JP2002178264A - Abrasive grain tool and its manufacturing method - Google Patents

Abrasive grain tool and its manufacturing method

Info

Publication number
JP2002178264A
JP2002178264A JP2000382498A JP2000382498A JP2002178264A JP 2002178264 A JP2002178264 A JP 2002178264A JP 2000382498 A JP2000382498 A JP 2000382498A JP 2000382498 A JP2000382498 A JP 2000382498A JP 2002178264 A JP2002178264 A JP 2002178264A
Authority
JP
Japan
Prior art keywords
abrasive grains
abrasive
tool
working surface
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000382498A
Other languages
Japanese (ja)
Other versions
JP3947355B2 (en
Inventor
Koji Une
宏治 宇根
Toshihiko Ishihara
俊彦 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Diamond Industrial Co Ltd
Original Assignee
Asahi Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Diamond Industrial Co Ltd filed Critical Asahi Diamond Industrial Co Ltd
Priority to JP2000382498A priority Critical patent/JP3947355B2/en
Publication of JP2002178264A publication Critical patent/JP2002178264A/en
Application granted granted Critical
Publication of JP3947355B2 publication Critical patent/JP3947355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abrasive grain tool capable of controlling abrasive grain distributing density, not leaving lines on a grinding material surface and fastening abrasive grains on a working surface in a single layer and its manufacturing method. SOLUTION: This abrasive grain tool to fasten the abrasive grains on the working surface in a single layer constitutes its characteristic feature of arranging the abrasive grains at a position where individual intersections of a lattice are displaced at random by a distance of less than three times of an average grain diameter of the abrasive grains respectively in the crossed two lattice line direction or in the X direction and the Y direction and fastens the abrasive grains on the working surface in a single layer by assuming the virtual lattice on the working surface of the tool, and this manufacturing method of the abrasive grain tool constitutes its characteristic feature of arranging the abrasive grains at a position where the individual intersections of the lattice are displaced at random by the distance of less than three times of the average grain diameter of the abrasive grains respectively in the crossed two lattice line direction or in the X direction and the Y direction by assuming the virtual lattice on the working surface of the tool.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、砥粒工具及びその
製造方法に関する。さらに詳しくは、本発明は、砥粒分
布密度を制御することができ、しかも被削材表面に筋の
残らない、作用面に砥粒を単層に固着した砥粒工具及び
その製造方法に関する。
[0001] The present invention relates to an abrasive tool and a method for manufacturing the same. More specifically, the present invention relates to an abrasive tool in which the distribution of abrasive grains can be controlled and which has no streaks on the surface of a work material, and in which abrasive grains are fixed in a single layer on a working surface, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来より、電着やロウ付けなどにより作
用面に砥粒を単層に固着した砥粒工具が知られている。
これらの砥粒工具における砥粒の配置は、大きく分け
て、ランダム配置と規則配置の2種類がある。砥粒がラ
ンダム配置された砥粒工具の製造方法として、例えば、
ばらまき法がある。ばらまき法は、作用面に一定量の砥
粒を文字通りばらまくもので、簡易的ではあるが、砥粒
分布密度の制御が難しく、密度の偏りが生じることが多
い。砥粒が規則配置された砥粒工具の製造方法は、個々
の砥粒の位置を制御するものである。例えば、特開平5
−285846号公報には、簡単な方法で台金表面に砥
粒を均一に分散させる方法として、台金の表面に非マス
キング部の穴径が電着する砥粒の径の110〜160%
であり、厚みが電着する砥粒の径の50〜150%であ
る非マスキング部を有する絶縁物のマスキングを施し
て、非マスキング部に砥粒を電着する方法が提案され、
規則的なマスキングパターンを有するマスキングシート
が例示されている。また、特開平6−114741号公
報には、超砥粒の分布を1粒単位でコントロールする方
法として、台金表面にパターンシートを貼着して、パタ
ーンシートの各孔に対応する位置に超砥粒を1個ずつ配
置して電着する方法が提案されている。さらに、特開平
9−19868号公報には、研削加工時に目詰まりがな
く、寿命の長い電着ホイールとして、超砥粒が研削面に
島状に分散して固着され、ひとつの島に超砥粒が2〜1
0個集合して固着され、島部分の全面積が研削面の全面
積の0.02〜0.5倍である電着ホイールが提案され、
規則的な島の配列パターンが例示されている。砥粒がラ
ンダム配置された砥粒工具は、砥粒の分布密度の制御が
難しく、工具性能がばらつきやすいという問題がある。
また、砥粒が規則配置された砥粒工具は、同一線上に砥
粒が並ぶために、例えば、ホイールに適用した場合、同
一軌跡を砥粒が通り、被削材の表面に筋がつきやすいと
いう問題がある。被削材の表面の筋を防ぐために、砥粒
を配置する格子を回転方向に対してある角度に傾けると
いう方法があるが、角度を適切に選ばないと、依然とし
て筋が発生する場合がある。また、ストレートホイール
の外周に適用した場合、円周上の1か所で格子の継ぎ目
が残るという問題もある。
2. Description of the Related Art Conventionally, there has been known an abrasive tool in which abrasive grains are fixed to a working surface in a single layer by electrodeposition or brazing.
The arrangement of abrasive grains in these abrasive tools is roughly classified into two types: random arrangement and regular arrangement. As a method of manufacturing an abrasive tool in which abrasive grains are randomly arranged, for example,
There is a dissemination method. The dispersing method literally disperses a certain amount of abrasive grains on the working surface. Although simple, it is difficult to control the abrasive grain distribution density, and the density tends to be uneven. The method of manufacturing an abrasive tool in which abrasive grains are regularly arranged controls the position of each abrasive grain. For example, Japanese Unexamined Patent Publication
JP-A-285846 discloses a simple method for uniformly dispersing abrasive grains on the surface of a base metal. The hole diameter of a non-masking portion on the surface of the base metal is 110 to 160% of the diameter of the abrasive particles to be electrodeposited.
A method of applying an insulating material having a non-masking portion having a thickness of 50 to 150% of the diameter of the abrasive particles to be electrodeposited, and electrodepositing the abrasive particles on the non-masking portion,
A masking sheet having a regular masking pattern is illustrated. Japanese Patent Application Laid-Open No. 6-114741 discloses a method of controlling the distribution of superabrasive grains in units of one grain by adhering a pattern sheet to the surface of a base metal, A method of arranging abrasive grains one by one and performing electrodeposition has been proposed. Furthermore, Japanese Patent Application Laid-Open No. Hei 9-19868 discloses that as a long-life electrodeposited wheel without clogging during grinding, super-abrasive grains are dispersed and fixed in an island shape on a ground surface, 2 to 1 grains
Electrodeposited wheels are proposed in which 0 pieces are fixed and fixed, and the total area of the island portion is 0.02 to 0.5 times the total area of the ground surface,
A regular island arrangement pattern is illustrated. Abrasive tools in which abrasive grains are randomly arranged have a problem that it is difficult to control the distribution density of abrasive grains and the tool performance tends to vary.
In addition, in the case of an abrasive tool in which abrasive grains are regularly arranged, since the abrasive grains are arranged on the same line, for example, when applied to a wheel, the abrasive grains pass through the same trajectory, and the surface of the workpiece is easily streaked There is a problem. In order to prevent streaks on the surface of the work material, there is a method in which the grid on which the abrasive grains are arranged is inclined at a certain angle with respect to the rotation direction. However, if the angle is not properly selected, streaks may still occur. Further, when applied to the outer periphery of a straight wheel, there is a problem that a grid joint remains at one place on the circumference.

【0003】[0003]

【発明が解決しようとする課題】本発明は、砥粒分布密
度を制御することができ、しかも被削材表面に筋の残ら
ない、作用面に砥粒を単層に固着した砥粒工具及びその
製造方法を提供することを目的としてなされたものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an abrasive tool which can control the distribution density of abrasive grains, has no streaks on the surface of the work material, and has a single layer of abrasive grains fixed to the working surface. The purpose of the present invention is to provide a manufacturing method thereof.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、砥粒工具の作用
面に仮想的な格子を想定し、該格子の個々の交点をラン
ダムに変位させた位置に砥粒を配置することにより、砥
粒分布密度が精密に制御され、しかも被削材表面に筋が
残らない砥粒工具を製造し得ることを見いだし、この知
見に基づいて本発明を完成するに至った。すなわち、本
発明は、(1)作用面に砥粒を単層に固着した砥粒工具
であって、該工具の作用面に仮想的な格子を想定し、該
格子の個々の交点を、交差する2本の格子線方向又はX
方向とY方向に、それぞれ砥粒の平均粒径の3倍以下の
距離だけランダムに変位させた位置に砥粒が配置されて
なることを特徴とする砥粒工具、(2)作用面に砥粒を
単層に固着した砥粒工具において、該工具の作用面に仮
想的な格子を想定し、該格子の個々の交点を、交差する
2本の格子線方向又はX方向とY方向に、それぞれ砥粒
の平均粒径の3倍以下の距離だけランダムに変位させた
位置に砥粒を配置することを特徴とする砥粒工具の製造
方法、及び、(3)ランダムな変位が、乱数に基づいて
設定される第2項記載の砥粒工具の製造方法、を提供す
るものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, assumed a virtual grid on the working surface of the abrasive tool, and set individual intersections of the grid. By arranging abrasive grains at randomly displaced positions, the abrasive grain distribution density was precisely controlled, and it was found that it was possible to manufacture an abrasive tool that did not leave streaks on the surface of the work material. Based on this, the present invention has been completed. That is, the present invention provides (1) an abrasive tool in which abrasive grains are fixed in a single layer on the working surface, and a virtual grid is assumed on the working surface of the tool, and individual intersections of the grid are crossed. Two grid line directions or X
Abrasive tool characterized in that the abrasive grains are arranged at positions randomly displaced by a distance of not more than three times the average grain size of the abrasive grains in the direction and the Y direction, respectively. In an abrasive tool in which grains are fixed in a single layer, a virtual grid is assumed on the working surface of the tool, and individual intersections of the grid are defined in two grid line directions intersecting or in the X and Y directions, A method for manufacturing an abrasive tool characterized in that abrasive grains are arranged at positions randomly displaced by a distance equal to or less than three times the average grain size of the abrasive grains, and (3) the random displacement is a random number. 3. The method for manufacturing an abrasive tool according to the item 2, wherein the method is set on the basis of:

【0005】[0005]

【発明の実施の形態】本発明の砥粒工具は、作用面に砥
粒を単層に固着した砥粒工具であって、該工具の作用面
に仮想的な格子を想定し、該格子の個々の交点を、交差
する2本の格子線方向又はX方向とY方向に、それぞれ
砥粒の平均粒径の3倍以下の距離だけランダムに変位さ
せた位置に砥粒が配置されてなる砥粒工具である。本発
明の砥粒工具の製造方法においては、作用面に砥粒を単
層に固着した砥粒工具において、該工具の作用面に仮想
的な格子を想定し、該格子の個々の交点を、交差する2
本の格子線方向又はX方向とY方向に、それぞれ砥粒の
平均粒径の3倍以下の距離だけランダムに変位させた位
置に砥粒を配置する。本発明において、作用面に想定す
る仮想的な格子の形状に特に制限はなく、例えば、図1
(a)に示す正方格子、図1(b)に示す長方格子、図1
(c)に示す斜方格子、図1(d)に示す格子線の間隔が変
化する方格子、図1(e)に示す平行線と放射線の組み合
わせからなる格子、図1(f)に示す同心円と放射線の組
み合わせからなる格子、図1(g)に示す同心円と平行線
の組み合わせからなる格子、これらの格子の格子線の間
隔が波状に増減する格子などを挙げることができる。
BEST MODE FOR CARRYING OUT THE INVENTION An abrasive tool according to the present invention is an abrasive tool in which abrasive grains are fixed to a working surface in a single layer, and a virtual grid is assumed on the working surface of the tool. An abrasive in which abrasive grains are arranged at positions where individual intersections are randomly displaced in the direction of two intersecting grid lines or in the X and Y directions by a distance of not more than three times the average grain size of the abrasive grains. It is a grain tool. In the manufacturing method of the abrasive tool of the present invention, in the abrasive tool having a single layer of abrasive grains fixed to the working surface, assuming a virtual grid on the working surface of the tool, the individual intersections of the grid, Cross 2
Abrasive grains are arranged at positions randomly displaced in the direction of the lattice line or in the X and Y directions by a distance equal to or less than three times the average grain size of the abrasive grains. In the present invention, there is no particular limitation on the shape of the virtual grid assumed on the working surface.
FIG. 1A shows a square lattice, FIG. 1B shows a rectangular lattice, and FIG.
An oblique lattice shown in FIG. 1C, a rectangular lattice shown in FIG. 1D in which the interval between grid lines changes, a lattice shown in FIG. 1E composed of a combination of parallel lines and radiation, and shown in FIG. A grating composed of a combination of concentric circles and radiation, a lattice composed of a combination of concentric circles and parallel lines shown in FIG.

【0006】本発明において、格子の個々の交点をラン
ダムに変位させる方法に特に制限はないが、ランダムな
変位を乱数に基づいて設定する方法は、市販されている
書籍に掲載された乱数表、電気的にパルスを発生させる
方法で作成した乱数列、市販されている表計算ソフトウ
ェアの乱数発生機能などを利用することができるので好
ましい。使用する乱数に特に制限はなく、一様乱数、疑
似乱数のいずれをも用いることができる。市販されてい
る表計算ソフトウェアの乱数発生機能としては、例え
ば、表計算ソフトウェア「エクセル」(マイクロソフト
社)の「RAND」機能などを挙げることができ、この
機能を利用して、容易に乱数列を作成することができ
る。図2は、「RAND」で作成した0〜1の範囲の乱
数列の一例である。本発明において、格子の個々の交点
を、交差する2本の格子線方向又はX方向とY方向に、
それぞれ変位させる距離は、砥粒の平均粒径の3倍以下
であり、好ましくは砥粒の平均粒径の0.5〜2倍であ
り、より好ましくは砥粒の平均粒径の0.8〜1.5倍で
ある。変位させる距離が砥粒の平均粒径の3倍を超える
と、砥粒分布密度に部分的に過度の粗密を生ずるおそれ
がある。
In the present invention, there is no particular limitation on the method of randomly displacing the individual intersections of the lattice, but the method of setting the random displacement based on random numbers is based on a random number table published in a commercially available book. It is preferable because a random number sequence created by a method of electrically generating a pulse and a random number generation function of commercially available spreadsheet software can be used. There is no particular limitation on the random number used, and either a uniform random number or a pseudo random number can be used. Examples of the random number generation function of commercially available spreadsheet software include a “RAND” function of spreadsheet software “Excel” (Microsoft), and a random number sequence can be easily generated using this function. Can be created. FIG. 2 is an example of a random number sequence in the range of 0 to 1 created by “RAND”. In the present invention, each intersection point of the grid is defined by two intersecting grid line directions or X and Y directions.
The distance to be displaced is not more than three times the average particle diameter of the abrasive grains, preferably 0.5 to 2 times the average particle diameter of the abrasive grains, and more preferably 0.8 to the average particle diameter of the abrasive grains. ~ 1.5 times. If the distance to be displaced exceeds three times the average particle size of the abrasive grains, the density of the abrasive grains may be partially excessively dense.

【0007】平均粒径250μmの砥粒を、格子線の間
隔1,000μmの正方格子に配置し、図2に示す乱数
列を用いて、格子の個々の交点をX方向及びY方向に、
砥粒の平均粒径の1.2倍以下の距離、すなわち最大3
00μm変位させる場合を考える。図3は、交点のラン
ダム変位の計算例を示す説明図である。交点を変位させ
ない場合、正方格子上において、4個の砥粒、a、b、
c及びdは、図3(a)に示す位置に配置される。図2に
示す乱数例の左上から順に、砥粒aのX方向の変位距
離、Y方向の変位距離、砥粒bのX方向の変位距離、Y
方向の変位距離、砥粒cのX方向の変位距離、Y方向の
変位距離、砥粒dのX方向の変位距離、Y方向の変位距
離に対応させる。図2に示す乱数列は、0〜1の乱数列
なので、図2に示される数値から0.5を減じ、600
μmを乗ずることにより、交点を変位させる距離を求め
ることができる。なお、この数値が正のときは、X方向
は右方向、Y方向は上方向、この数値が負のときは、X
方向は左方向、Y方向は下方向と決めておく。
Abrasive grains having an average particle size of 250 μm are arranged on a square lattice having a lattice line interval of 1,000 μm, and individual intersections of the lattice are arranged in the X and Y directions using a random number sequence shown in FIG.
Distance less than 1.2 times the average grain size of the abrasive grains, ie up to 3
Let us consider a case of displacing by 00 μm. FIG. 3 is an explanatory diagram illustrating an example of calculating a random displacement of an intersection. When the intersection is not displaced, four abrasive grains, a, b,
c and d are arranged at the positions shown in FIG. In order from the upper left of the random number example shown in FIG. 2, the displacement distance of the abrasive grains a in the X direction, the displacement distance in the Y direction, the displacement distance of the abrasive grains b in the X direction, and Y
The displacement distance in the direction, the displacement distance in the X direction of the abrasive grains c, the displacement distance in the Y direction, the displacement distance in the X direction of the abrasive grains d, and the displacement distance in the Y direction. The random number sequence shown in FIG. 2 is a random number sequence of 0 to 1, so 0.5 is subtracted from the numerical value shown in FIG.
By multiplying by μm, the distance for displacing the intersection can be obtained. If this value is positive, the X direction is rightward, the Y direction is upward, and if this value is negative, X
The direction is determined to be leftward, and the Y direction is determined to be downward.

【0008】乱数列の最初の数値は0.16778なの
で、砥粒aのX方向の変位距離は、 (0.16778−0.5)×600 = −199(μm) となり、乱数列の次の数値は0.978594なので、
砥粒aのY方向の変位距離は、 (0.978594−0.5)×600 = 287(μm) となる。すなわち、砥粒aは、X方向は左方向に199
μm、Y方向は上方向に287μm変位する。砥粒bの
変位距離は、同様にして乱数列の0.979155と0.
495107を用いて、 X方向 (0.979155−0.5)×600 = 28
7(μm) Y方向 (0.495107−0.5)×600 = −3
(μm) となる。以下、同様にして、砥粒cの変位距離は、 X方向 (0.657807−0.5)×600 = 95
(μm) Y方向 (0.530777−0.5)×600 = 18
(μm) 砥粒dの変位距離は、 X方向 (0.533587−0.5)×600 = 20
(μm) Y方向 (0.577899−0.5)×600 = 47
(μm) となる。このようにして設定したランダムな変位を、図
3に示す砥粒a、b、c及びdに適用すると、砥粒a、
b、c及びdは、図3(b)に示す位置に配置される。
Since the first numerical value of the random number sequence is 0.16787, the displacement distance of the abrasive grain a in the X direction is (0.1778-0.5) × 600 = −199 (μm). Since the numerical value is 0.978594,
The displacement distance of the abrasive grain a in the Y direction is (0.978594-0.5) × 600 = 287 (μm). That is, the abrasive grain a is 199 leftward in the X direction.
μm, the Y direction is displaced upward by 287 μm. Similarly, the displacement distance of the abrasive grain b is 0.997155 and 0.9 in the random number sequence.
Using 495107, the X direction (0.979155-0.5) × 600 = 28
7 (μm) Y direction (0.495107-0.5) × 600 = −3
(Μm). Hereinafter, similarly, the displacement distance of the abrasive grain c is: X direction (0.657807-0.5) × 600 = 95
(Μm) Y direction (0.530777-0.5) × 600 = 18
(Μm) The displacement distance of the abrasive grains d is X direction (0.533587-0.5) × 600 = 20.
(Μm) Y direction (0.577899−0.5) × 600 = 47
(Μm). When the random displacement set in this way is applied to the abrasive grains a, b, c, and d shown in FIG. 3, the abrasive grains a,
b, c and d are arranged at the positions shown in FIG.

【0009】図4は、本発明方法に用いられる変位距離
の計算を示す模式図の一例である。本例においては、上
記の計算と同様に格子線間隔1,000μmの正方格子
の個々の交点をX方向及びY方向に、それそぞれ最大変
位距離300μmで変位させている。図5は、本発明方
法に用いられる変位距離の計算を示す模式図の他の例で
ある。本例においては、格子線間隔1,000μmの正
方格子の個々の交点をX方向及びY方向に、それそぞれ
最大変位距離250μmで変位させている。図6は、本
発明方法に用いられる変位距離の計算を示す模式図の他
の例である。本例においては、格子線間隔1,000μ
mの正方格子の個々の交点をX方向及びY方向に、それ
そぞれ最大変位距離200μmで変位させている。
FIG. 4 is an example of a schematic diagram showing the calculation of the displacement distance used in the method of the present invention. In this example, as in the above calculation, each intersection of a square lattice with a lattice line spacing of 1,000 μm is displaced in the X and Y directions with a maximum displacement distance of 300 μm. FIG. 5 is another example of a schematic diagram showing the calculation of the displacement distance used in the method of the present invention. In this example, each intersection of a square lattice with a lattice line spacing of 1,000 μm is displaced in the X and Y directions with a maximum displacement distance of 250 μm each. FIG. 6 is another example of a schematic diagram showing the calculation of the displacement distance used in the method of the present invention. In this example, the grid line interval is 1,000 μm.
The respective intersections of the m square lattice are displaced in the X direction and the Y direction, respectively, with a maximum displacement distance of 200 μm.

【0010】格子線がX方向又はY方向を向いていな
い、例えば、図1(c)に示す斜方格子の場合は、上記の
ようにして計算した変位距離の数値が正の場合は斜め上
方に変位させ、負の場合は斜め下方に変位させると決め
ておくことにより、交点の変位の方向と距離を定めるこ
とができる。また、図1(f)、図1(g)に示す同心円状
の格子線を有する格子では、上記のようにして計算した
変位距離の数値が正の場合は時計回り方向に変位させ、
負の場合は反時計回り方向に変位させると決めておくこ
とにより、交点の変位の方向と距離を定めることができ
る。本発明において、格子線がX方向及びY方向を向い
ている場合は、交差する2本の格子線方向はX方向及び
Y方向と一致するが、格子線がX方向又はY方向を向い
ていない場合は、格子の個々の交点を交差する2本の格
子線方向に変位させる代わりに、X方向及びY方向に変
位させることができる。ランダムな変位の方向及び距離
をコンピュータ処理により設定する場合は、X方向及び
Y方向に変位させることにより、より容易に変位の設定
を行うことができる。
When the grid lines are not oriented in the X direction or the Y direction, for example, in the case of the oblique grid shown in FIG. 1C, if the numerical value of the displacement distance calculated as described above is positive, The displacement direction and distance of the intersection can be determined by deciding that the displacement is made obliquely downward in the case of a negative displacement. Also, in the lattice having concentric lattice lines shown in FIGS. 1F and 1G, when the numerical value of the displacement distance calculated as described above is positive, the lattice is displaced clockwise.
In the case of a negative value, it is determined that the displacement is made in the counterclockwise direction, so that the direction and distance of the displacement at the intersection can be determined. In the present invention, when the grid lines are oriented in the X direction and the Y direction, the two intersecting grid line directions match the X direction and the Y direction, but the grid lines are not oriented in the X direction or the Y direction. In this case, instead of displacing each intersection point of the grid in the direction of two grid lines intersecting, the grid can be displaced in the X direction and the Y direction. When the direction and distance of the random displacement are set by computer processing, the displacement can be set more easily by displacing in the X and Y directions.

【0011】本発明方法においては、板状のジグやマス
キングテープなどの、上記のようにして設定された位置
に、ドリルなどを用いて穴をあけ、この穴を通して砥粒
を工具の作用面に配置することができる。また、砥粒を
1個又は複数個ずつ、NC制御で作用面に固着すること
もでき、あるいは、設定された位置に接着剤又は粘着剤
をつけておき、砥粒を仮固定する方法を適用することも
できる。砥粒を固定する方法に特に制限はなく、電着、
ロウ付け、溶射などにより砥粒を固定することができ
る。本発明の砥粒工具の製造方法によれば、砥粒分布密
度を再現性よく制御して、性能が安定し、しかも被削材
表面に筋の残らない、作用面に砥粒を単層に固着した砥
粒工具を容易に製造し、眼鏡芯取り用ホイールなどの各
種材料の研削に用いる研削ホイールや、CMPコンディ
ショナなどの工具として効果的に使用することができ
る。
In the method of the present invention, a hole is formed using a drill or the like at a position set as described above, such as a plate-shaped jig or masking tape, and abrasive grains are passed through the hole to the working surface of the tool. Can be arranged. Also, one or more abrasive grains can be fixed to the working surface by NC control, or a method of temporarily fixing the abrasive grains by applying an adhesive or a pressure-sensitive adhesive to a set position is applied. You can also. There is no particular limitation on the method of fixing the abrasive grains, electrodeposition,
The abrasive grains can be fixed by brazing, thermal spraying, or the like. According to the method of manufacturing an abrasive tool of the present invention, the abrasive grain distribution density is controlled with good reproducibility, the performance is stable, and there is no streak on the surface of the work material. The bonded abrasive tool can be easily manufactured and effectively used as a grinding wheel used for grinding various materials such as an eyeglass centering wheel and a tool such as a CMP conditioner.

【0012】[0012]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 実施例1 寸法100D−20T−20Hのダイヤモンドストレー
トホイールを製作し、眼鏡レンズの芯取りを行った。仮
想的な格子として、図7(a)に示すホイール回転方向の
格子線の間隔が900μmであり、ホイール回転方向の
格子線上に2,000μmおきに砥粒が配置される斜方
格子を想定した。砥粒として、平均粒径350μmの人
造ダイヤモンド砥粒を用いた。図7(a)で○を付した交
点を、CADを用いて乱数に基づき、回転方向に最大3
00μm、軸方向に最大150μmランダムに変位させ
た。マスキングテープに、上記のCADで設定した砥粒
配列に基づき、直径400μmの穴をあけた。また、炭
素工具鋼S45Cで、φ99.3−20T−20Hの台
金を製作した。台金の外周作用面に、穴をあけたマスキ
ングテープを貼り付け、マスキングテープの穴部分に砥
粒を1個ずつ配置し、台金作用面に接着剤[セメダイン
(株)、工業用セメダイン]を用いて仮固定した。マスキ
ングテープを外したのち、仮固定した砥粒の間に平均粒
径約100μmのNi−Cr系ロウ材粉末を充填し、外
周から三つ割の黒鉛製外型で固定し、真空炉中に載置し
て、5×10-3Pa、1,050℃で15分間保持して、
砥粒をロウ付けし、ホイールを完成した。このホイール
を眼鏡レンズ用玉刷り機に取り付け、乾式定圧切り込み
円筒研削方式により、直径76.5mm、厚さ5.5mmのポ
リカーボネート製レンズの研削を行った。ホイール周速
を1,057m/minとし、レンズ回転数6min-1で反転
を繰り返した。研削の結果は、バリが少なく、加工面の
凹凸が小さく、研削方向の筋は認められなかった。 比較例1 ダイヤモンド砥粒を配置する位置が仮想的な格子の交点
であって、ランダムに変位されていないダイヤモンドス
トレートホイールを製作し、眼鏡レンズの芯取りを行っ
た。仮想的な格子として、図7(a)に示すホイール回転
方向の格子線の間隔が900μmであり、ホイール回転
方向の格子線上に2,000μmおきに砥粒が配置され
る斜方格子を想定した。砥粒として、平均粒径350μ
mの人造ダイヤモンド砥粒を用いた。マスキングテープ
の図7(a)で○を付した交点の位置に、直径400μm
の穴をあけた。また、炭素工具鋼S45Cで、φ99.
3−20T−20Hの台金を製作した。台金の外周作用
面に、穴をあけたマスキングテープを貼り付け、実施例
1と同様にして、マスキングテープの穴部分に砥粒を1
個ずつ仮固定したのち、砥粒をロウ付けし、ホイールを
完成した。このホイールを眼鏡レンズ用玉刷り機に取り
付け、実施例1と同様にしてポリカーボネート製レンズ
の研削を行った。レンズ外周の加工面に、深さ約0.1m
mの円周方向の溝が数本観察され、この溝がレンズの外
観を著しく悪化させた。 実施例2 寸法100D−4Tで、中心穴のないCMPコンディシ
ョナを製作し、ポリッシングパッドのコンディショニン
グを行った。仮想的な格子として、図7(b)に示す格子
線の間隔が1,000μmである正方格子を想定した。
砥粒として、平均粒径250μmの人造ダイヤモンド砥
粒を用いた。正方格子の交点を、CADを用いて乱数に
基づき、X方向及びY方向にそれぞれ最大300μmラ
ンダムに変位させた。マスキングテープに、上記のCA
Dで設定した砥粒配列に基づき、直径270μmの穴を
あけた。また、ステンレス鋼SUS304で、100D
−4Tの基板を製作した。基板の作用面に、穴をあけた
マスキングテープを貼り付け、マスキングテープの穴部
分に砥粒を1個ずつ配置し、基板の作用面に接着剤[セ
メダイン(株)、工業用セメダイン]を用いて仮固定し
た。マスキングテープを外したのち、ニッケルメッキに
より平均砥粒径の約70%まで埋め込んで砥粒を固定
し、CMPコンディショナを完成した。このCMPコン
ディショナを用いてポリッシングパッドをコンディショ
ニングしたのち、酸化膜付きシリコンウェーハのCMP
加工を行った。加工後のシリコンウェーハは、平坦度が
良好であり、スクラッチも認められなかった。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Example 1 A diamond straight wheel having dimensions of 100D-20T-20H was manufactured, and a spectacle lens was centered. As an imaginary grid, it is assumed that an interval between grid lines in the wheel rotation direction shown in FIG. 7A is 900 μm, and an orthorhombic grid in which abrasive grains are arranged every 2,000 μm on the grid lines in the wheel rotation direction. . As the abrasive, artificial diamond abrasive having an average particle diameter of 350 μm was used. In FIG. 7A, the intersections marked with a circle are identified by a maximum of 3 in the rotational direction based on random numbers using CAD.
It was displaced randomly at a maximum of 150 μm in the axial direction by 00 μm. A hole having a diameter of 400 μm was formed in the masking tape based on the abrasive grain arrangement set by the above CAD. In addition, a base metal of φ99.3-20T-20H was manufactured from carbon tool steel S45C. A masking tape with a hole is attached to the outer peripheral working surface of the base metal, abrasive grains are arranged one by one in the hole portion of the masking tape, and an adhesive [cemedine] is attached to the base metal working surface.
Co., Ltd., industrial mededine]. After removing the masking tape, Ni-Cr-based brazing filler metal powder having an average particle diameter of about 100 μm is filled between the temporarily fixed abrasive grains, and fixed with a 30% graphite outer mold from the outer periphery, and placed in a vacuum furnace. Place and hold at 5 × 10 −3 Pa, 1,050 ° C. for 15 minutes,
Abrasive grains were brazed to complete the wheel. The wheel was mounted on a spectacle lens balling machine, and a polycarbonate lens having a diameter of 76.5 mm and a thickness of 5.5 mm was ground by a dry constant-pressure incision cylindrical grinding method. Inversion was repeated at a wheel peripheral speed of 1,057 m / min and a lens rotation speed of 6 min -1 . As a result of grinding, there were few burrs, the unevenness of the processed surface was small, and no streak in the grinding direction was observed. Comparative Example 1 A diamond straight wheel was placed at the intersection of a virtual lattice where diamond abrasive grains were arranged and was not displaced at random, and the eyeglass lens was centered. As an imaginary grid, it is assumed that an interval between grid lines in the wheel rotation direction shown in FIG. . As abrasive grains, average particle size 350μ
m artificial diamond abrasive grains were used. At the intersection of the masking tape marked with a circle in FIG.
Drilled holes. In addition, carbon tool steel S45C, φ99.
A base metal of 3-20T-20H was manufactured. A masking tape with a hole is attached to the outer peripheral working surface of the base metal, and abrasive grains are applied to the hole of the masking tape in the same manner as in Example 1.
After being temporarily fixed individually, the abrasive grains were brazed to complete the wheel. The wheel was mounted on a spectacle lens ball-on press, and a polycarbonate lens was ground in the same manner as in Example 1. Approximately 0.1m depth on the processing surface of the lens periphery
Several grooves in the circumferential direction of m were observed, and these grooves markedly deteriorated the appearance of the lens. Example 2 A CMP conditioner having a size of 100D-4T and no center hole was manufactured, and conditioning of a polishing pad was performed. As a virtual grid, a square grid shown in FIG. 7B with grid line intervals of 1,000 μm was assumed.
As the abrasive grains, artificial diamond abrasive grains having an average particle size of 250 μm were used. The intersections of the square lattice were randomly displaced at a maximum of 300 μm in each of the X direction and the Y direction based on random numbers using CAD. Add the above CA to the masking tape
A hole having a diameter of 270 μm was formed based on the abrasive grain arrangement set in D. In addition, stainless steel SUS304, 100D
A -4T substrate was manufactured. A masking tape with a hole is attached to the working surface of the substrate, abrasive grains are arranged one by one in the hole portion of the masking tape, and an adhesive [Cemedine, industrial Cemedine] is used on the working surface of the substrate. Temporarily fixed. After removing the masking tape, the abrasive grains were fixed to about 70% of the average abrasive grain size by nickel plating to fix the abrasive grains, thereby completing a CMP conditioner. After conditioning the polishing pad using this CMP conditioner, the CMP of the silicon wafer with the oxide film is performed.
Processing was performed. The processed silicon wafer had good flatness and no scratch was observed.

【0013】[0013]

【発明の効果】本発明の砥粒工具の製造方法によれば、
砥粒分布密度を制御することができ、しかも被削材表面
に筋の残らない、作用面に砥粒を単層に固着した砥粒工
具を容易に製造することができる。
According to the method for producing an abrasive tool of the present invention,
The abrasive grain distribution density can be controlled, and an abrasive tool having no streaks on the surface of the work material and having abrasive grains fixed on the working surface in a single layer can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、仮想的な格子の形状の例である。FIG. 1 is an example of a virtual grid shape.

【図2】図2は、0〜1の範囲の乱数列の一例である。FIG. 2 is an example of a random number sequence ranging from 0 to 1;

【図3】図3は、交点のランダム変位の計算例を示す説
明図である。
FIG. 3 is an explanatory diagram illustrating an example of calculating a random displacement of an intersection.

【図4】図4は、本発明方法に用いられる変位距離の計
算を示す模式図の一例である。
FIG. 4 is an example of a schematic view showing calculation of a displacement distance used in the method of the present invention.

【図5】図5は、本発明方法に用いられる変位距離の計
算を示す模式図の他の例である。
FIG. 5 is another example of a schematic diagram showing the calculation of the displacement distance used in the method of the present invention.

【図6】図6は、本発明方法に用いられる変位距離の計
算を示す模式図の他の例である。
FIG. 6 is another example of a schematic diagram showing calculation of a displacement distance used in the method of the present invention.

【図7】図7は、実施例において想定した仮想的な格子
である。
FIG. 7 is a virtual grid assumed in the embodiment.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】作用面に砥粒を単層に固着した砥粒工具で
あって、該工具の作用面に仮想的な格子を想定し、該格
子の個々の交点を、交差する2本の格子線方向又はX方
向とY方向に、それぞれ砥粒の平均粒径の3倍以下の距
離だけランダムに変位させた位置に砥粒が配置されてな
ることを特徴とする砥粒工具。
An abrasive tool in which abrasive grains are fixed in a single layer on a working surface, wherein a virtual grid is assumed on the working face of the tool, and each intersection of the grid is defined by two intersecting points. An abrasive tool characterized in that abrasive grains are arranged at positions randomly displaced by a distance of not more than three times the average grain size of the abrasive grains in the grid line direction or the X direction and the Y direction, respectively.
【請求項2】作用面に砥粒を単層に固着した砥粒工具に
おいて、該工具の作用面に仮想的な格子を想定し、該格
子の個々の交点を、交差する2本の格子線方向又はX方
向とY方向に、それぞれ砥粒の平均粒径の3倍以下の距
離だけランダムに変位させた位置に砥粒を配置すること
を特徴とする砥粒工具の製造方法。
2. An abrasive tool in which abrasive grains are fixed in a single layer on the working surface, assuming a virtual grid on the working surface of the tool, and two grid lines intersecting each intersection of the grid. A method for manufacturing an abrasive tool, comprising: disposing abrasive grains at positions randomly displaced in the direction or the X direction and the Y direction by a distance equal to or less than three times the average particle size of the abrasive grains.
【請求項3】ランダムな変位が、乱数に基づいて設定さ
れる請求項2記載の砥粒工具の製造方法。
3. The method according to claim 2, wherein the random displacement is set based on a random number.
JP2000382498A 2000-12-15 2000-12-15 Abrasive tool and manufacturing method thereof Expired - Fee Related JP3947355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000382498A JP3947355B2 (en) 2000-12-15 2000-12-15 Abrasive tool and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000382498A JP3947355B2 (en) 2000-12-15 2000-12-15 Abrasive tool and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002178264A true JP2002178264A (en) 2002-06-25
JP3947355B2 JP3947355B2 (en) 2007-07-18

Family

ID=18850308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000382498A Expired - Fee Related JP3947355B2 (en) 2000-12-15 2000-12-15 Abrasive tool and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3947355B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508153A (en) * 2003-10-10 2007-04-05 サンーゴバン アブレイシブズ,インコーポレイティド Polishing tool made by self-avoiding abrasive grain arrangement
JP2007307701A (en) * 2006-04-18 2007-11-29 Nippon Steel Corp Rotary grinding tool excellent in rust removal and base adjustment, its manufacturing method and rust removal and base adjustment method using it
JP2008062310A (en) * 2006-09-05 2008-03-21 Allied Material Corp Metal bonded superabrasive wheel
JP2008302462A (en) * 2007-06-07 2008-12-18 Nikko Ootome Kk Abrasive grain pasting device and abrasive grain pasting program
JP2009018415A (en) * 2007-07-10 2009-01-29 Oy Kwh Mirka Ab Abrasive coating and manufacturing method of the same
JP2009136928A (en) * 2007-12-03 2009-06-25 Toyoda Van Moppes Ltd Superabrasive grain setting method
US8342910B2 (en) 2009-03-24 2013-01-01 Saint-Gobain Abrasives, Inc. Abrasive tool for use as a chemical mechanical planarization pad conditioner
US8795036B2 (en) 2006-07-10 2014-08-05 Oy Kwh Mirka Ab Method for manufacturing a flexible abrasive disc, and a flexible abrasive disc
US8905823B2 (en) 2009-06-02 2014-12-09 Saint-Gobain Abrasives, Inc. Corrosion-resistant CMP conditioning tools and methods for making and using same
US8951099B2 (en) 2009-09-01 2015-02-10 Saint-Gobain Abrasives, Inc. Chemical mechanical polishing conditioner

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993419B2 (en) 2003-10-10 2011-08-09 Saint-Gobain Abrasives Technology Company Abrasive tools made with a self-avoiding abrasive grain array
JP2007508153A (en) * 2003-10-10 2007-04-05 サンーゴバン アブレイシブズ,インコーポレイティド Polishing tool made by self-avoiding abrasive grain arrangement
US7507267B2 (en) 2003-10-10 2009-03-24 Saint-Gobain Abrasives Technology Company Abrasive tools made with a self-avoiding abrasive grain array
JP2007307701A (en) * 2006-04-18 2007-11-29 Nippon Steel Corp Rotary grinding tool excellent in rust removal and base adjustment, its manufacturing method and rust removal and base adjustment method using it
US8795036B2 (en) 2006-07-10 2014-08-05 Oy Kwh Mirka Ab Method for manufacturing a flexible abrasive disc, and a flexible abrasive disc
JP2008062310A (en) * 2006-09-05 2008-03-21 Allied Material Corp Metal bonded superabrasive wheel
JP2008302462A (en) * 2007-06-07 2008-12-18 Nikko Ootome Kk Abrasive grain pasting device and abrasive grain pasting program
JP2009018415A (en) * 2007-07-10 2009-01-29 Oy Kwh Mirka Ab Abrasive coating and manufacturing method of the same
JP2009136928A (en) * 2007-12-03 2009-06-25 Toyoda Van Moppes Ltd Superabrasive grain setting method
US8342910B2 (en) 2009-03-24 2013-01-01 Saint-Gobain Abrasives, Inc. Abrasive tool for use as a chemical mechanical planarization pad conditioner
US9022840B2 (en) 2009-03-24 2015-05-05 Saint-Gobain Abrasives, Inc. Abrasive tool for use as a chemical mechanical planarization pad conditioner
US8905823B2 (en) 2009-06-02 2014-12-09 Saint-Gobain Abrasives, Inc. Corrosion-resistant CMP conditioning tools and methods for making and using same
US8951099B2 (en) 2009-09-01 2015-02-10 Saint-Gobain Abrasives, Inc. Chemical mechanical polishing conditioner

Also Published As

Publication number Publication date
JP3947355B2 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
TWI278928B (en) Abrasive tools made with a self-avoiding abrasive grain array
US6083631A (en) Article and a method and apparatus for producing an article having a high friction surface
JP5033630B2 (en) Tool having sintered body polishing portion and method for manufacturing the same
JP3947355B2 (en) Abrasive tool and manufacturing method thereof
JPH0760643A (en) Diamond dressing gear
JP2003048166A (en) Grinding wheel
JPS6012694Y2 (en) diamond blade
KR20050009088A (en) Abrasive tools and manufacture thereof
JP2011020182A (en) Polishing tool suitable for pad conditioning, and polishing method using the same
JPH11156714A (en) Diamond rotary dresser and manufacture thereof
JP2001121427A (en) Rotary disk cutter
JP3008119B2 (en) Abrasive cloth paper
JPH08243928A (en) Segment type grinding wheel and its manufacture
JPH0716883B2 (en) Grinding wheel
JPH04135181A (en) Polishing cloth sheet
JPH03149182A (en) Diamond dresser
JPH10151557A (en) Curved surface polishing device for glass article
JPS6322269A (en) Simultaneous truing and dressing method for diamond wheel and composite grinding wheel
JP2968094B2 (en) Method of manufacturing comb-shaped structure
KR20010050057A (en) Tool and method for the abrasive machining of a substantially planar surface
JPH10249625A (en) Diamond coating end mill and manufacture therefor
JPS63312052A (en) Horizontal type grinder
JPH0671709B2 (en) Super abrasive cutting stone
JP2005288633A (en) Cutting tool and its manufacturing method
JP2004114218A (en) Machining wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

LAPS Cancellation because of no payment of annual fees