッ素樹脂(電気比抵抗約1015Ωm)、フェノール樹脂(電気比抵抗約1011Ωm)、ポリエステル樹脂(電気比抵抗約1011Ωm)、塩化ビニル樹脂(電気比抵抗約1013Ωm)、塩化ビニリデン樹脂(電気比抵抗約1013Ωm)などの耐熱性樹脂が挙げられる。被覆材は単独あるいは複数を組み合わせて用いても良い。これらの中では無機系物質が好ましい。 The heat-resistant and electrically insulating coating material used in the present invention is a material that does not ignite at 200 ° C. or less, is physically and chemically stable without undergoing a heat change, and is unlikely to cause electrical breakdown, that is, electrical insulation. If it is a body. More specifically, at a temperature of 200 ° C. or less, it has heat resistance that does not ignite and is not subject to thermal change, and has an electrical resistivity (volume resistivity) of 1 Ωm or more, preferably 10 3 Ωm or more, and more preferably Is 10 5 Ωm or more. Among the specific examples of the coating agent, inorganic substances include alumina (electric specific resistance of about 10 12 Ωm), silica (electric specific resistance of about 10 10 Ωm), zirconia (electric specific resistance of about 10 12 Ωm), titania. (Electric specific resistance of about 10 11 Ωm), iron oxide (electric specific resistance of about 10 11 Ωm), inorganic oxides such as calcium oxide (electric specific resistance of about 10 10 Ωm), iron nickel ferrite (electric specific resistance of about 10 10 Ωm) ), iron zirconium ferrite (electrical resistivity of about 10 3 [Omega] m), nickel-zinc ferrite (electrical resistivity of about 10 10 [Omega] m) soft ferrite, yttrium iron garnet (electrical resistivity of about 10 10 [Omega] m) garnet ferrite such as such as ferrite compounds such as, an alloy such as iron chrome, single metals such as nickel (electrical resistivity of about 10 9 [Omega] m), more kaolin Electrical resistivity of about 10 11 [Omega] m), talc (electrical resistivity of about 10 12 [Omega] m), sepiolite (electrical resistivity of about 10 11 [Omega] m), bentonite (electrical resistivity of about 10 11 [Omega] m) clay minerals, such as soda-lime glass ( Examples thereof include glasses such as electric specific resistance of about 10 11 Ωm), water glass (electric specific resistance of about 10 10 Ωm), and borosilicate glass (electric specific resistance of about 10 13 Ωm). Examples of organic substances include fluorine resin (electrical resistivity of about 10 15 Ωm), phenolic resin (electrical resistivity of about 10 11 Ωm), polyester resin (electrical resistivity of about 10 11 Ωm), and vinyl chloride resin (electrical resistivity of about 10 11 Ωm). 10 13 Ωm) and vinylidene chloride resin (electric specific resistance of about 10 13 Ωm). You may use a coating | covering material individually or in combination of multiple. Of these, inorganic substances are preferred.

被覆材の粒子の平均粒子径は特に限定されないが、小さすぎると活性炭の細孔を閉塞する原因となり、大きすぎると被覆厚みが大きくなりすぎる原因となる。このため、0.1μm以上、100μm以下が好ましい。さらに好ましくは0.5μm以上、50μm以下、最も好ましくは1μm以上、30μm以下である。
被覆材の使用量は、活性炭や被覆材の比重、粒子径などにもよるが、乾燥基準で、(活性炭の重量):(被覆材の合計重量が、100:1〜2:1、好ましくは100:5〜3:1である。
The average particle diameter of the particles of the coating material is not particularly limited, but if it is too small, it will cause clogging of the pores of the activated carbon, and if it is too large, the coating thickness will become too large. For this reason, 0.1 micrometer or more and 100 micrometers or less are preferable. More preferably, they are 0.5 micrometer or more and 50 micrometers or less, Most preferably, they are 1 micrometer or more and 30 micrometers or less.
The amount of the coating material used depends on the specific gravity, particle diameter, etc. of the activated carbon or the coating material, but on a dry basis, (weight of activated carbon): (total weight of the coating material is 100: 1 to 2: 1, preferably 100: 5 to 3: 1.

被覆層の厚みは、本発明では重要である。被覆層の厚みが薄いとマイクロ波加熱した時に火花放電が発生し、火災や爆発の原因となり、また厚すぎると、吸着層単位容積当たりの活性炭の比率が少なくなり、溶剤などの吸着性能や吸着速度が低下してしまう。したがって被覆層の厚みは、0.0005mm以上、1.0mm以下、より好ましくは0.001mm以上、0.5mm以下、最も好ましくは0.005mm以上、0.1mm以下である。
また、被覆層の厚みは、被覆前の活性炭の粒子径をR、被覆材で被覆した後の活性炭の粒子径をRとしたとき、1.002≦(R/R)≦1.30を満足するのが好ましく、1.005≦(R/R)≦1.25を満足するのがさらに好ましい。
The thickness of the coating layer is important in the present invention. If the coating layer is thin, a spark discharge will occur when heated by microwaves, causing a fire or explosion. If the coating layer is too thick, the ratio of activated carbon per unit volume of the adsorption layer will decrease, and the adsorption performance and adsorption of solvents etc. The speed will drop. Therefore, the thickness of the coating layer is 0.0005 mm or more and 1.0 mm or less, more preferably 0.001 mm or more and 0.5 mm or less, and most preferably 0.005 mm or more and 0.1 mm or less.
Further, the thickness of the coating layer satisfies 1.002 ≦ (R 2 / R 1 ) ≦ 1.30, where R 1 is the particle size of the activated carbon before coating and R 2 is the particle size of the activated carbon after coating with the coating material. It is preferable to satisfy 1.005 ≦ (R 2 / R 1 ) ≦ 1.25.

被覆材を活性炭表面に被覆する方法は、公知の方法が用いられる。例えば、被覆材を活性炭の細孔内に侵入し難く、被覆材を活性炭の表面に付着させて活性炭粒子を被覆するような適当なバインダーの溶液で希釈し、これに活性炭を浸し乾燥する方法(含浸法)、被覆材を含む前記溶液を活性炭表面に噴霧し乾燥する方法(噴霧法)、また活性炭を流動させた状態で、被覆材を含む前記溶液を通過させて乾燥する方法(流動法)などが挙げられる。被覆材がバインダー機能を兼ねることがあるが、一般的には他のバインダーや粘度調節剤を混合する。この被覆操作により活性炭粒子の表面が被覆材で被覆されるが、細孔内には侵入せず、溶媒等の出入りには殆ど影響がない。   As a method for coating the surface of the activated carbon with the coating material, a known method is used. For example, it is difficult to penetrate the coating material into the pores of the activated carbon, and the coating material is diluted with a solution of an appropriate binder that covers the activated carbon particles by adhering the coating material to the surface of the activated carbon, and the activated carbon is immersed in this and dried ( Impregnation method), a method of spraying and drying the solution containing the coating material on the surface of the activated carbon (spraying method), and a method of passing the solution containing the coating material and drying in a state where the activated carbon is fluidized (flow method). Etc. The coating material may also serve as a binder function, but generally other binders and viscosity modifiers are mixed. Although the surface of the activated carbon particles is coated with the coating material by this coating operation, the activated carbon particles do not enter the pores and have little influence on the entry and exit of the solvent and the like.

これに対し、溶解しているイオンや超微粒子(分子レベルの大きさ)を活性炭細孔内に侵入しやすい溶液に分散させ含浸法等により担持させる場合は、イオンや超微粒子が細孔内部にも侵入し、その内壁に付着するが、活性炭粒子の全表面が被覆されるものではない。
本件で言う被覆は、活性炭表面に固着させることを言い、担持のように活性炭細孔内部に固着させることではない。
In contrast, when dissolved ions and ultrafine particles (molecular level) are dispersed in a solution that easily penetrates into activated carbon pores and supported by impregnation, etc., ions and ultrafine particles are placed inside the pores. Also penetrates and adheres to the inner wall, but the entire surface of the activated carbon particles is not covered.
The term “coating” in this case refers to fixing to the activated carbon surface, not fixing to the inside of the activated carbon pores as supported.

バインダーや粘度調節剤には、有機系と無機系が存在する。有機系バインダー、粘度調節剤としてはたとえばポリウレタン、ポリスチレン、塩化ビニリデンなどのラテックス系樹脂が挙げられ、また無機系バインダーとしては水ガラス(ケイ酸ナトリウム)、シリカアルミナセラミックスなどが挙げられる。これらの中では特に水ガラスが好ましい。   There are organic and inorganic binders and viscosity modifiers. Examples of the organic binder and viscosity modifier include latex resins such as polyurethane, polystyrene, and vinylidene chloride. Examples of the inorganic binder include water glass (sodium silicate) and silica alumina ceramics. Among these, water glass is particularly preferable.

また、被覆材、バインダー、粘度調節剤は、それぞれ1種類でもよいし、2種類以上を使用してもよい。バインダー、粘度調節剤の使用量は、有機系物質では被覆材100部に対し、1〜20重量部、好ましくは、5〜10重量部である。ただし、水ガラス、シリカアルミナセラミックスのような無機系物質では、それ自体が被覆の役目を果たすので、被覆材100部に対し、1〜300重量部、好ましくは5〜200部である。   Moreover, the coating material, the binder, and the viscosity modifier may each be one kind or two or more kinds. The use amount of the binder and the viscosity modifier is 1 to 20 parts by weight, preferably 5 to 10 parts by weight with respect to 100 parts of the coating material in the case of organic substances. However, inorganic substances such as water glass and silica-alumina ceramics themselves serve as a coating, so the amount is 1 to 300 parts by weight, preferably 5 to 200 parts, based on 100 parts of the coating material.

マイクロ波は、波長0.1mm〜1mの電磁波であり、いずれの波長のマイクロ波でも使用できるが、周波数300MHz〜300GHzのものが便宜に使用することができる。中でも、2.45GHz、500Wのマイクロ波が入手しやすい。 印加する高周波は、波長が1kHz〜10MHz、好ましくは、10kHz〜1MHzのものが適当である。   The microwave is an electromagnetic wave having a wavelength of 0.1 mm to 1 m, and any microwave having a wavelength of 300 MHz to 300 GHz can be used for convenience. Among them, a microwave of 2.45 GHz and 500 W is easily available. The high frequency to be applied has a wavelength of 1 kHz to 10 MHz, preferably 10 kHz to 1 MHz.

本発明を利用して、活性炭が吸着した有機溶剤を回収する方法について述べる。 被覆材で被覆した活性炭を充填した塔へ、溶剤を含んだガスを通過させることにより、溶剤を活性炭へ吸着させる。活性炭が吸着破過状態あるいは、溶剤が活性炭層出口からリークした常態まで溶剤を吸着した後、マイクロ波等を活性炭へ照射する。充填層中の被覆活性炭は、マイクロ波等の照射により活性炭が加熱され発熱し、昇温する。しかし、活性炭粒子が直接接触していないので、発火、燃焼などが起こらない。そして加熱により吸着されていた溶剤は活性炭から脱離し、活性炭は再生される。脱離した溶剤は、コンデンサで凝縮され回収される。この際に従来のような蒸気を用いないので、溶剤の回収が非常に容易となり、装置も小型化ができる。また多量の水との分離が不要であり、微量に溶解した溶剤が排水中に混入することもない。
活性炭中に水分も吸着している場合には同時に水も離脱するが、量は少なく、分離は容易である。
A method for recovering an organic solvent adsorbed by activated carbon using the present invention will be described. The solvent is adsorbed onto the activated carbon by passing a gas containing the solvent through a tower packed with activated carbon coated with a coating material. The activated carbon is irradiated with microwaves or the like after the solvent is adsorbed until the activated carbon is in an adsorption breakthrough state or until the solvent leaks from the activated carbon layer outlet. The coated activated carbon in the packed bed is heated by heating the activated carbon by irradiation with microwaves or the like, and the temperature rises. However, since the activated carbon particles are not in direct contact, there is no ignition or combustion. The solvent adsorbed by heating is desorbed from the activated carbon, and the activated carbon is regenerated. The desorbed solvent is condensed and recovered by the condenser. At this time, since the conventional steam is not used, the recovery of the solvent becomes very easy and the apparatus can be miniaturized. Further, separation from a large amount of water is unnecessary, and a solvent dissolved in a minute amount is not mixed in the waste water.
When water is also adsorbed in the activated carbon, water is also released at the same time, but the amount is small and separation is easy.

マイクロ波等の照射量は、活性炭から吸着物質が脱離する温度以上になるように決められる。通常、脱離に必要な温度は120℃以上である。この温度はマイクロ波の照射量によってコントロールすることができる。この温度では溶剤とともに吸着した水分も脱離するので、活性炭の再生に好ましい。加熱する場合の温度の上限は活性炭が燃焼しない温度であり、通常は約400℃以下に抑えることが望ましい。充填塔は固定床でも良いし、移動床、流動床でもよい。   The irradiation amount of microwaves and the like is determined so as to be equal to or higher than the temperature at which the adsorbed substance is desorbed from the activated carbon. Usually, the temperature required for desorption is 120 ° C. or higher. This temperature can be controlled by the amount of microwave irradiation. At this temperature, moisture adsorbed together with the solvent is also desorbed, which is preferable for the regeneration of activated carbon. The upper limit of the temperature when heating is the temperature at which the activated carbon does not burn, and it is usually desirable to keep it below about 400 ° C. The packed tower may be a fixed bed, a moving bed or a fluidized bed.

回収する溶剤としては活性炭で吸着可能な溶剤であれば特に限定されない。例えば、ガソリン、石油、灯油、ケロシン、ミネラルスピリット、ナフサ、ペンタン、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、例えば、1,3−ジクロロプロペン、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、1,1−ジクロロエチレン、cis−1,2−ジクロロエチレン、trans−1,2−ジクロロエチレン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン、テトラクロロエチレン、四塩化炭素などの揮発性有機塩素化合物、例えば、アセトン、エチルメチルケトン、ジエチルケトン、イソブチルメチルケトン、シクロヘキサンなどのケトン類、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、ギ酸メチル、ギ酸エチル、ギ酸プロピルなどのエステル類、例えば、ジエチルエーテル、イソプロピルエーテル、フルフラール、テトラヒドロフラン、ジオキサンなどのエーテル類、例えば、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコールなどのアルコール類などが挙げられる。   The solvent to be recovered is not particularly limited as long as it can be adsorbed by activated carbon. For example, aliphatic hydrocarbons such as gasoline, petroleum, kerosene, kerosene, mineral spirits, naphtha, pentane, hexane, heptane, octane, for example, aromatic hydrocarbons such as benzene, toluene, xylene, for example, 1,3-dichloro Propene, dichloromethane, chloroform, 1,2-dichloroethane, 1,1-dichloroethylene, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, Volatile organic chlorine compounds such as trichlorethylene, tetrachloroethylene, carbon tetrachloride, for example, ketones such as acetone, ethyl methyl ketone, diethyl ketone, isobutyl methyl ketone, cyclohexane, such as methyl acetate, ethyl acetate, propyl acetate, Esters such as methyl acid, ethyl formate, and propyl formate, for example, ethers such as diethyl ether, isopropyl ether, furfural, tetrahydrofuran, and dioxane, such as alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol Can be mentioned.

本発明の方法は、溶剤回収のみならず、ガス精製などに用いられた活性炭を再生する場合にも適用できる。例えば、天然ガス、プロパンガス、汚泥からのメタン発酵ガスには高沸点の炭化水素類が含まれており、これらの除去に活性炭が用いられるが、本発明の方法により不純物を吸着した活性炭を現場で容易に再生することができる。その他悪臭ガスや有害ガスの除去に活性炭を使用した場合も同様にして、使用済活性炭の再生を行うことができる。   The method of the present invention can be applied not only to recovering a solvent, but also to regenerating activated carbon used for gas purification or the like. For example, methane fermentation gas from natural gas, propane gas, and sludge contains hydrocarbons with a high boiling point, and activated carbon is used to remove them. Can be played easily. In addition, when activated carbon is used to remove other malodorous gases and harmful gases, the used activated carbon can be regenerated in the same manner.

次に、本発明の加熱方法を用いて、触媒反応装置を加熱する方法について述べる。
先ず、活性炭を触媒反応装置に充填する。この場合、必要に応じて活性炭に触媒金属をあらかじめ担持したものが用いられる。触媒金属は被覆した後で担持しても良いが被覆材による被覆の前に活性炭に担持しておくことが望ましい。この触媒反応装置に、反応物質を流通させる。この際に、マイクロ波を照射して、反応に適した温度まで加熱させる。このような方法で効率よく活性炭のみが加熱でき、省エネルギーで小型の反応装置となる。
Next, a method for heating the catalytic reaction apparatus using the heating method of the present invention will be described.
First, the activated carbon is charged into the catalytic reactor. In this case, a catalyst metal previously supported on activated carbon is used as necessary. The catalytic metal may be supported after being coated, but it is desirable to be supported on activated carbon before coating with the coating material. Reactants are circulated through the catalytic reactor. At this time, microwaves are irradiated and heated to a temperature suitable for the reaction. Only activated carbon can be efficiently heated by such a method, resulting in an energy-saving and small reactor.

本発明の表面を耐熱性、絶縁性被覆材で0.0005mm以上、1.0mm以下の厚みで被覆した活性炭をマイクロ波照射などにより加熱する方法は、酸素を含有する雰囲気中でマイクロ波等を照射しても、火花放電が発生しないので、活性炭が燃焼することなく、容易且つ短時間内に均一に活性炭自体の温度を目的とする温度に上げることができる。   The method of heating activated carbon having the surface of the present invention coated with a heat-resistant and insulating coating material to a thickness of 0.0005 mm or more and 1.0 mm or less by microwave irradiation or the like is performed in an atmosphere containing oxygen. Since no spark discharge occurs even when irradiated, the activated carbon does not burn, and the temperature of the activated carbon itself can be raised to the target temperature easily and uniformly within a short time.

以下に実施例、比較例、実験例を挙げて本発明を説明するが、本発明はこれらによりなんら限定されることはない。   Hereinafter, the present invention will be described with reference to Examples, Comparative Examples, and Experimental Examples, but the present invention is not limited to these.

表1に示した割合で、水で希釈した水ガラス(和光純薬製、ケイ酸ナトリウム:電気比抵抗約1010Ωm)にアルミナ(触媒化成製、電気比抵抗約1012Ωm;平均粒子径10μm)を分散させた溶液を作った。転動造粒機で球状活性炭(日本エンバイロケミカルズ株式会社製 球状炭XS−7100;平均粒子径1.0mm;灰分 3wt%;電気比抵抗10−5Ωmを転動させながら、アルミナ・水ガラス溶液を30分間かけて噴霧し、活性炭表面に被覆した。これを115℃の乾燥機に入れ十分乾燥し、被覆活性炭のサンプルを得た。 Water glass diluted with water at the ratio shown in Table 1 (Wako Pure Chemicals, sodium silicate: electrical resistivity of about 10 10 Ωm) and alumina (catalyst conversion, electrical resistivity of about 10 12 Ωm); average particle size 10 μm) was dispersed. Spherical activated carbon (Nippon Enviro Chemicals Co., Ltd. Spherical Coal XS-7100; average particle size 1.0 mm; ash content 3 wt%; electrical resistivity 10 −5 Ωm while rolling with a rolling granulator, alumina / water glass solution Was sprayed for 30 minutes to coat the activated carbon surface, which was then dried sufficiently at 115 ° C. to obtain a sample of coated activated carbon.

表1の実施例2に記載の組成で、実施例1と同様にして、活性炭の表面に被覆を施し、被覆球状活性炭を得た。   With the composition described in Example 2 in Table 1, the surface of the activated carbon was coated in the same manner as in Example 1 to obtain coated spherical activated carbon.

表1の実施例3に記載の組成で、実施例1と同様にして、活性炭の表面に被覆を施し、被覆球状活性炭を得た。   In the same manner as in Example 1 with the composition described in Example 3 in Table 1, the surface of the activated carbon was coated to obtain coated spherical activated carbon.

表1の実施例4に記載の組成で、実施例1と同様にして、活性炭の表面に被覆を施し、被覆球状活性炭を得た。   In the same manner as in Example 1 with the composition described in Example 4 in Table 1, the surface of the activated carbon was coated to obtain coated spherical activated carbon.

表1の実施例5に記載の組成で、実施例1と同様にして、活性炭の表面に被覆を施し、被覆球状活性炭を得た。   With the composition described in Example 5 in Table 1, the surface of the activated carbon was coated in the same manner as in Example 1 to obtain coated spherical activated carbon.

表1の実施例6に記載の組成で、実施例1と同様にして、活性炭の表面に被覆を施し、被覆球状活性炭を得た。   With the composition described in Example 6 in Table 1, the surface of the activated carbon was coated in the same manner as in Example 1 to obtain coated spherical activated carbon.

表1の実施例7に記載の組成で、実施例1と同様にして、ニッケル亜鉛フェライト(合成品、電気比抵抗約1010Ωm)を、水で希釈した水ガラスに分散した溶液を作り、球状活性炭の表面に被覆した。 In the same manner as in Example 1 with the composition described in Example 7 of Table 1, a solution in which nickel zinc ferrite (synthetic product, electrical specific resistance of about 10 10 Ωm) is dispersed in water glass diluted with water is prepared. The surface of spherical activated carbon was coated.

表1の実施例8に記載の組成で、実施例1と同様にして、ニッケル亜鉛フェライト(合成品、電気比抵抗約1010Ωm)を、水で希釈した水ガラスに分散した溶液を作り、球状活性炭の表面に被覆した。
〔比較例1〕
In the same manner as in Example 1 with the composition described in Example 8 of Table 1, a solution in which nickel zinc ferrite (synthetic product, electrical specific resistance of about 10 10 Ωm) is dispersed in water glass diluted with water is prepared. The surface of spherical activated carbon was coated.
[Comparative Example 1]

表1の比較例1に記載の組成で、実施例1と同様の方法で、被覆層厚みの薄すぎるサンプルを調製した。
〔比較例2〕
A sample with a coating layer thickness that was too thin was prepared in the same manner as in Example 1 with the composition described in Comparative Example 1 of Table 1.
[Comparative Example 2]

表1の比較例2に記載の組成で、実施例1と同様の方法で、被覆層厚みの薄すぎるサンプルを調製した。
〔比較例3〕
A sample with a coating layer thickness that was too thin was prepared in the same manner as in Example 1 with the composition described in Comparative Example 2 of Table 1.
[Comparative Example 3]

表1の比較例3に記載の組成で、実施例1と同様の方法で、被覆層厚みの厚すぎるサンプルを調製した。   A sample having an excessively thick coating layer was prepared in the same manner as in Example 1 with the composition described in Comparative Example 3 of Table 1.

Figure 2005194132
Figure 2005194132

なお、前記実施例で用いられた活性炭(元炭)のうち、XL−7100は、平均粒子径2.5mm;灰分3wt%;電気比抵抗10−5Ωmの球状活性炭(日本エンバイロケミカルズ株式会社製)、X−7100は、平均粒子径1.3mm;灰分3wt%;電気比抵抗10−5Ωmの球状活性炭(日本エンバイロケミカルズ株式会社製)である。ビーズ炭は、呉羽化学工業株式会社製;平均粒子径0.7mm;灰分 0.5wt%;電気比抵抗約10−5Ωmである。
〔実験例1〕
Of the activated carbons (original coals) used in the above examples, XL-7100 has an average particle diameter of 2.5 mm; an ash content of 3 wt%; an electrical resistivity of 10 −5 Ωm, and spherical activated carbon (manufactured by Nippon Enviro Chemicals Co., Ltd.). ), X-7100 is a spherical activated carbon (manufactured by Nippon Enviro Chemicals Co., Ltd.) having an average particle size of 1.3 mm; an ash content of 3 wt%; and an electric resistivity of 10 −5 Ωm. The bead charcoal is manufactured by Kureha Chemical Industry Co., Ltd .; average particle size 0.7 mm; ash content 0.5 wt%; electrical resistivity about 10 −5 Ωm.
[Experimental Example 1]

高周波加熱試験
水冷銅管で内径30mmのコイルを巻き(巻線密度200m−1、210巻き)、その中央に内径11mmのパイレックス製試験管を置いた。その試験管に約1.5cmの充填高さに、比較例2の被覆厚みの薄い活性炭を充填した。その活性炭中央部に蛍光式光ファイバー型温度センサーを入れ、温度をモニターしながら56kHz、1kWの高周波をコイルに印加した。
次に同じ要領で、実施例7の磁性体被覆活性炭を試験管に充填し、高周波を印加した。両者の結果をまとめて図1に示した。被覆厚みの薄い活性炭では15分以上経過後もほとんど温度上昇していないのに対して、磁性体被覆活性炭では3分で約140℃にまで温度上昇し、その後安定して該温度に保持されていた。このとき、火花放電も観察されなかった。
〔実験例2〕
High-frequency heating test A coil with an inner diameter of 30 mm was wound with a water-cooled copper tube (winding density: 200 m −1 , 210 windings), and a Pyrex test tube with an inner diameter of 11 mm was placed in the center. The test tube was filled with activated carbon with a thin coating thickness of Comparative Example 2 to a filling height of about 1.5 cm. A fluorescent optical fiber type temperature sensor was placed in the center of the activated carbon, and a high frequency of 56 kHz and 1 kW was applied to the coil while monitoring the temperature.
Next, in the same manner, the magnetic material-coated activated carbon of Example 7 was filled in a test tube, and a high frequency was applied. The results of both are summarized in FIG. In the case of activated carbon with a small coating thickness, the temperature hardly increases even after 15 minutes or more, whereas in the case of magnetic material-coated activated carbon, the temperature rises to about 140 ° C. in 3 minutes and is then stably maintained at that temperature. It was. At this time, no spark discharge was observed.
[Experiment 2]

マイクロ波照射試験
導波管式マイクロ波照射装置のアプリケータ部中央に内径10mmの石英製U字管を置いた。そのU字管に約2cmの高さに比較例1の被覆厚みの薄い活性炭を充填した。その活性炭の中央部に光ファイバー型温度計センサーを入れ、温度をモニターしながら2.45GHz、200Wのマイクロ波を照射した。その結果を図2に示した。
またこのとき、火花放電の様子は、フォトセンサーからの信号をオシロスコープ(Tektronix TDS220)に取り込んで図3に示した。すなわち、図3における縦軸のピークが火花放電の発生を示している。
同じ要領で、実施例1の被覆活性炭についても実験を行った。その結果を、図2および図3に示した。被覆活性炭は、マイクロ波照射によっても温度が安定しており、また火花放電も観察されなかった。
他の実施例によって得られた被覆活性炭についても同じ実験をした結果、全て実施例1の実験とほぼ同様の結果が得られた。
〔実験例3〕
Microwave irradiation test A quartz U-shaped tube having an inner diameter of 10 mm was placed in the center of the applicator portion of the waveguide type microwave irradiation apparatus. The U-shaped tube was filled with activated carbon having a thin coating thickness of Comparative Example 1 to a height of about 2 cm. An optical fiber type thermometer sensor was placed in the center of the activated carbon, and a microwave of 2.45 GHz and 200 W was irradiated while monitoring the temperature. The results are shown in FIG.
At this time, the state of the spark discharge is shown in FIG. 3 in which a signal from the photosensor is taken into an oscilloscope (Tektronix TDS220). That is, the peak on the vertical axis in FIG. 3 indicates the occurrence of spark discharge.
In the same manner, the experiment was also performed on the coated activated carbon of Example 1. The results are shown in FIG. 2 and FIG. The coated activated carbon was stable in temperature even by microwave irradiation, and no spark discharge was observed.
As a result of conducting the same experiment on the coated activated carbon obtained in other examples, almost the same result as the experiment of Example 1 was obtained.
[Experimental Example 3]

溶剤の吸脱着試験
上記のU字管に、実施例1の被覆活性炭を約2cmの高さになるように充填した。このカラムにトリクロロエチレン1000ppmを含む窒素ガスを25℃で、約1時間流通させ、トリクロロエチレンを活性炭に吸着させた。トリクロロエチレンの吸着終了後、U字管に空気を流通させながら、マイクロ波(2.45GHz、200W)を6分間照射した。その結果、活性炭の温度は急速に上昇し、約1分で140℃に達し、一定となった。その時のカラム出口ガスのトリクロロエチレン濃度変化を図4に示した。マイクロ波照射前と照射後の活性炭の重量から、マイクロ波照射の温度上昇により、吸着していたトリクロロエチレンの85%が脱離したことが判明した。また、脱離したトリクロロエチレンを含む空気を、コンデンサーで冷却することにより、容易にトリクロロエチレンを液化し回収することができた。
〔実験例4〕
Solvent adsorption / desorption test The above-mentioned U-shaped tube was filled with the coated activated carbon of Example 1 to a height of about 2 cm. Nitrogen gas containing 1000 ppm of trichlorethylene was passed through this column at 25 ° C. for about 1 hour to adsorb the trichlorethylene on the activated carbon. After completion of the adsorption of trichlorethylene, irradiation with microwaves (2.45 GHz, 200 W) was performed for 6 minutes while circulating air through the U-shaped tube. As a result, the temperature of the activated carbon rapidly rose and reached 140 ° C. in about 1 minute and became constant. The change in the trichlorethylene concentration of the column outlet gas at that time is shown in FIG. From the weight of the activated carbon before and after the microwave irradiation, it was found that 85% of the adsorbed trichlorethylene was desorbed due to the temperature increase of the microwave irradiation. In addition, by cooling the air containing the desorbed trichlorethylene with a condenser, the trichlorethylene could be easily liquefied and recovered.
[Experimental Example 4]

実施例8の被覆活性炭を内径10cmのカラムに高さ10cmになるよう充填した。このカラムにアセトン濃度10重量%の空気を室温で1時間流通させた。比較例3の被覆層の厚い活性炭についても同様な実験を行った。1時間後の活性炭の重量増加を測定し、アセトンの吸着量を測定した。
実施例8の活性炭では、被覆活性炭の重量当たり、18%のアセトンを吸着していたが、比較例2の被覆活性炭ではわずか2%のアセトンしか吸着しなかった。
〔実験例5〕
The coated activated carbon of Example 8 was packed in a 10 cm inner diameter column to a height of 10 cm. Air having an acetone concentration of 10% by weight was passed through the column at room temperature for 1 hour. A similar experiment was performed on activated carbon with a thick coating layer in Comparative Example 3. The increase in weight of activated carbon after 1 hour was measured, and the amount of acetone adsorbed was measured.
The activated carbon of Example 8 adsorbed 18% acetone per weight of the coated activated carbon, but the coated activated carbon of Comparative Example 2 adsorbed only 2% acetone.
[Experimental Example 5]

触媒反応の実験
マイクロ波照射実験に用いたと同じ装置に、白金を1重量%担持した活性炭に、実施例8と同様の組成で被覆した活性炭を得た。これを上記と同様のU字管に充填し、空気を流通させながら、マイクロ波(2.45GHz、200W)を5分照射した。その結果、活性炭の温度は急速に上昇し、約1分で140℃に達し、一定となった。この状態のまま反応ガスを流すことにより、触媒反応を実施することができる。
Catalytic Reaction Experiment Activated carbon coated with the same composition as in Example 8 on activated carbon carrying 1% by weight of platinum in the same apparatus used for the microwave irradiation experiment was obtained. This was filled in a U-shaped tube similar to that described above, and irradiated with microwaves (2.45 GHz, 200 W) for 5 minutes while circulating air. As a result, the temperature of the activated carbon rapidly rose and reached 140 ° C. in about 1 minute and became constant. The catalytic reaction can be carried out by flowing the reaction gas in this state.

本発明の方法は、酸素を含有する雰囲気中でマイクロ波等を照射しても、火花放電が発生せず、活性炭が燃焼することなく、容易且つ短時間内に均一に活性炭自体の温度を目的とする温度に上げることができるので、ドライクリーニング店、塗装店など溶剤を取り扱う小規模事業所での溶剤回収が可能であり、ガス精製用活性炭の再生や活性炭触媒を用いる加熱反応にも応用できる。   The method of the present invention aims at the temperature of the activated carbon itself easily and uniformly within a short time without generating spark discharge and burning the activated carbon even when irradiated with microwaves or the like in an oxygen-containing atmosphere. It is possible to recover the solvent at small-scale establishments that handle solvents such as dry cleaning shops and paint shops, and it can also be applied to regeneration of activated carbon for gas purification and heating reaction using activated carbon catalyst. .

高周波加熱による被覆活性炭の温度変化を示すグラフである。It is a graph which shows the temperature change of the covering activated carbon by high frequency heating. マイクロ波照射による被覆活性炭の温度変化を示すグラフである。It is a graph which shows the temperature change of the covering activated carbon by microwave irradiation. マイクロ波照射による被覆活性炭の火花放電の測定を示すグラフである。It is a graph which shows the measurement of the spark discharge of the covering activated carbon by microwave irradiation. トリクレンの吸着脱離曲線を示すグラフである。It is a graph which shows the adsorption / desorption curve of a trichrene.

符号の説明Explanation of symbols

a:被覆厚みの薄すぎる活性炭
b:磁性体被覆活性炭
c:アルミナ被覆活性炭
d:被覆厚みの薄すぎる活性炭
A:アルミナ被覆活性炭
B:被覆厚みの薄すぎる活性炭
a: Activated carbon with too thin coating b: Activated carbon with activated magnetic material c: Activated carbon with alumina coated d: Activated carbon with too thin coating A: Activated carbon with alumina coated B: Activated carbon with too thin coating

Claims (9)

耐熱性且つ電気絶縁性被覆材により0.0005mm以上、1.0mm以下の厚みで被覆された活性炭にマイクロ波を照射するか又は高周波を印加する活性炭の加熱方法。 A method for heating activated carbon, in which activated carbon coated with a heat-resistant and electrically insulating coating material with a thickness of 0.0005 mm to 1.0 mm is irradiated with microwaves or applied with a high frequency. 被覆材が、200℃以下では物理的、化学的に安定な耐熱性被覆材である請求項1記載の活性炭の加熱方法。 The method for heating activated carbon according to claim 1, wherein the coating material is a heat-resistant coating material that is physically and chemically stable at 200 ° C or lower. 被覆材が、1Ωm以上の電気比抵抗を有する電気絶縁性被覆材である請求項1又は請求項2記載の活性炭の加熱方法。 The method for heating activated carbon according to claim 1 or 2, wherein the coating material is an electrically insulating coating material having an electrical specific resistance of 1 Ωm or more. 活性炭に含まれる灰分が15重量%以下である請求項1記載の活性炭の加熱方法。 The method for heating activated carbon according to claim 1, wherein the ash content in the activated carbon is 15 wt% or less. 被覆材により被覆される活性炭の形状が粒状であり、その平均粒子径が0.1mm以上、20mm以下であり、かつ、被覆材は粉末でありその平均粒子径が0.1μm以上、100μm以下である請求項1記載の活性炭の加熱方法。 The shape of the activated carbon covered with the coating material is granular, the average particle diameter is 0.1 mm or more and 20 mm or less, and the coating material is powder, and the average particle diameter is 0.1 μm or more and 100 μm or less. The method for heating activated carbon according to claim 1. 被覆材が、無機系の酸化物、粘土鉱物又はフェライト化合物である請求項1〜請求項3のいずれかに記載の活性炭の加熱方法。 The method for heating activated carbon according to any one of claims 1 to 3, wherein the coating material is an inorganic oxide, clay mineral, or ferrite compound. 水ガラスを用いて、被覆材粒子を表面に固着した請求項1記載の活性炭の加熱方法。 The method for heating activated carbon according to claim 1, wherein the coating material particles are fixed to the surface using water glass. 耐熱性且つ電気絶縁性被覆材により0.0005mm以上、1.0mm以下の厚みで被覆された活性炭を充填塔に充填し、溶剤又はガスを吸着させた後、マイクロ波を照射または高周波を印加し加熱することにより吸着した溶剤又はガスを脱離させる溶剤回収方法。 Activated carbon coated with a heat-resistant and electrically insulating coating material with a thickness of 0.0005 mm or more and 1.0 mm or less is packed in a packed tower, adsorbed with solvent or gas, and then irradiated with microwaves or applied with high frequency. A solvent recovery method for desorbing a solvent or gas adsorbed by heating. 耐熱性且つ電気絶縁性被覆材により0.0005mm以上、1.0mm以下の厚みで被覆され、触媒成分を担持していてもよい活性炭を、反応器に充填した後、マイクロ波を照射または高周波を印加し、加熱することによって反応を促進させる触媒反応方法。
After charging the reactor with activated carbon which may be coated with a heat-resistant and electrically insulating coating material at a thickness of 0.0005 mm or more and 1.0 mm or less and may carry a catalyst component, microwave irradiation or high frequency irradiation is performed. A catalytic reaction method in which the reaction is promoted by applying and heating.
JP2004001747A 2004-01-07 2004-01-07 Solvent or gas recovery method Expired - Lifetime JP4872060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004001747A JP4872060B2 (en) 2004-01-07 2004-01-07 Solvent or gas recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004001747A JP4872060B2 (en) 2004-01-07 2004-01-07 Solvent or gas recovery method

Publications (2)

Publication Number Publication Date
JP2005194132A true JP2005194132A (en) 2005-07-21
JP4872060B2 JP4872060B2 (en) 2012-02-08

Family

ID=34817174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004001747A Expired - Lifetime JP4872060B2 (en) 2004-01-07 2004-01-07 Solvent or gas recovery method

Country Status (1)

Country Link
JP (1) JP4872060B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063058A (en) * 2005-08-30 2007-03-15 Aisin Seiki Co Ltd Surface modifying method of graphite particle
JP2008279415A (en) * 2007-05-14 2008-11-20 Environment Technology Ventures Kk Microwave heating unit
JP2010005527A (en) * 2008-06-26 2010-01-14 Environment Technology Ventures Kk Adsorbent for microwave heating
WO2010061517A1 (en) * 2008-11-28 2010-06-03 ダイキン工業株式会社 Adsorption molded body, adsorption and recovery treatment apparatus, and method for desorping adsorbed substance
CN102019169A (en) * 2010-12-06 2011-04-20 浙江商达环保有限公司 Regeneration method of activated carbon in organosilicon wastewater treatment
JP2013139992A (en) * 2011-12-09 2013-07-18 Seiwa Co Ltd Heat generating body and heat generating member
WO2015021046A1 (en) * 2013-08-06 2015-02-12 Dow Global Technologies Llc Method comprising a microwave heating system for regenerating adsorbent media used for extracting natural gas liquids from natural gas
CN104707567A (en) * 2015-04-08 2015-06-17 东南大学 Preparation method of microwave nitric acid modified activated carbon for removing lead ions from water and application of microwave nitric acid modified activated carbon
WO2016122842A1 (en) 2015-01-27 2016-08-04 Dow Global Technologies Llc Separation of nitrogen from hydrocarbon gas using pyrolyzed sulfonated macroporous ion exchange resin
WO2016122843A2 (en) 2015-01-27 2016-08-04 Dow Global Technologies Llc Separation of hydrocarbons using regenerable macroporous alkylene-bridged adsorbent
WO2016152363A1 (en) * 2015-03-26 2016-09-29 日立化成株式会社 Co2 concentration reducing device
CN106338585A (en) * 2016-10-09 2017-01-18 江苏建筑职业技术学院 Low-concentration airflow gas methane extracting experiment device
US9688934B2 (en) 2007-11-23 2017-06-27 Bixby Energy Systems, Inc. Process for and processor of natural gas and activated carbon together with blower

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108769A (en) * 1985-11-06 1987-05-20 株式会社日本製鋼所 Manufacture of honeycomb structure active carbon formed product
JPH02307527A (en) * 1989-05-19 1990-12-20 Kobe Steel Ltd Solvent adsorbing material and solvent recovery apparatus
JPH07227420A (en) * 1994-02-18 1995-08-29 Sharp Corp Deodorizing element and deodorizing device using this deodorizing element
JPH10305207A (en) * 1997-05-01 1998-11-17 Agency Of Ind Science & Technol Simplified gas adsorptive recovery method
JP2001026412A (en) * 1999-07-13 2001-01-30 Agency Of Ind Science & Technol New production of carbon material coated with metal oxide
JP2003226512A (en) * 2001-11-28 2003-08-12 Ueda Shikimono Kojo:Kk Photocatalytic activated carbon, colored photocatalytic activated carbon, coloring activated carbon, deodorant and/adsorption product using them, and soil cleaning method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108769A (en) * 1985-11-06 1987-05-20 株式会社日本製鋼所 Manufacture of honeycomb structure active carbon formed product
JPH02307527A (en) * 1989-05-19 1990-12-20 Kobe Steel Ltd Solvent adsorbing material and solvent recovery apparatus
JPH07227420A (en) * 1994-02-18 1995-08-29 Sharp Corp Deodorizing element and deodorizing device using this deodorizing element
JPH10305207A (en) * 1997-05-01 1998-11-17 Agency Of Ind Science & Technol Simplified gas adsorptive recovery method
JP2001026412A (en) * 1999-07-13 2001-01-30 Agency Of Ind Science & Technol New production of carbon material coated with metal oxide
JP2003226512A (en) * 2001-11-28 2003-08-12 Ueda Shikimono Kojo:Kk Photocatalytic activated carbon, colored photocatalytic activated carbon, coloring activated carbon, deodorant and/adsorption product using them, and soil cleaning method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063058A (en) * 2005-08-30 2007-03-15 Aisin Seiki Co Ltd Surface modifying method of graphite particle
JP2008279415A (en) * 2007-05-14 2008-11-20 Environment Technology Ventures Kk Microwave heating unit
US10119087B2 (en) 2007-11-23 2018-11-06 Bixby Energy Systems, Inc. Process for and processor of natural gas and activated carbon together with blower
US9688934B2 (en) 2007-11-23 2017-06-27 Bixby Energy Systems, Inc. Process for and processor of natural gas and activated carbon together with blower
JP2010005527A (en) * 2008-06-26 2010-01-14 Environment Technology Ventures Kk Adsorbent for microwave heating
WO2010061517A1 (en) * 2008-11-28 2010-06-03 ダイキン工業株式会社 Adsorption molded body, adsorption and recovery treatment apparatus, and method for desorping adsorbed substance
CN102227249A (en) * 2008-11-28 2011-10-26 大金工业株式会社 Adsorption molded body, adsorption and recovery treatment apparatus, and method for desorping adsorbed substance
CN102019169A (en) * 2010-12-06 2011-04-20 浙江商达环保有限公司 Regeneration method of activated carbon in organosilicon wastewater treatment
JP2013139992A (en) * 2011-12-09 2013-07-18 Seiwa Co Ltd Heat generating body and heat generating member
WO2015021046A1 (en) * 2013-08-06 2015-02-12 Dow Global Technologies Llc Method comprising a microwave heating system for regenerating adsorbent media used for extracting natural gas liquids from natural gas
WO2016122842A1 (en) 2015-01-27 2016-08-04 Dow Global Technologies Llc Separation of nitrogen from hydrocarbon gas using pyrolyzed sulfonated macroporous ion exchange resin
WO2016122843A2 (en) 2015-01-27 2016-08-04 Dow Global Technologies Llc Separation of hydrocarbons using regenerable macroporous alkylene-bridged adsorbent
US10661219B2 (en) 2015-01-27 2020-05-26 DDP Specialty Electronic Materials US, Inc. Separation of nitrogen from hydrocarbon gas using pyrolyzed sulfonated macroporous ion exchange resin
US9908079B2 (en) 2015-01-27 2018-03-06 Dow Global Technologies Llc Separation of hydrocarbons using regenerable macroporous alkylene-bridged adsorbent
WO2016152363A1 (en) * 2015-03-26 2016-09-29 日立化成株式会社 Co2 concentration reducing device
JPWO2016152363A1 (en) * 2015-03-26 2017-07-06 日立化成株式会社 CO2 concentration reduction device
US10456731B2 (en) 2015-03-26 2019-10-29 Hitachi Chemical Company, Ltd. CO2 concentration reducing device
CN104707567A (en) * 2015-04-08 2015-06-17 东南大学 Preparation method of microwave nitric acid modified activated carbon for removing lead ions from water and application of microwave nitric acid modified activated carbon
CN106338585A (en) * 2016-10-09 2017-01-18 江苏建筑职业技术学院 Low-concentration airflow gas methane extracting experiment device

Also Published As

Publication number Publication date
JP4872060B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP4872060B2 (en) Solvent or gas recovery method
Pui et al. A review on activated carbon adsorption for volatile organic compounds (VOCs)
Tan et al. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon
US5948398A (en) Deodorant comprising metal oxide-carrying activated carbon
Alslaibi et al. Comparison of activated carbon prepared from olive stones by microwave and conventional heating for iron (II), lead (II), and copper (II) removal from synthetic wastewater
Alslaibi et al. Microwave irradiated and thermally heated olive stone activated carbon for nickel adsorption from synthetic wastewater: a comparative study
Huang et al. An overview of low‐temperature plasma surface modification of carbon materials for removal of pollutants from liquid and gas phases
Hossain et al. Nonthermal plasma in practical-scale honeycomb catalysts for the removal of toluene
Hu et al. Enhancement of mercury removal efficiency by activated carbon treated with nonthermal plasma in different atmospheres
Wang et al. XAD-2 resin modified by nanosecond pulsed discharge to improve the adsorption capacity of polycyclic aromatic hydrocarbons
JP2008307532A (en) Method and apparatus for regenerating adsorbent used in purification of fuel
JP4332499B2 (en) Heating method of activated carbon
Liu et al. Catalytic removal of mercury from waste carbonaceous catalyst by microwave heating
TWI674922B (en) Ozone oxidative decomposition treatment method for VOC and/or vapor phase inorganic reducing compound in gas
Zhu et al. Characterization of Chlorinated Tire‐Derived Mesoporous Activated Carbon for Adsorptive Removal of Toluene
Verma et al. Synthesis and efficient use of low‐cost natural red clay catalyst for the production of upgraded fuel oil using pyrolysis of waste expanded polystyrene and in situ vapour phase hydrogenation
CN101048347A (en) Method and apparatus for removing organic substance from oily water from oilfield
Yang et al. Removal of carbon disulfide (CS2) from water via adsorption on active carbon fiber (ACF)
Guo et al. Adsorption of sulfur dioxide onto activated carbons prepared from oil‐palm shells impregnated with potassium hydroxide
JP2008194683A (en) Decomposition method of volatile compound
Ibrahim et al. Effectiveness of biochar from hydrothermal carbonization of wetland biomass for sorption of ammonia
Edathil et al. Alginate-pyrolyzed porous carbon as efficient gas phase elemental mercury scavenger
TW201622802A (en) The method of oxidizing hazardous compounds by the mixture containing manganese and mixture containing manganese
Ion et al. Modelling of thermal desorption of volatile organic compounds from activated carbon
Moaseri et al. Effect of pretreatment process on the characteristics of activated carbons produced from chemical activation of scrap tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110413

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110708

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20110708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110711

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4872060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term