JP5033630B2 - Tool having sintered body polishing portion and method for manufacturing the same - Google Patents

Tool having sintered body polishing portion and method for manufacturing the same Download PDF

Info

Publication number
JP5033630B2
JP5033630B2 JP2007532202A JP2007532202A JP5033630B2 JP 5033630 B2 JP5033630 B2 JP 5033630B2 JP 2007532202 A JP2007532202 A JP 2007532202A JP 2007532202 A JP2007532202 A JP 2007532202A JP 5033630 B2 JP5033630 B2 JP 5033630B2
Authority
JP
Japan
Prior art keywords
polishing
tool according
superabrasive
sintered body
polishing tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007532202A
Other languages
Japanese (ja)
Other versions
JPWO2007023949A1 (en
Inventor
博 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007532202A priority Critical patent/JP5033630B2/en
Publication of JPWO2007023949A1 publication Critical patent/JPWO2007023949A1/en
Application granted granted Critical
Publication of JP5033630B2 publication Critical patent/JP5033630B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/017Devices or means for dressing, cleaning or otherwise conditioning lapping tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/12Dressing tools; Holders therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/2457Parallel ribs and/or grooves
    • Y10T428/24579Parallel ribs and/or grooves with particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet

Description

本発明は、焼結体研磨部を持つ工具およびその製造方法に関する。とくに本発明は、主に硬質ウレタンで構成された化学的機械的研磨(chemical-mechanical polishing:CMPと略す)パッド用や、各種半導体材料を高平面度かつ高能率で加工可能な研磨工具およびその効果的な製造方法に関する。   The present invention relates to a tool having a sintered body polishing portion and a manufacturing method thereof. In particular, the present invention is for a chemical-mechanical polishing (abbreviated as CMP) pad mainly composed of hard urethane, a polishing tool capable of processing various semiconductor materials with high flatness and high efficiency, and a polishing tool thereof. The present invention relates to an effective manufacturing method.

近年、超LSIデバイスにおける配線の多層化が進むにつれて、層間絶縁膜やシリコン等金属膜ウェハの平坦化にCMPが用いられてきている。そしてCMPで用いられる研磨パッド(一般に硬質発泡ポリウレタン製)の高い平坦化およびウェハ研磨速度を維持するためには、該研磨パッドの表面を常時または間欠的にコンディショニングする必要がある。   In recent years, CMP has been used to planarize metal film wafers such as interlayer insulating films and silicon as the number of wiring layers in VLSI devices has increased. In order to maintain a high level of a polishing pad (generally made of rigid foamed polyurethane) used in CMP and a wafer polishing rate, it is necessary to condition the surface of the polishing pad constantly or intermittently.

従来、この研磨パッドのコンディショニングの際、ダイヤモンド砥粒を電着により基板に固着した工具が使用されている。このような電着タイプのコンディショニング用の工具の例として、円板形基台の円形表面の中央に、砥粒を配置しない中空領域を、その外側に第一の、さらにその外側に第二の砥粒層領域をそれぞれ設け、第一の砥粒層領域には、間隔をおいて小砥粒層部が複数列設けられ、各小砥粒層部は、略部分球面状を呈する隆起部の表面に、超砥粒を金属めっき相で固着したものであって、第二の砥粒層領域は、リング状の円周隆起部に超砥粒を金属めっき相で固着して構成されている回転研磨工具が公知である(特許文献1)。
このような電着タイプの工具は、砥粒の基板への固着が電着されたニッケルにより物理的に固着されているだけであることから保持力が必ずしも満足いくものではなく、使用中にダイヤモンド砥粒が脱落し、工具寿命は改善の余地があった。
Conventionally, during conditioning of this polishing pad, a tool in which diamond abrasive grains are fixed to a substrate by electrodeposition has been used. As an example of such an electrodeposition type conditioning tool, in the center of the circular surface of the disk-shaped base, a hollow region where no abrasive grains are arranged is a first on the outside, and a second on the outside. Each of the abrasive layer regions is provided, and the first abrasive layer region is provided with a plurality of rows of small abrasive layer portions at intervals, and each of the small abrasive layer portions is formed of a raised portion having a substantially partial spherical shape. The superabrasive grains are fixed to the surface with a metal plating phase, and the second abrasive layer region is formed by fixing the superabrasive grains to the ring-shaped circumferential ridge with the metal plating phase. A rotary polishing tool is known (Patent Document 1).
Such electrodeposition type tools are not always satisfactory in holding power because the abrasive grains are only physically fixed to the substrate by the electrodeposited nickel. The abrasive grains dropped out and there was room for improvement in tool life.

また、ダイヤモンド等からなる砥粒をレジンボンド材で円形回転平面上に固着した砥材層を有し、該砥材層表面に放射状および同心円状にスリットを設けた研磨工具が公知である(特許文献2)。
しかし、レジンボンド材による砥粒の保持強度は必ずしも満足できるレベルにないため、用途によっては充分な工具寿命が得られず、また電着工具においても満足できるレベルにはなかった。
Also known is a polishing tool having an abrasive layer in which abrasive grains made of diamond or the like are fixed on a circular rotation plane with a resin bond material, and slits are provided radially and concentrically on the surface of the abrasive layer (patent) Reference 2).
However, since the retention strength of the abrasive grains by the resin bond material is not always at a satisfactory level, a sufficient tool life cannot be obtained depending on the application, and the electrodeposition tool is not at a satisfactory level.

また、凸部を有する台金の作用面に、気相合成法により多結晶ダイヤモンド薄膜を形成してなるドレッサが公知である(特許文献3)。
しかし、気相合成法による形成では、台金の小さな凹凸に忠実にダイヤモンド薄膜を形成することは困難で、必ずしも十分な精度が得られず、また、薄膜と台金との接合力も十分とはいえない。
Also, a dresser is known in which a polycrystalline diamond thin film is formed on the working surface of a base metal having a convex portion by a vapor phase synthesis method (Patent Document 3).
However, it is difficult to form a diamond thin film faithfully to the small unevenness of the base metal by the vapor phase synthesis method, and sufficient accuracy cannot be obtained, and the bonding force between the thin film and the base metal is not sufficient. I can't say that.

上記のような従来の研磨工具(パッドコンディショナー)は、基板(台金)に、粒子径がそれぞれ異なる複数個の砥粒粒子を固着した構造の故に、一様な砥粒(頂点)レベルが得にくいので、コンディショニング工程では基板(台金)面に対して最も突き出た粒子のみが使用される結果、過度の負荷に供されるこれらの粒子の消耗が激しく、結局本来の工具寿命に達する前に使用不可となることが多い。   The conventional polishing tool (pad conditioner) as described above has a structure in which a plurality of abrasive grains having different particle diameters are fixed to a substrate (base metal), so that a uniform abrasive grain (vertex) level can be obtained. The conditioning process uses only the most protruding particles on the substrate (base metal) surface, resulting in excessive consumption of these particles that are subjected to excessive loads, before eventually reaching the original tool life. Often unavailable.

シリコン等のウェハを、発泡ウレタン製の研磨パッドと遊離砥粒に依らず、剛性金属製の台金表面にダイヤモンド等の超砥粒を固定した工具で加工することができれば、コンディショニングのための時間および経費が節約できるので望ましいが、これが実現するためには、台金上に配置され切れ刃を構成するダイヤモンド等超砥粒層が高精度の平面を有し、かつ保持できなければならない。しかしながらこのような工具は、十分には実現されていなかった。
特開2002−337050号公報 特開2004−291184号公報 特開平10−071559号公報
If a wafer such as silicon can be processed with a tool in which superabrasive grains such as diamond are fixed on the surface of a rigid metal base metal, regardless of the urethane foam polishing pad and loose abrasive grains, the time required for conditioning This is desirable because it saves money and costs, but for this to happen, the superabrasive layer of diamond, etc., which is placed on the base metal and forms the cutting edge, must have a highly accurate plane and be able to hold. However, such a tool has not been fully realized.
JP 2002-337050 A JP 2004-291184 A Japanese Patent Laid-Open No. 10-071559

本発明の課題は、砥粒の基板への固着強度問題や不均一な研磨面の問題等が解決された高能率で加工可能な研磨工具およびその効果的な製造方法を提供することにある。特に、CMPパッドコンディショナーとして、半導体ウェハ等の表面を高精度かつ高能率で加工可能な研磨工具を提供することにある。   An object of the present invention is to provide a polishing tool capable of high-efficiency processing and an effective manufacturing method thereof in which the problem of the strength of fixing abrasive grains to a substrate, the problem of uneven polishing surface, and the like are solved. In particular, an object of the present invention is to provide a polishing tool capable of processing a surface of a semiconductor wafer or the like with high accuracy and high efficiency as a CMP pad conditioner.

本発明者は、上記の課題を解決すべく鋭意研究を重ねる中で、超砥粒焼結体からなる研磨部をもつ研磨工具において、研磨部に特定の複数の研磨単位を形成することにより、かかる課題を解決し得ることを見出し、さらに研究を進めた結果、本発明を完成するに至った。
すなわち本発明は、超砥粒焼結体からなる研磨部をもつ研磨工具であって、研磨部が、頂部を有する複数の研磨単位を含み、各頂部が相互に略同一平面上にある、前記研磨工具に関する。
さらに本発明は、研磨部が、超硬合金の裏打ち材に焼結一体化した超砥粒焼結体からなり、研磨単位が、該研磨部に直線溝群を設けることにより形成されたものである、前記の研磨工具に関する。
また本発明は、頂部に刃付けが行われている、前記の研磨工具に関する。
さらに本発明は、研磨単位が四角錐状または四角錐台状である、前記の研磨工具に関する。
In the polishing tool having a polishing portion made of a superabrasive sintered body, in the course of earnest research to solve the above problems, the inventor forms a plurality of specific polishing units in the polishing portion. As a result of finding out that such a problem can be solved and further researching it, the present invention has been completed.
That is, the present invention is a polishing tool having a polishing portion made of a superabrasive sintered body, wherein the polishing portion includes a plurality of polishing units having a top portion, and the top portions are substantially coplanar with each other, It relates to a polishing tool.
Further, in the present invention, the polishing portion is made of a superabrasive sintered body integrated with a cemented carbide backing material, and the polishing unit is formed by providing a linear groove group in the polishing portion. The present invention relates to the polishing tool.
Moreover, this invention relates to the said grinding | polishing tool by which blade attachment is performed to the top part.
Furthermore, the present invention relates to the polishing tool, wherein the polishing unit is a quadrangular pyramid or a truncated pyramid.

また本発明は、研磨単位が四角錐台状であり、頂部の少なくとも一辺に刃付けが行われている、前記の研磨工具に関する。
さらに本発明は、研磨単位が三角錐状または三角錐台状である、前記の研磨工具に関する。
また本発明は、研磨単位が三角錐台状であり、頂部の少なくとも一辺に刃付けが行われている、前記の研磨工具に関する。
さらに本発明は、研磨単位が頂部に直線状の稜線を呈する形状である、前記の研磨工具に関する。
また本発明は、研磨単位が四角錐状または三角錐状であり、研磨単位のピッチが1500μm以下200μm以上である、前記の研磨工具に関する。
さらに本発明は、研磨単位が四角錐状または三角錐状であり、研磨単位の高さが200μm以下30μm以上である、前記の研磨工具に関する。
また本発明は、超砥粒がダイヤモンドである、前記の研磨工具に関する。
さらに本発明は、ダイヤモンドの公称粒度が40-60μm以下である、前記の研磨工具に関する。
また本発明は、超砥粒焼結体の厚さが0.1mm以上である、前記の研磨工具に関する。
さらに本発明は、円板状または円環状である、前記の研磨工具に関する。
The present invention also relates to the above polishing tool, wherein the polishing unit has a quadrangular pyramid shape, and at least one side of the top is bladed.
Furthermore, the present invention relates to the polishing tool, wherein the polishing unit is a triangular pyramid shape or a triangular frustum shape.
The present invention also relates to the above polishing tool, wherein the polishing unit has a triangular frustum shape, and at least one side of the top is bladed.
Furthermore, this invention relates to the said grinding | polishing tool whose grinding | polishing unit is a shape which exhibits a linear ridgeline in the top part.
The present invention also relates to the above polishing tool, wherein the polishing unit is a quadrangular pyramid shape or a triangular pyramid shape, and the pitch of the polishing unit is 1500 μm or less and 200 μm or more.
Furthermore, the present invention relates to the above polishing tool, wherein the polishing unit is a quadrangular pyramid or a triangular pyramid, and the height of the polishing unit is 200 μm or less and 30 μm or more.
Moreover, this invention relates to the said polishing tool whose superabrasive grain is a diamond.
Furthermore, the present invention relates to the above polishing tool, wherein the nominal grain size of diamond is 40-60 μm or less.
The present invention also relates to the above polishing tool, wherein the superabrasive sintered body has a thickness of 0.1 mm or more.
Furthermore, this invention relates to the said grinding | polishing tool which is disk shape or annular | circular shape.

また本発明は、研磨部が円板状または円環状である、前記の研磨工具に関する。
さらに本発明は、研磨部の外径が90mm以上である、前記の研磨工具に関する。
また本発明は、研磨部の溝の底に対する頂部の高さが1mm以下である、前記の研磨工具に関する。
さらに本発明は、研磨部が、2個または4個の分割研磨部からなり、該分割研磨部がそれぞれ中心角の等しい扇状である、前記の研磨工具に関する。
また本発明は、分割研磨部が、2つの溝群を有し、第一溝群は分割研磨部の半径方向の縁に対して平行に設けられ、第二溝群は第一溝群に直交して形成されている、前記の研磨工具に関する。
さらに本発明は、研磨部が、3個または6個の分割研磨部からなり、該分割研磨部がそれぞれ中心角の等しい扇状である、前記の研磨工具に関する。
また本発明は、分割研磨部が、3つの溝群を有し、第一溝群は分割研磨部の半径方向の縁に対して平行に設けられ、第二溝群および第三溝群は、それぞれ第一溝群に対し、60°および120°で交わるように形成されている、前記の研磨工具に関する。
さらに本発明は、溝の形成がワイヤカット放電加工による、前記の研磨工具に関する。
また本発明は、CMPパッドコンディショナーである、前記の研磨工具に関する。
The present invention also relates to the above polishing tool, wherein the polishing part is disc-shaped or annular.
Furthermore, the present invention relates to the above polishing tool, wherein the outer diameter of the polishing part is 90 mm or more.
The present invention also relates to the above polishing tool, wherein the height of the top portion with respect to the bottom of the groove of the polishing portion is 1 mm or less.
Furthermore, the present invention relates to the above polishing tool, wherein the polishing part is composed of two or four divided polishing parts, and each of the divided polishing parts has a fan shape having the same central angle.
Further, according to the present invention, the divided polishing portion has two groove groups, the first groove group is provided in parallel to the radial edge of the divided polishing portion, and the second groove group is orthogonal to the first groove group. It is related with the said polishing tool currently formed.
Furthermore, the present invention relates to the above polishing tool, wherein the polishing part is composed of three or six divided polishing parts, and each of the divided polishing parts has a fan shape having the same central angle.
Further, in the present invention, the divided polishing portion has three groove groups, the first groove group is provided in parallel to the radial edge of the divided polishing portion, and the second groove group and the third groove group are: The present invention relates to the above polishing tool, which is formed so as to intersect at 60 ° and 120 ° with respect to the first groove group, respectively.
Furthermore, this invention relates to the said grinding | polishing tool whose formation of a groove | channel is by wire cut electric discharge machining.
The present invention also relates to the above polishing tool, which is a CMP pad conditioner.

さらに本発明は、超砥粒焼結体からなる研磨部をもつ研磨工具の製造方法であって、
(1)超硬合金の裏打ち材に超砥粒を焼結一体化し、超砥粒焼結体を得る工程、
(2)得られた超砥粒焼結体の研磨部を平坦化する工程、
(3)平坦化した超砥粒焼結体に直線溝群を設け、複数の研磨単位を形成し、研磨部とする工程
を含む、前記製造方法に関する。
また本発明は、超砥粒焼結体からなる研磨部をもつ研磨工具の製造方法であって、
(1)超硬合金の裏打ち材に超砥粒を焼結一体化し、超砥粒焼結体を得る工程、
(2)得られた超砥粒焼結体から、1つの扇状の分割研磨部を切り出す工程、
(3)前記(2)で得られた扇状の分割研磨部と中心角の等しい複数の扇状の分割研磨部を得る工程、
(4)得られた複数の扇状の分割研磨部を密着隣接して平坦な基板表面上に固着して、円板状または円環状の研磨部にする工程、
(5)前記(4)で得られた円板状または円環状の研磨部の分割研磨部間の境界に溝を設け、複数の研磨単位を形成する工程
を含む、前記製造方法に関する。
さらに本発明は、前記のいずれかに記載の研磨工具の再生方法であって、溝および研磨単位の頂部をワイヤカット放電加工により再生する工程を含む、前記再生方法に関する。
Furthermore, the present invention is a method for manufacturing a polishing tool having a polishing portion made of a superabrasive sintered body,
(1) A step of sintering and integrating superabrasive grains to a cemented carbide backing material to obtain a superabrasive sintered body,
(2) a step of flattening a polishing portion of the obtained superabrasive sintered body,
(3) It is related with the said manufacturing method including the process of providing a linear groove group in the planarized super abrasive grain sintered compact, forming a some grinding | polishing unit, and setting it as a grinding | polishing part.
Further, the present invention is a method of manufacturing a polishing tool having a polishing portion made of a superabrasive sintered body,
(1) A step of sintering and integrating superabrasive grains to a cemented carbide backing material to obtain a superabrasive sintered body,
(2) A step of cutting out one fan-shaped divided polishing portion from the obtained superabrasive sintered body,
(3) A step of obtaining a plurality of fan-shaped divided polishing portions having a central angle equal to the fan-shaped divided polishing portion obtained in (2),
(4) A step of sticking the obtained fan-shaped divided polishing portions closely and adhering to a flat substrate surface to form a disk-shaped or annular polishing portion;
(5) The present invention relates to the above production method, comprising the step of forming a plurality of polishing units by providing a groove at the boundary between the divided polishing portions of the disc-shaped or annular polishing portion obtained in (4).
Furthermore, the present invention relates to the method for regenerating a polishing tool according to any one of the above, comprising the step of regenerating the grooves and the top of the polishing unit by wire-cut electric discharge machining.

本発明の研磨工具は、超砥粒焼結体からなる研磨部を用いており、結合材の溶融温度以上で焼結されていることにより、超砥粒の固着強度が大きく、実質上脱落がないという利点がある。とくに超砥粒としてダイヤモンド粒子を用いた場合、ダイヤモンドは、製造工程において結合材金属が溶融しかつダイヤモンドが熱力学的に安定な温度圧力条件下に供されており、ダイヤモンド微粒子が結合材金属への部分溶解を介して強力に一体化されていることにより、固着強度がさらに大きいため、実質上脱落がなくなる。   The polishing tool of the present invention uses a polishing portion made of a superabrasive sintered body, and is sintered at a temperature equal to or higher than the melting temperature of the binder, so that the superabrasive adhesion strength is large and substantially falls off. There is no advantage. Particularly when diamond particles are used as superabrasive grains, diamond is subjected to temperature and pressure conditions in which the binder metal is melted and the diamond is thermodynamically stable in the manufacturing process, and the diamond fine particles become the binder metal. Because of the strong integration through partial dissolution, the fixing strength is further increased, so that there is virtually no dropout.

また、一般に、広い面積で焼結するとムラができ、全体的に均質な研磨部を大径で作成することは困難であるが、本発明の複数の分割研磨部から超砥粒焼結体を製造する研磨工具は、焼結のムラができない小径の超砥粒焼結体から、径の大きな扇状の分割研磨部を切り抜き、これを複数組み合わせることによって、大径の研磨部とすることから、全体的に均質な、高精度の研磨工具とすることができる。   In general, when sintered in a large area, unevenness is generated, and it is difficult to produce a uniform polished portion with a large diameter as a whole, but it is difficult to produce a superabrasive sintered body from a plurality of divided polished portions of the present invention. Since the polishing tool to be manufactured is cut out from a small-diameter superabrasive sintered body that does not have uneven sintering, a large-diameter fan-shaped divided polishing part is combined, and a plurality of these are combined to make a large-diameter polishing part. It is possible to obtain a highly accurate polishing tool that is homogeneous throughout.

さらに研磨単位が形成されている研磨部は、表面が充分な厚さを持つ超砥粒焼結体で構成されていることにより、研磨単位が使用により磨滅しても、ワイヤカット放電加工などにより溝および研磨単位を容易に再生して、本発明の工具として再利用できる。   Furthermore, the polishing part in which the polishing unit is formed is composed of a superabrasive sintered body having a sufficient thickness on the surface. The grooves and polishing units can be easily regenerated and reused as the tool of the present invention.

また本発明では、各研磨単位はワイヤカット放電加工などによって、ダイヤモンド焼結体などの超砥粒焼結体から任意に切り出されるものであり、三角錐体および四角錐体などの底面レベルおよび高さの制御が容易であるから、従来の研磨工具に比して、より高精度の研磨面(レベル)をもつ工具が得られる。特にCMPパッドコンディショナーとして半導体ウェハ等の表面を高精度かつ高能率で加工可能である。   In the present invention, each polishing unit is arbitrarily cut from a superabrasive sintered body such as a diamond sintered body by wire-cut electric discharge machining or the like, and has a bottom surface level and a high height such as a triangular pyramid and a quadrangular pyramid. Since the control of the thickness is easy, a tool having a polishing surface (level) with higher accuracy than that of a conventional polishing tool can be obtained. In particular, the surface of a semiconductor wafer or the like can be processed with high accuracy and high efficiency as a CMP pad conditioner.

本発明による研磨工具の一実施態様を示す説明図(平面図)である。(実施例1)It is explanatory drawing (plan view) which shows one embodiment of the polishing tool by this invention. (Example 1) 本発明による研磨工具の一実施態様を示す説明図(平面図)である。(実施例2)It is explanatory drawing (plan view) which shows one embodiment of the polishing tool by this invention. (Example 2) 本発明による研磨工具の一実施態様を示す説明図(平面図)である。It is explanatory drawing (plan view) which shows one embodiment of the polishing tool by this invention. 本発明による研磨工具の一実施態様を示す説明図(平面図)である。It is explanatory drawing (plan view) which shows one embodiment of the polishing tool by this invention. 図4の部分拡大図である。It is the elements on larger scale of FIG. 図1の部分拡大図である。It is the elements on larger scale of FIG. 本発明による研磨工具の研磨単位について、一構成例を示す説明図(平面図)である。It is explanatory drawing (plan view) which shows one structural example about the grinding | polishing unit of the grinding | polishing tool by this invention. 図7におけるA−Aにおける断面を示す説明図である。It is explanatory drawing which shows the cross section in AA in FIG. 本発明による研磨工具の研磨単位について、別の構成例を示す説明図(平面図)である。It is explanatory drawing (plan view) which shows another structural example about the grinding | polishing unit of the grinding | polishing tool by this invention. 図9におけるB−Bにおける断面を示す説明図である。It is explanatory drawing which shows the cross section in BB in FIG. 本発明による研磨工具を製造方法において用い得るワイヤカット放電加工の一態様を示す説明図である。It is explanatory drawing which shows the one aspect | mode of the wire cut electric discharge machining which can use the polishing tool by this invention in a manufacturing method. 本発明による研磨工具の一実施態様を示す説明図(平面図)である。It is explanatory drawing (plan view) which shows one embodiment of the polishing tool by this invention. 本発明による研磨工具の一実施態様を示す説明図(平面図)である。It is explanatory drawing (plan view) which shows one embodiment of the polishing tool by this invention. 本発明による研磨工具の一実施態様を示す説明図(平面図)である。It is explanatory drawing (plan view) which shows one embodiment of the polishing tool by this invention. 本発明による研磨工具の一実施態様を示す説明図(平面図)である。It is explanatory drawing (plan view) which shows one embodiment of the polishing tool by this invention. 本発明による研磨工具の一実施態様を示す説明図(平面図)である。It is explanatory drawing (plan view) which shows one embodiment of the polishing tool by this invention. 本発明による研磨工具の一実施態様を示す説明図(平面図)である。It is explanatory drawing (plan view) which shows one embodiment of the polishing tool by this invention.

符号の説明Explanation of symbols

1 研磨工具
2 研磨単位
3 溝
4 研磨工具
5 研磨単位
6 溝
7 研磨工具
8 研磨単位
9 溝
10 研磨部
12 第一方向平行溝群
13、14 錐(台)状体側面
16 第二方向平行溝群
17、18 錐体傾斜側面
19 四角錐(台)状研磨単位
22 第一方向平行溝群
23、24 三角錐傾斜面
25 研磨部
27 第二平行溝群
28、29 傾斜側面
31 第三方向平行溝群
32、33 傾斜側面
34 三角錐状研磨単位
41 放電加工用ワイヤ
42 研磨部
43、44 研磨単位
51 研磨部
52 円形基板
53 直線状溝群
55 第二溝群
58 外周傾斜部
61 研磨部
62 円形基板
63 直線状溝群
65 第二溝群
66 第三溝群
68 外周傾斜部
69 内周傾斜部
71 研磨部
72 円形基板
73 直線状溝群
74 接合部
75 第二溝群
81 研磨部
82 円形基板
83 直線状溝群
84 接合部
85 第二溝群
91 研磨部
92 円形基板
93 直線状溝群
94 接合部
95 第二溝群
96 第三溝群
101 研磨部
102 円形基板
103 直線状溝群
104 接合部
105 第二溝群
106 第三溝群
DESCRIPTION OF SYMBOLS 1 Polishing tool 2 Polishing unit 3 Groove 4 Polishing tool 5 Polishing unit 6 Groove 7 Polishing tool 8 Polishing unit 9 Groove 10 Polishing part 12 First direction parallel groove group 13, 14 Conical (table) side surface 16 Second direction parallel groove Group 17, 18 Cone inclined side surface 19 Square pyramid (conical) polishing unit 22 First direction parallel groove group 23, 24 Triangular pyramid inclined surface 25 Polishing part 27 Second parallel groove group 28, 29 Inclined side surface 31 Third direction parallel Groove group 32, 33 Inclined side surface 34 Triangular pyramid-shaped polishing unit 41 Wire for electric discharge machining 42 Polishing part 43, 44 Polishing unit 51 Polishing part 52 Circular substrate 53 Linear groove group 55 Second groove group 58 Peripheral inclined part 61 Polishing part 62 Circular substrate 63 Linear groove group 65 Second groove group 66 Third groove group 68 Peripheral inclined portion 69 Inner peripheral inclined portion 71 Polishing portion 72 Circular substrate 73 Linear groove group 74 Joint portion 75 Second groove group 81 Polishing portion 82 Circle Substrate 83 Linear groove group 84 Bonding portion 85 Second groove group 91 Polishing portion 92 Circular substrate 93 Linear groove group 94 Bonding portion 95 Second groove group 96 Third groove group 101 Polishing portion 102 Circular substrate 103 Linear groove group 104 Joining part 105 Second groove group 106 Third groove group

本発明の研磨工具の材料となる超砥粒焼結体は、ダイヤモンドやc−BN(立方晶窒化硼素)等の超砥粒の粉末を常法により超高圧高温工程で処理して得られる。この状態の焼結体は超砥粒焼結体は歪みが大きいので型放電加工などにより予備的にあらかた平坦化しておく。次いで、本発明で特定する態様にて溝及び突起側面を段階的に形成していくことにより、研磨単位、即ち、直接研磨対象と接触する突起部分を創生する。なお超砥粒焼結体として市販品を利用する場合は、仕様によるが、表面が平坦化されているので、上記平坦化予備処理は省略できる。
前記溝の形成にはワイヤカット放電加工や型放電加工やその他の精密放電加工、或はレーザー加工などが利用可能であるが、ワイヤカット放電加工が好ましく、とりわけ、研磨単位の頂部を鋭利に尖らせる場合などに、ワイヤカット放電加工がとくに好ましい。ワイヤカットは超砥粒焼結体表面に沿って放電加工用ワイヤを駆動し、金属ワイヤと超砥粒焼結体材料との間の放電により、材料を除去する手法であるが、通常プログラム運転される。
The superabrasive sintered body used as the material of the polishing tool of the present invention can be obtained by treating superabrasive powders such as diamond and c-BN (cubic boron nitride) in an ultrahigh pressure and high temperature process by a conventional method. Since the sintered body in this state has a large strain in the superabrasive sintered body, it is preliminarily flattened by die discharge machining or the like. Next, by forming the grooves and the side surfaces of the protrusions in a stepwise manner in a manner specified by the present invention, a polishing unit, that is, a protrusion portion that directly contacts the object to be polished is created. When a commercially available product is used as the superabrasive sintered body, although depending on the specifications, since the surface is flattened, the flattening pretreatment can be omitted.
For the formation of the groove, wire cut electric discharge machining, die electric discharge machining, other precision electric discharge machining, or laser machining can be used, but wire cut electric discharge machining is preferable, and in particular, the top of the polishing unit is sharply sharpened. For example, wire-cut electric discharge machining is particularly preferable. Wire cutting is a technique that drives a wire for electric discharge machining along the surface of the superabrasive sintered body and removes the material by electric discharge between the metal wire and the superabrasive sintered body material. Is done.

本発明の研磨工具において、上記研磨単位は、例えば、円形、または同心の中心円形孔を有する円環状焼結体層へ研磨面区分のための複数の溝群(以下、区分溝群ともいう)を交差させて切り込むことにより、或は対応する形状に形成された電極面をもつ電極を利用した型放電加工によって、創生することができる。区分溝群は、超砥粒層表面、電極面のどちらに形成するにしても、直線状とするのが簡便である。   In the polishing tool of the present invention, the polishing unit is, for example, a plurality of groove groups for dividing the polishing surface into circular or sintered annular layers having concentric central circular holes (hereinafter also referred to as divided groove groups). Can be created by crossing and cutting, or by die-discharge machining using an electrode having an electrode surface formed in a corresponding shape. Regardless of whether the dividing groove group is formed on the surface of the superabrasive layer or the electrode surface, it is easy to form a straight groove.

上記区分溝群は様々に配置することができる。例として、超砥粒層の円形表面において、外周から反対側の外周まで延びた一定間隔の平行直線群を2組、互いに直交させて形成するもの(図1)や、このような直線群を3組、60°で交差させたもの(図2)が挙げられる。これらの場合、それぞれ四角形または三角形の研磨単位が創生される。
また、研磨単位が頂部に直線状の稜線を呈する形状(図3;研磨単位が研磨部の端から端まで稜線を呈している、図4〜5;研磨単位の基部が長方形)などであってもよい。研磨単位が長方形の場合、溝および隣接する研磨単位の傾斜面が、ワイヤカット放電加工で形成されるので、稜線は基本的には長辺に平行に形成される。また、四角錐状の研磨単位は、必ずしも、縦横のピッチが等しくなくてもよいが、CMPコンディショナーとしては、正方形が好ましい。
The said division groove group can be arrange | positioned variously. As an example, on the circular surface of the superabrasive layer, two sets of parallel straight line groups extending from the outer periphery to the opposite outer periphery are formed so as to be orthogonal to each other (FIG. 1). There are three sets that intersect at 60 ° (Fig. 2). In these cases, square or triangular polishing units are created, respectively.
Further, the polishing unit has a shape that forms a linear ridge line at the top (FIG. 3; the polishing unit has a ridge line from end to end of the polishing unit, FIGS. 4 to 5; the base of the polishing unit is rectangular), etc. Also good. When the polishing unit is rectangular, the groove and the inclined surface of the adjacent polishing unit are formed by wire-cut electric discharge machining, so that the ridge line is basically formed parallel to the long side. Further, the quadrangular pyramid-shaped polishing units do not necessarily have equal vertical and horizontal pitches, but a square is preferable as the CMP conditioner.

上記例において、各研磨単位が有効な研磨部分として機能するためには、各研磨単位の頂部は充分に小さく、かつ隣接研磨単位同士は、充分な間隔を持って互いに隔てられていることが必要である。研磨単位頂部の面積に関して、例として、図1の研磨工具1の部分拡大説明図を図6に模式的に示すが、例えば、研磨単位2の基部の面積(X)(即ち、超砥粒層断面の面積から研磨単位の周辺の溝3の面積を減じたもの)に対する頂部の面積(Y)の割合は50%以下とすることが好ましく、特に好ましくは、2〜25%である。また、研磨単位の頂部の頂角は、好ましくは30〜120°、とくに好ましくは60〜90°、さらに好ましくは70〜80°程度である。   In the above example, in order for each polishing unit to function as an effective polishing portion, the top of each polishing unit must be sufficiently small, and adjacent polishing units must be separated from each other with sufficient spacing. It is. As an example of the area of the top of the polishing unit, FIG. 6 schematically shows a partially enlarged explanatory view of the polishing tool 1 of FIG. 1. For example, the area (X) of the base of the polishing unit 2 (ie, the superabrasive layer The ratio of the top area (Y) to the area obtained by subtracting the area of the groove 3 around the polishing unit from the area of the cross section is preferably 50% or less, particularly preferably 2 to 25%. The apex angle of the top of the polishing unit is preferably 30 to 120 °, particularly preferably 60 to 90 °, and more preferably about 70 to 80 °.

溝の深さ(研磨単位の溝底からの高さ)は、0.1mm以上1mm以下、特に0.15mm以上0.3mm以下が適切である。溝が浅すぎると被削材の削り屑が効率的に排出されず、研磨抵抗が過度に大きくなる傾向がある。反面深すぎると、研磨単位の強度が不足する上、過剰な超砥粒層の厚さが必要となる。   The depth of the groove (the height of the polishing unit from the groove bottom) is suitably 0.1 mm or more and 1 mm or less, particularly 0.15 mm or more and 0.3 mm or less. When the groove is too shallow, the shavings of the work material are not efficiently discharged, and the polishing resistance tends to be excessively increased. On the other hand, if it is too deep, the strength of the polishing unit is insufficient, and an excessive superabrasive layer thickness is required.

研磨単位は、頂部が直線状または線分状、三角、四角またはそれ以上の多角形柱として形成し、各側面は基板に対して垂直とし水平断面を全高に亘って均一とするのが簡便であるが、少なくとも一つの側面、特に工具の回転方向に関して前方の側面を軸に平行な面に対して後方に傾斜させることによって、切れ味を向上することができる。
研磨単位の形状としては、研磨単位の各側面を傾斜させて錐台状、例えば、四角錐台状または三角錐台状とすることが好ましい。さらに頂部を尖点にした、例えば、四角錐状または三角錐状が切れ味の点でとくに好ましい。
また、整列した角柱状や角錐状研磨単位において、長方形や三角形の1または複数方向の側面を専用の工具で研磨することにより、頂部の縁又は頂点を鋭利化する、いわゆる「刃付け」を行なうと、さらに良好な切れ味が達成できる。特に、研磨単位が、多角形柱、多角形錐台であり、頂部が多角形(典型的には、三角形または四角形)の場合、頂部の面の少なくとも一辺に刃付けを行なうが、研磨単位が四角錐状または三角錐状の場合は、刃付けを行なわなくても十分な切れ味を達成することができる。
The polishing unit should be formed as a linear or line-shaped, triangular, quadrangular or more polygonal column at the top, with each side being perpendicular to the substrate and having a horizontal cross section that is uniform over the entire height. However, sharpness can be improved by inclining at least one side, particularly the front side with respect to the direction of rotation of the tool, backward with respect to the plane parallel to the axis.
As the shape of the polishing unit, it is preferable that each side surface of the polishing unit is inclined to form a frustum shape, for example, a quadrangular frustum shape or a triangular frustum shape. Further, for example, a quadrangular pyramid shape or a triangular pyramid shape having a pointed apex is particularly preferable in terms of sharpness.
Further, in an aligned prismatic or pyramidal polishing unit, one or a plurality of directions of a rectangle or a triangle is polished with a dedicated tool to sharpen the top edge or vertex, so-called “blading” is performed. And even better sharpness can be achieved. In particular, when the polishing unit is a polygonal column or a polygonal frustum, and the top is a polygon (typically a triangle or a quadrangle), cutting is performed on at least one side of the top surface. In the case of a quadrangular pyramid shape or a triangular pyramid shape, a sufficient sharpness can be achieved without cutting.

本発明の研磨部は、外径が90mm以上、超砥粒層の厚さが0.1mm以上1mm以下に構成される。焼結超砥粒層としては、ダイヤモンド焼結体(PCD)やc-BN焼結体(PcBN)の一方の面を超硬合金即ち炭化タングステン系複合材、或は周期律表第6a族金属の炭化物を主成分とする複合材のブロックで裏打ちされた構造のものを用い、複合材側を接着剤等によって工具基板に固着し、反対側に区分溝を形成して研磨部として使用する。   The polishing portion of the present invention is configured so that the outer diameter is 90 mm or more and the superabrasive layer thickness is 0.1 mm or more and 1 mm or less. As a sintered superabrasive layer, one surface of a diamond sintered body (PCD) or c-BN sintered body (PcBN) is cemented with a cemented carbide, that is, a tungsten carbide based composite material, or a group 6a metal of the periodic table. The composite material is composed of a composite material block consisting mainly of carbides, and the composite material side is fixed to the tool substrate with an adhesive or the like, and a division groove is formed on the opposite side to be used as a polishing portion.

このような焼結体は、典型的には一軸加圧型の高温超高圧静水圧プレスで調製された円板状のものが市販されている。目的とする直径の焼結体が入手できない場合、特に厳しい平坦度が要求されない場合には、本発明の研磨工具を部分ごとに作成し、一つの研磨工具に組み立て使用してもよい。   As such a sintered body, a disk-shaped one typically prepared by a uniaxial pressurization type high temperature ultrahigh pressure isostatic press is commercially available. When a sintered body having a target diameter is not available, or when strict flatness is not particularly required, the polishing tool of the present invention may be prepared for each part and assembled and used in one polishing tool.

研磨部を複数個の分割研磨部で構成する場合、研磨部全体においてできるだけ研磨単位が均等に整列した配置が得られるようにするために、分割研磨部の境界部に溝を形成するのが適切である。この際、二または四分割の分割研磨部に、互いに直交交差する2組の平行溝群を形成し研磨単位を四角錐状または四角錐台状とすれば、外周部を除き乱れのない研磨単位の整列が得られる。一方、三または六分割の分割研磨部の場合には、互いに120°で交差する3組の等間隔平行直線群を形成し、更に三つの角錐体側面を形成して三角錐状または三角錐台状の研磨単位列としても、同様である。   When the polishing unit is composed of a plurality of divided polishing units, it is appropriate to form grooves at the boundary between the divided polishing units in order to obtain an arrangement in which the polishing units are evenly aligned as much as possible in the entire polishing unit. It is. At this time, if two sets of parallel grooves intersecting each other at right angles are formed in the two or four divided polishing portions and the polishing unit is a quadrangular pyramid or a truncated pyramid, the polishing unit is free from disturbance except for the outer peripheral portion. Alignment is obtained. On the other hand, in the case of a three- or six-part divided polishing section, three sets of equally spaced parallel straight lines intersecting each other at 120 ° are formed, and three pyramid side surfaces are formed to form a triangular pyramid or triangular frustum The same applies to the shape of the polishing unit row.

即ち、四角錐体の場合には、研磨部表面に沿って放電加工用のワイヤを送り、放電によって研磨部表面にまず直線状の溝を形成する。次いで研磨部のZ軸方向にワイヤを駆動し、四角錐体の側面輪郭に沿って研磨部を切断することにより、溝に隣接した錐(台)状体の側面を創成する。この操作を反復することにより、平行溝群を形成する。   That is, in the case of a quadrangular pyramid, a wire for electric discharge machining is sent along the surface of the polishing part, and a linear groove is first formed on the surface of the polishing part by electric discharge. Next, the side surface of the cone-shaped body adjacent to the groove is created by driving the wire in the Z-axis direction of the polishing portion and cutting the polishing portion along the side surface contour of the quadrangular pyramid. By repeating this operation, parallel groove groups are formed.

本発明において錐状体の頂部は1または複数個のダイヤモンド粒子で構成される。微細な粒子を用いてもダイヤモンドは有限の大きさを持つので、幾何学的な意味での錐体は得られない。従って頂部の直径が底辺に比べて充分に小さいとき、これを錐状体と呼ぶ。錐台は自明なように、頂部の各方向のサイズが錐状体に比べて大きい場合をいう。   In the present invention, the top of the cone is composed of one or more diamond particles. Even with fine particles, diamond has a finite size, so a cone in the geometric sense cannot be obtained. Therefore, when the top diameter is sufficiently smaller than the bottom, this is called a cone. As is obvious, the frustum refers to a case where the size of each apex is larger than that of the cone.

四角錐(台)状研磨単位の作製においては、例えば図7および図8に示すように、研磨部10の表面に一定溝間隔(ピッチ)で第一の方向11の平行溝群(その一つを代表的に符号12で示す。以下同様)および錐(台)状体両側面(一つを代表的に符号13、14で示す。以下同様)を形成した後、研磨部10を固着した基板ごと円環中心軸の周囲に90°回転し、同じようにして第二の方向15の平行溝群16を一定溝間隔で、また各溝に隣接する錐体傾斜側面、17、18を形成することにより、直交する2組の平行溝群、および溝に沿って整列した四角錐(台)状研磨単位19が得られる。図7におけるA−Aの部分の断面図5に示す。   In the production of a quadrangular pyramid (pedestal) -shaped polishing unit, for example, as shown in FIGS. 7 and 8, a group of parallel grooves (one of them) in the first direction 11 at a constant groove interval (pitch) on the surface of the polishing portion 10. Is representatively indicated by reference numeral 12. The same applies to the following, and both sides of the cone-shaped body (one representatively indicated by reference numerals 13 and 14, and the same applies hereinafter), and then the substrate to which the polishing portion 10 is fixed. Rotate 90 ° around the center axis of each ring, and in the same way, form parallel groove groups 16 in the second direction 15 at constant groove intervals and conical inclined side surfaces 17 and 18 adjacent to each groove. As a result, two sets of parallel grooves orthogonal to each other and a quadrangular pyramid (table) -shaped polishing unit 19 aligned along the grooves are obtained. A cross-sectional view taken along the line AA in FIG. 7 is shown.

三角錐体の場合には図9および図10に示すように、上記において、第一の方向21の平行溝群22および溝に隣接する角錐の傾斜面23、24を形成後、研磨部20を研磨部25中心軸の周囲に120°回転し、同様に一定溝間隔で第二の方向26の平行溝群27、および隣接する傾斜側面28、29の形成をワイヤカット放電加工により行う。操作完了後、研磨部をさらに120°回転し同じ操作を行うことによって、120°で交差する第三方向30の平行溝群31、および隣接する傾斜側面32、33、溝に沿って整列した三角錐状研磨単位34が得られる。   In the case of a triangular pyramid, as shown in FIGS. 9 and 10, in the above, after forming the parallel groove group 22 in the first direction 21 and the inclined surfaces 23 and 24 of the pyramids adjacent to the groove, the polishing unit 20 is Rotating 120 ° around the central axis of the polishing portion 25, the parallel groove group 27 in the second direction 26 and the adjacent inclined side surfaces 28 and 29 are similarly formed by wire-cut electric discharge machining at a constant groove interval. After the operation is completed, the polishing unit is further rotated by 120 ° to perform the same operation, whereby parallel groove groups 31 in the third direction 30 intersecting at 120 °, and adjacent inclined side surfaces 32 and 33, triangles aligned along the groove. A conical polishing unit 34 is obtained.

上記研磨単位において、錐状体または錐台状体頂部の溝底面に対する突き出し高さは三角形、四角形共に200μm以下30μm以上とするのが適切である。突き出しが浅すぎると研磨部本体がパッド等のワークと直接接触し、コンディショニングが効果的に行われない傾向となる。反面大きすぎると、研磨単位の強度が不足したり、過剰な超砥粒層の厚さが必要となる。一方、隣接溝間の間隔(ピッチ)は1500μm以下、下限は利用するワイヤカット放電加工用のワイヤの直径によるが、例えば、約200μmとすることができる。   In the above polishing unit, it is appropriate that the protrusion height of the top of the cone or frustum to the groove bottom is 200 μm or less and 30 μm or more for both the triangle and the quadrangle. If the protrusion is too shallow, the polishing section main body comes into direct contact with a work such as a pad and conditioning tends not to be performed effectively. On the other hand, if it is too large, the strength of the polishing unit is insufficient, or an excessive superabrasive layer thickness is required. On the other hand, the interval (pitch) between adjacent grooves is 1500 μm or less, and the lower limit depends on the diameter of the wire-cut electric discharge machining wire used, but can be, for example, about 200 μm.

上記研磨単位の研磨性能は、錐(台)状体の頂部に含有される超砥粒の粒度に依存する。超砥粒がダイヤモンド粒子である場合、即ち研磨部を構成する焼結体が焼結ダイヤモンド(PCD)層である場合、ダイヤモンド粒子の粒度(公称粒度)としては、40-60μm以下、8-16μmや0-2μmなどの各粒度のPCD層が利用できるが、8-16μm以下の公称粒度が好ましく、特に0-2μmが好ましい。   The polishing performance of the polishing unit depends on the particle size of the superabrasive grains contained at the top of the cone-shaped body. When the superabrasive grains are diamond particles, that is, when the sintered body constituting the polished portion is a sintered diamond (PCD) layer, the diamond particle size (nominal particle size) is 40-60 μm or less, 8-16 μm PCD layers of various particle sizes such as 0-2 μm can be used, but nominal particle sizes of 8-16 μm or less are preferred, with 0-2 μm being particularly preferred.

本発明の研磨部に用い得るダイヤモンド焼結体は、ダイヤモンド粒子を、裏打ち材としての超硬合金および、必要に応じてコバルト等の結合材金属と共に、ダイヤモンドが熱力学的に安定な超高圧高温条件下に供して得られる。焼結体から本発明の研磨部への加工は精密放電加工、典型的にはワイヤカット放電加工による切り抜き、および表面の加工による研磨単位の形成によって実現できる。ワイヤカット放電加工においては、一般的には、超砥粒焼結体に放電加工用ワイヤを接触させ放電し、所望の溝幅になるようにワイヤを水平に動かし、さらに研磨単位の側面を形成するように動かす。
なお、図11に示すように、放電加工用ワイヤ41を超砥粒焼結体42にあてた後、水平に動かすことなく、図中、矢印の方向に動かし、隣りあった研磨単位43、44の向き合った両傾斜面がワイヤ41の接面となるように溝を形成し、このレベルを基準面とし、ここから両側の側面を形成することもできる。このように溝を形成した場合、溝の底部の形状が断面略円弧状の曲面となり、溝の底部を平面や角にした場合よりも、研磨時の応力集中が軽減され、研磨単位の強度(耐久性)が向上する。
The diamond sintered body that can be used in the polishing portion of the present invention comprises diamond particles, a cemented carbide as a backing material, and optionally a binder metal such as cobalt, and diamond is thermodynamically stable at high pressure and high temperature. Obtained by subjecting to conditions. Processing from the sintered body to the polishing portion of the present invention can be realized by precision electric discharge machining, typically cut out by wire cut electric discharge machining, and formation of a polishing unit by surface processing. In wire-cut electrical discharge machining, in general, an electrical discharge machining wire is brought into contact with the superabrasive sintered body and discharged, and the wire is moved horizontally to obtain a desired groove width, and further, the side surface of the polishing unit is formed. Move as you do.
As shown in FIG. 11, after the electric discharge machining wire 41 is applied to the superabrasive sintered body 42, it is moved in the direction of the arrow in the figure without moving horizontally, and the adjacent polishing units 43, 44 are moved. It is also possible to form a groove so that the two inclined surfaces facing each other become the contact surface of the wire 41, and use this level as a reference surface, from which the side surfaces on both sides can be formed. When the groove is formed in this way, the shape of the bottom of the groove is a curved surface having a substantially arc-shaped cross section, and stress concentration during polishing is reduced compared to the case where the bottom of the groove is flat or square, and the strength of the polishing unit ( Durability).

本発明の工具は、図12〜図17に例示するように幾つかの形状で作製可能である。比較的小型工具については、例えば研磨部は図12および図13に例示するように単一の連続円形および円環状に作製することもできるが、本発明では図14〜図17に示すように、研磨部を複数個の分割研磨部で問題なく構成することができるので、これらの場合は特に、外形が95mm以上の直径の大きな円環状の研磨部も容易に得ることができる。   The tool of the present invention can be manufactured in several shapes as illustrated in FIGS. For relatively small tools, for example, the polishing portion can be made in a single continuous circle and an annular shape as illustrated in FIGS. 12 and 13, but in the present invention, as shown in FIGS. Since the polishing portion can be configured with a plurality of divided polishing portions without problems, an annular polishing portion having a large outer diameter of 95 mm or more can be easily obtained particularly in these cases.

円環状構成において、半径方向の幅は15mm以上とするのが好ましい。特に設計上中心孔が不要な場合には、研磨部は円環状でなく(中心孔を有しない)円板状とすることができる。また図12および図13に示すように、尖った縁との接触によるワークの損傷を防止するために、円形状研磨部の場合は外周部分、円環状研磨部では外周および内周部分に、それぞれ1mm以上(半径方向幅)にわたって傾斜部58、68および69を設けることが好ましい。   In an annular configuration, the radial width is preferably 15 mm or more. In particular, when the central hole is not required in the design, the polishing portion can be formed in a disc shape instead of an annular shape (having no central hole). Also, as shown in FIGS. 12 and 13, in order to prevent damage to the workpiece due to contact with the sharp edges, in the case of a circular polishing part, on the outer periphery and the inner peripheral part in an annular polishing part, It is preferable to provide the inclined portions 58, 68 and 69 over 1 mm or more (radial width).

研磨部を複数の分割研磨部で構成する場合には、図14〜図17に例示するように、隣接する二つの分割研磨部の境界部(接合部)が溝となるように研磨単位の配置を設定することにより、研磨部の分割構成による研磨単位配置の乱れ、およびそれに伴うワーク(研磨パッド)への悪影響を回避または最小限に抑制することができる。この際、研磨部の分割数と利用できる研磨単位の形状とは関連しており、二分割(中心角180度)または四分割(中心角90度)の研磨部では四角錐状(図14および図15)、三分割(中心角120度)の研磨部では三角錐状(図16および図17)となる。   When the polishing unit is constituted by a plurality of divided polishing units, as illustrated in FIGS. 14 to 17, the polishing units are arranged so that a boundary portion (joint portion) between two adjacent polishing units becomes a groove. By setting the above, it is possible to avoid or minimize the disturbance of the polishing unit arrangement due to the divided configuration of the polishing part and the adverse effect on the workpiece (polishing pad) accompanying the disorder. At this time, the number of divisions of the polishing portion and the shape of the polishing unit that can be used are related to each other, and a quadrangular pyramid shape (see FIG. 14 and FIG. In FIG. 15), the three-part (center angle 120 °) polishing portion has a triangular pyramid shape (FIGS. 16 and 17).

大径の研磨工具を作製するには、均一な焼結が可能な程度の小径の超砥粒焼結体(好ましくは、ダイヤモンド焼結体)から、所定の寸法および形状への切断および加工により形成した分割研磨部を用意する。そして複数の分割研磨部を接着剤等を用いて、各種鋼等で構成された剛性基板の平らな円板面、または円環状表面に接合することによって、大径の円板状或は円環状(円板の中央に同心の円形孔を有する形状)の研磨部とすることができる。
分割研磨部については、中心角が60、90、120、180°の扇形をそれぞれ6個、4個、3個、または2個を半径上で互いに隣接させ並べて置くこと(側面接触配置)により用いるが、60°のものについては同じ形状を2個用いる代わりに120°のもの1個で代用することができる。この場合120°のものは2個を、中心に関して点対称に配置する。
In order to produce a large-diameter polishing tool, a small-diameter superabrasive sintered body (preferably a diamond sintered body) capable of uniform sintering is cut and processed into a predetermined size and shape. The formed divided polishing part is prepared. And, by joining a plurality of divided polishing parts to a flat disk surface or an annular surface of a rigid substrate made of various steels using an adhesive or the like, a large-diameter disk shape or an annular shape A polishing portion (a shape having a concentric circular hole in the center of the disc) can be obtained.
For the division polishing part, it is used by placing six, four, three, or two fan shapes with central angles of 60, 90, 120, 180 ° adjacent to each other on the radius side by side (side contact arrangement) However, instead of using two identical shapes for 60 ° ones, one 120 ° one can be substituted. In this case, the 120 ° ones are arranged symmetrically with respect to the center.

各研磨部51、61、71、81、91、101は、超硬合金側を円形基板52、62、72、82、92、102の平らな円形面と接合し、全体的に円形または環状の研磨部を呈するようにする。   Each polishing part 51, 61, 71, 81, 91, 101 joins the cemented carbide side to the flat circular surface of the circular substrate 52, 62, 72, 82, 92, 102, and is generally circular or annular. Present a polished part.

基板に接合された超砥粒焼結体は、次いでワイヤカット放電加工に供し、ワイヤカット放電加工用ワイヤと超砥粒焼結体との間の放電工程により、超砥粒焼結体表面に一定間隔で平行な一組の直線状溝群53、63、73、83、93、103を形成する。この時、ワイヤは基板面または基板底面に対して平行に駆動し、予備的に平坦化された表面から焼結体層(典型的には、焼結ダイヤモンド(PCD)層)内に入り込み、焼結体層内を、或は焼結体層が薄い場合には更に超硬合金層まで彫り下げる。   The superabrasive sintered body bonded to the substrate is then subjected to wire-cut electric discharge machining, and the surface of the superabrasive sintered body is subjected to a discharge process between the wire-cut electric discharge machining wire and the superabrasive sintered body. A set of linear groove groups 53, 63, 73, 83, 93, 103 parallel to each other at regular intervals is formed. At this time, the wire is driven parallel to the substrate surface or the substrate bottom surface, enters the sintered body layer (typically, a sintered diamond (PCD) layer) from the pre-planarized surface, and is fired. If the sintered body layer is thin, the inside of the consolidated layer is further carved up to the cemented carbide layer.

この際、ワイヤを超砥粒焼結体の厚さ方向(Z軸方向)に駆動して切り込み、溝を作製する。一つの溝群における最初の溝形成は、360°の連続円形または環状面では三角錐状体および四角錐状体のどちらの場合でも任意の位置から開始することができるが、研磨部が複数の分割研磨部の組み合わせからなる場合は、必ず、分割研磨部の接合部54、64、74、84、94、104、には溝を設け、次いでその両側に、一定ピッチで、全面にわたって平行に形成していく。   At this time, the wire is driven and cut in the thickness direction (Z-axis direction) of the superabrasive sintered body to produce a groove. The first groove formation in one groove group can be started from any position in the case of either a triangular pyramid or a quadrangular pyramid on a 360 ° continuous circular or annular surface, but there are multiple polishing parts. In the case of a combination of divided polishing parts, the joints 54, 64, 74, 84, 94, 104 of the divided polishing parts are always provided with grooves, and then formed on both sides in parallel at a constant pitch over the entire surface. I will do it.

超砥粒焼結体の表面に一つの方向の平行溝群が形成されたら、次いで、該超砥粒焼結体を基板と共に基板の中心軸の周囲に溝群交差角度αだけ回転して、同様に上記一定間隔で第二の直線状平行溝群55、65、75、85、95、105および各溝に隣接する傾斜側面を形成する。ここでαは、180°および90°の扇形については90°であり、研磨単位は四角錐状または錐台状を呈する。一方120°および60°の扇形については60(または120)°だけ回転して、同様に上記一定間隔で第二の直線状平行溝群、および各溝に隣接する傾斜側面を形成したあと、更にもう60(または120)°(最初の溝群に対して240°)回転して第三の直線状平行溝群56、66、76、86、96、106および各溝に隣接する傾斜側面を形成する。連続円形および環状素材については、αは90°および60°のどちらも採りうる。   When parallel groove groups in one direction are formed on the surface of the superabrasive sintered body, the superabrasive sintered body is then rotated together with the substrate around the central axis of the substrate by a groove group crossing angle α, Similarly, the second linear parallel groove group 55, 65, 75, 85, 95, 105 and the inclined side surface adjacent to each groove are formed at the predetermined intervals. Here, α is 90 ° for a sector of 180 ° and 90 °, and the polishing unit has a quadrangular pyramid shape or a frustum shape. On the other hand, for 120 ° and 60 ° fan shapes, after rotating by 60 (or 120) °, similarly, after forming the second linear parallel groove group and the inclined side surface adjacent to each groove at the above-mentioned fixed intervals, Rotate another 60 (or 120) degrees (240 degrees relative to the first groove group) to form a third linear parallel groove group 56, 66, 76, 86, 96, 106 and an inclined side surface adjacent to each groove To do. For continuous circular and annular materials, α can be either 90 ° or 60 °.

上記ワイヤカット放電操作において、放電用ワイヤを該基板底面から厚さ方向に等しく隔たった高さ(レベル)において駆動することにより上記溝群および三角または四角錐状または錐台状体の頂部を基板底面に対して平行なレベル上に形成することができる。   In the wire cut discharge operation, the discharge wire is driven at a height (level) equally spaced from the bottom surface of the substrate in the thickness direction, whereby the groove group and the top of the triangular or quadrangular pyramid or frustum-shaped body are formed on the substrate. It can be formed on a level parallel to the bottom surface.

本発明において、研磨単位の三角錐または四角錐は必ずしも全体が超砥粒焼結体で構成されている必要はなく、少なくとも錐(台)状体の頂点を含む60μm程度の部分(高さ)が超砥粒焼結体であれば、それより下方部分が超硬合金であっても利用可能である。次に、本発明を実施例により具体的に説明する。
[実施例1]
In the present invention, the triangular pyramid or the quadrangular pyramid of the polishing unit does not necessarily need to be entirely composed of a superabrasive sintered body, and a portion (height) of about 60 μm including at least the apex of the cone (table) -like body. If is a superabrasive sintered body, it can be used even if the lower part is a cemented carbide. Next, the present invention will be specifically described with reference to examples.
[Example 1]

図1に概略示した構造の研磨工具1を作成した。厚さ0.6mmの焼結ダイヤモンド層が超硬合金に同時焼結によって一体化されている、直径90mmのPCDブロックを工具素材として用いた。
上記PCDブロックにおいて焼結ダイヤモンド層の表面を放電加工(EDM)により平坦化し、ワイヤカット放電加工により一辺が260μmの正方形の頂部を持つ研磨単位2を、幅560μmの平行な直線状の溝3を刻み込むことによって形成した。この場合、研磨単位2の頂部(図示せず)の面積は、周辺部(溝3の部分)を除く超砥粒焼結層断面積の約10%に当る。
頂部の縁には刃付けを行い、CMPコンディショナーとして利用した。
[実施例2]
A polishing tool 1 having the structure schematically shown in FIG. 1 was prepared. A PCD block having a diameter of 90 mm, in which a sintered diamond layer having a thickness of 0.6 mm is integrated with the cemented carbide by simultaneous sintering, was used as a tool material.
In the PCD block, the surface of the sintered diamond layer is flattened by electric discharge machining (EDM), and a polishing unit 2 having a square apex having a side of 260 μm is formed by wire-cut electric discharge machining, and parallel linear grooves 3 having a width of 560 μm are formed. Formed by engraving. In this case, the area of the top portion (not shown) of the polishing unit 2 corresponds to about 10% of the cross-sectional area of the superabrasive sintered layer excluding the peripheral portion (the groove 3 portion).
The edge of the top was bladed and used as a CMP conditioner.
[Example 2]

図2に概略示す円環状の研磨工具4を作成した。厚さ0.6mmの焼結c−BN層が超硬合金に同時焼結によって一体化されているPcBNブロックから、ワイヤカット放電加工で、外方半径60mm、内方半径24mmの90度の扇型を4個切り出し、工具素材とした。
上記扇型をSUS系ステンレス鋼製の基板に貼着、組み合わせて完全な円形とした。焼結ダイヤモンド層の表面を研磨して平坦化し、ワイヤカット放電加工により一辺が350μmの正三角形の頂部を持つ研磨単位5を、幅560μmの平行な直線状の溝6の群で形成した。この場合、研磨単位頂部の面積は、超砥粒焼結層全体の7%となる。
得られた工具は実施例1と同様の操作により刃付けを行い、シリコンウェハの表面の研磨に利用した。
[実施例3]
An annular polishing tool 4 schematically shown in FIG. 2 was prepared. From a PcBN block in which a sintered c-BN layer with a thickness of 0.6 mm is integrated with cemented carbide by simultaneous sintering, a 90 degree fan shape with an outer radius of 60 mm and an inner radius of 24 mm is obtained by wire-cut electric discharge machining. 4 were cut out and used as a tool material.
The fan shape was attached to a substrate made of SUS stainless steel and combined into a complete circle. The surface of the sintered diamond layer was polished and flattened, and a polishing unit 5 having a regular triangular apex having a side of 350 μm was formed by a group of parallel linear grooves 6 having a width of 560 μm by wire-cut electric discharge machining. In this case, the area of the top of the polishing unit is 7% of the entire superabrasive sintered layer.
The obtained tool was bladed by the same operation as in Example 1 and used for polishing the surface of the silicon wafer.
[Example 3]

図12に概略示した構造の研磨工具を作成した。公称粒度40-60μmのダイヤモンド粒子から成る厚さ0.5mmのPCD層が超硬合金(WC−8%Co)に同時焼結によって一体化された、直径100mmのダイヤモンド焼結体を研磨部として用い、直径108mmの、SUS316ステンレス鋼製円形基板に、エポキシ系接着剤で固着した。
次いでPCD層の表面を型放電加工により平坦化した後ワイヤカット放電加工によりPCD層に切り込み、素材の中心を通る幅200μmの直線溝を形成した。更にワイヤを側方へ駆動し、また基板に対して隔たる方向(Z方向)へ移動させ、必要な幅の溝の形成および錐状体の側面を切り出しを行った。
この操作の反復により、溝間隔800μmの平行溝群、および頂角90°の屋根状突起を素材面全体に形成した。
次に、全体を中心軸の周囲に90°回転させた後、同一の条件でワイヤカット放電加工を行うことにより、上記の溝群と直交する第二の直線溝群を形成し、かつ同時に直交方向の錐状体側面の切り出しを行い、高さ200μmの図7および8に示すような四角錐状体群を形成した。
[実施例4]
A polishing tool having the structure schematically shown in FIG. 12 was prepared. Using a diamond sintered body with a diameter of 100 mm as a polishing part, in which a 0.5 mm thick PCD layer consisting of diamond particles with a nominal particle size of 40-60 μm is integrated with cemented carbide (WC-8% Co) by simultaneous sintering The SUS316 stainless steel circular substrate having a diameter of 108 mm was fixed with an epoxy adhesive.
Next, the surface of the PCD layer was flattened by mold electric discharge machining, and then cut into the PCD layer by wire cut electric discharge machining to form a linear groove having a width of 200 μm passing through the center of the material. Further, the wire was driven to the side and moved in a direction away from the substrate (Z direction) to form a groove having a necessary width and cut out the side surface of the cone.
By repeating this operation, parallel groove groups having a groove interval of 800 μm and roof-like protrusions having a vertex angle of 90 ° were formed on the entire material surface.
Next, after rotating the whole 90 ° around the central axis, wire-cut electric discharge machining is performed under the same conditions to form a second linear groove group orthogonal to the above groove group and at the same time orthogonal The side surfaces of the cones were cut out to form a group of quadrangular pyramids as shown in FIGS. 7 and 8 having a height of 200 μm.
[Example 4]

公称粒度0-2μmのダイヤモンド粒子から成る厚さ0.5mmのPCD層が超硬合金に一体化された、外径100mm、内径70mmのダイヤモンド焼結体を研磨部として用い、実施例3の操作を繰り返し、四角錐状の研磨単位を有する研磨工具を作製した。
まず、平坦化したPCD層の表面をワイヤカット放電加工、素材の中心を通る幅140μmの直線溝を形成した。更にワイヤの操作により必要な溝幅の拡張および錐状体の側面の切り出しを行った。これを繰り返すことにより、溝間隔200μmの平行溝群、および頂角60°の屋根状突起を素材面全体に形成した。
次に、全体を中心軸の周囲に90°回転させた後、同一の条件でワイヤカット放電加工を行うことにより第二の直線溝群を形成し、かつ同時に第二の錐状体側面の切り出しを行い、高さ200μmの四角錐状体群を形成した。
[実施例5]
The operation of Example 3 was carried out using a diamond sintered body having an outer diameter of 100 mm and an inner diameter of 70 mm as a polishing part, in which a 0.5 mm thick PCD layer composed of diamond particles having a nominal particle size of 0-2 μm was integrated with a cemented carbide. Repeatedly, a polishing tool having a quadrangular pyramidal polishing unit was produced.
First, the surface of the flattened PCD layer was wire cut electric discharge processed to form a straight groove having a width of 140 μm passing through the center of the material. Further, the necessary groove width was expanded and the side surfaces of the cones were cut out by operating the wires. By repeating this, a parallel groove group with a groove interval of 200 μm and a roof-like protrusion with a vertex angle of 60 ° were formed on the entire material surface.
Next, after rotating the whole around the central axis by 90 °, the second linear groove group is formed by performing wire-cut electric discharge machining under the same conditions, and simultaneously cutting out the side surface of the second cone A quadrangular pyramid group having a height of 200 μm was formed.
[Example 5]

以下に示す各様の分割研磨部を用いて、それぞれの構成の工具を作製した。ダイヤモンド焼結体のダイヤモンドはいずれも公称粒度20-30μmである。ワイヤカット操作は、三角錐状研磨単位の場合、工具素材を60°ずつ2回回転する点において、90°の回転を1回だけ行う四角錐状研磨単位と異なる点を除き、本質的に異ならない。操作条件および結果は次表のとおりである。   Using various divided polishing portions shown below, tools having respective configurations were produced. All diamonds in the diamond sintered body have a nominal particle size of 20-30 μm. The wire cutting operation is essentially different for triangular pyramid polishing units, except that the tool material is rotated twice by 60 °, except for a square pyramid polishing unit that rotates 90 ° only once. Don't be. The operating conditions and results are shown in the following table.

Figure 0005033630
Figure 0005033630

得られた工具はいずれもCMPパッドコンディショナーとして利用し、良好な性能が得られた。   All of the obtained tools were used as CMP pad conditioners, and good performance was obtained.

本発明の研磨工具は、各種研磨工具として用いることができるが、とくに円板型回転型研磨工具として好適に用いることができる。用途としては、CMPパッドコンディショナーとして用いるのにとくに適しており、さらに半導体ウェハ等の表面の直接研磨するのにも適している。これらの他、各種被削材の高精度の研磨加工にも適用できる。   Although the polishing tool of the present invention can be used as various polishing tools, it can be suitably used particularly as a disk-type rotary polishing tool. As an application, it is particularly suitable for use as a CMP pad conditioner, and also suitable for directly polishing the surface of a semiconductor wafer or the like. In addition to these, it can be applied to high-precision polishing of various work materials.

Claims (24)

超砥粒焼結体からなる研磨部をもつ研磨工具であって、
研磨部が、頂部を有する複数の研磨単位を含み、各頂部が相互に略同一平面上にあり、
前記研磨部が、超砥粒を結合材金属と共に、超硬合金の裏打ち材に焼結一体化した超砥粒焼結体からなり、前記研磨単位が、該研磨部にワイヤカット放電加工によって直線溝群を設けることにより形成されたものである、前記研磨工具。
A polishing tool having a polishing portion made of a superabrasive sintered body,
Polishing portion comprises a plurality of polishing units having a top, the top portion Ri near substantially the same plane with each other,
The polishing part is composed of a superabrasive sintered body obtained by sintering and integrating superabrasive grains together with a binder metal together with a cemented carbide backing material, and the polishing unit is linearly connected to the polishing part by wire-cut electric discharge machining. The polishing tool, which is formed by providing a groove group .
頂部に刃付けが行われている、請求項1に記載の研磨工具。  The polishing tool according to claim 1, wherein the top is bladed. 研磨単位が四角錐状または四角錐台状である、請求項1に記載の研磨工具。  The polishing tool according to claim 1, wherein the polishing unit is a quadrangular pyramid or a truncated pyramid. 研磨単位が四角錐台状であり、頂部の少なくとも一辺に刃付けが行われている、請求項に記載の研磨工具。The polishing tool according to claim 3 , wherein the polishing unit is a truncated pyramid shape, and at least one side of the top is bladed. 研磨単位が三角錐状または三角錐台状である、請求項1に記載の研磨工具。  The polishing tool according to claim 1, wherein the polishing unit is a triangular pyramid shape or a triangular frustum shape. 研磨単位が三角錐台状であり、頂部の少なくとも一辺に刃付けが行われている、請求項に記載の研磨工具。The polishing tool according to claim 5 , wherein the polishing unit has a triangular frustum shape, and at least one side of the top is bladed. 研磨単位が頂部に直線状の稜線を呈する形状である、請求項1に記載の研磨工具。  The polishing tool according to claim 1, wherein the polishing unit has a shape exhibiting a linear ridge line at the top. 研磨単位が四角錐状または三角錐状であり、研磨単位のピッチが1500μm以下200μm以上である、請求項1〜のいずれか一項に記載の研磨工具。The polishing tool according to any one of claims 1 to 6 , wherein the polishing unit is a quadrangular pyramid shape or a triangular pyramid shape, and a pitch of the polishing unit is 1500 µm or less and 200 µm or more. 研磨単位が四角錐状または三角錐状であり、研磨単位の高さが200μm以下30μm以上である、請求項に記載の研磨工具。The polishing tool according to claim 8 , wherein the polishing unit is a quadrangular pyramid or a triangular pyramid, and the height of the polishing unit is 200 μm or less and 30 μm or more. 超砥粒がダイヤモンドである、請求項1〜のいずれか一項に記載の研磨工具。The polishing tool according to any one of claims 1 to 9 , wherein the superabrasive grains are diamond. ダイヤモンドの公称粒度が40−60μm以下である、請求項10に記載の研磨工具。The polishing tool according to claim 10 , wherein the diamond has a nominal particle size of 40 to 60 μm or less. 超砥粒焼結体の厚さが0.1mm以上である、請求項1〜11のいずれか一項に記載の研磨工具。The polishing tool according to any one of claims 1 to 11 , wherein the superabrasive sintered body has a thickness of 0.1 mm or more. 円板状または円環状である、請求項1〜12のいずれか一項に記載の研磨工具。The polishing tool according to any one of claims 1 to 12 , which has a disc shape or an annular shape. 研磨部が円板状または円環状である、請求項13に記載の研磨工具。The polishing tool according to claim 13 , wherein the polishing portion is disk-shaped or annular. 研磨部の外径が90mm以上である、請求項14に記載の研磨工具。The polishing tool according to claim 14 , wherein an outer diameter of the polishing portion is 90 mm or more. 研磨部の溝の底に対する頂部の高さが1mm以下である、請求項2〜15のいずれか一項に記載の研磨工具。The polishing tool according to any one of claims 2 to 15 , wherein a height of a top portion with respect to a groove bottom of the polishing portion is 1 mm or less. 研磨部が、2個または4個の分割研磨部からなり、該分割研磨部がそれぞれ中心角の等しい扇状である、請求項1316のいずれか一項に記載の研磨工具。The polishing tool according to any one of claims 13 to 16 , wherein the polishing portion is composed of two or four divided polishing portions, and each of the divided polishing portions has a fan shape having an equal central angle. 分割研磨部が、2つの溝群を有し、第一溝群は分割研磨部の半径方向の縁に対して平行に設けられ、第二溝群は第一溝群に直交して形成されている、請求項17に記載の研磨工具。The divided polishing portion has two groove groups, the first groove group is provided parallel to the radial edge of the divided polishing portion, and the second groove group is formed orthogonal to the first groove group. The polishing tool according to claim 17 . 研磨部が、3個または6個の分割研磨部からなり、該分割研磨部がそれぞれ中心角の等しい扇状である、請求項1316のいずれか一項に記載の研磨工具。The polishing tool according to any one of claims 13 to 16 , wherein the polishing portion includes three or six divided polishing portions, and each of the divided polishing portions has a fan shape having an equal central angle. 分割研磨部が、3つの溝群を有し、第一溝群は分割研磨部の半径方向の縁に対して平行に設けられ、第二溝群および第三溝群は、それぞれ第一溝群に対し、60°および120°で交わるように形成されている、請求項19に記載の研磨工具。The divided polishing portion has three groove groups, the first groove group is provided in parallel to the radial edge of the divided polishing portion, and the second groove group and the third groove group are respectively the first groove group. The polishing tool according to claim 19 , wherein the polishing tool is formed to intersect at 60 ° and 120 °. CMPパッドコンディショナーである、請求項1〜20のいずれか一項に記載の研磨工具。The polishing tool according to any one of claims 1 to 20 , which is a CMP pad conditioner. 超砥粒焼結体からなる研磨部をもつ研磨工具の製造方法であって、
(1)超砥粒を結合材金属と共に、超硬合金の裏打ち材に超砥粒を焼結一体化し、超砥粒焼結体を得る工程、
(2)得られた超砥粒焼結体の研磨部を平坦化する工程、
(3)ワイヤカット放電加工によって、平坦化した超砥粒焼結体に直線溝群を設け、複数の研磨単位を形成し、研磨部とする工程
を含む、前記製造方法。
A method for producing a polishing tool having a polishing portion made of a superabrasive sintered body,
(1) A process of obtaining superabrasive sintered body by superimposing superabrasive grains together with a binder metal and superabrasive grains on a backing material of cemented carbide, and integrating the superabrasive grains.
(2) a step of flattening a polishing portion of the obtained superabrasive sintered body,
(3) The said manufacturing method including the process of providing a linear groove group in the superabrasive grain sintered body planarized by wire cut electric discharge machining, forming a some grinding | polishing unit, and setting it as a grinding | polishing part.
超砥粒焼結体からなる研磨部をもつ研磨工具の製造方法であって、
(1)超砥粒を結合材金属と共に、超硬合金の裏打ち材に超砥粒を焼結一体化し、超砥粒焼結体を得る工程、
(2)得られた超砥粒焼結体から、1つの扇状の分割研磨部を切り出す工程、
(3)前記(2)で得られた扇状の分割研磨部と中心角の等しい複数の扇状の分割研磨部を得る工程、
(4)得られた複数の扇状の分割研磨部を密着隣接して平坦な基板表面上に固着して、円板状または円環状の研磨部にする工程、
(5)前記(4)で得られた円板状または円環状の研磨部の分割研磨部間の境界にワイヤカット放電加工によって、溝を設け、複数の研磨単位を形成する工程
を含む、前記製造方法。
A method for producing a polishing tool having a polishing portion made of a superabrasive sintered body,
(1) A process of obtaining superabrasive sintered body by superimposing superabrasive grains together with a binder metal and superabrasive grains on a backing material of cemented carbide, and integrating the superabrasive grains.
(2) A step of cutting out one fan-shaped divided polishing portion from the obtained superabrasive sintered body,
(3) A step of obtaining a plurality of fan-shaped divided polishing portions having a central angle equal to the fan-shaped divided polishing portion obtained in (2),
(4) A step of sticking the obtained fan-shaped divided polishing portions closely and adhering to a flat substrate surface to form a disk-shaped or annular polishing portion;
(5) including a step of forming a plurality of polishing units by providing a groove by wire-cut electric discharge machining at a boundary between the divided polishing portions of the disk-shaped or annular polishing portion obtained in (4), Production method.
請求項1〜21のいずれか一項に記載の研磨工具の再生方法であって、溝および研磨単位の頂部をワイヤカット放電加工により再生する工程を含む、前記再生方法。The method for regenerating a polishing tool according to any one of claims 1 to 21 , comprising a step of regenerating the groove and the top of the polishing unit by wire-cut electric discharge machining.
JP2007532202A 2005-08-25 2006-08-25 Tool having sintered body polishing portion and method for manufacturing the same Expired - Fee Related JP5033630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007532202A JP5033630B2 (en) 2005-08-25 2006-08-25 Tool having sintered body polishing portion and method for manufacturing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005243529 2005-08-25
JP2005243529 2005-08-25
JP2006209236 2006-07-31
JP2006209236 2006-07-31
JP2007532202A JP5033630B2 (en) 2005-08-25 2006-08-25 Tool having sintered body polishing portion and method for manufacturing the same
PCT/JP2006/316737 WO2007023949A1 (en) 2005-08-25 2006-08-25 Tool with sintered body polishing surface and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPWO2007023949A1 JPWO2007023949A1 (en) 2009-03-05
JP5033630B2 true JP5033630B2 (en) 2012-09-26

Family

ID=37771687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007532202A Expired - Fee Related JP5033630B2 (en) 2005-08-25 2006-08-25 Tool having sintered body polishing portion and method for manufacturing the same

Country Status (12)

Country Link
US (1) US20090215366A1 (en)
EP (1) EP1944125B1 (en)
JP (1) JP5033630B2 (en)
KR (1) KR101293461B1 (en)
CN (2) CN101247923B (en)
AU (1) AU2006282293B2 (en)
BR (1) BRPI0615020A2 (en)
CA (1) CA2620407A1 (en)
IL (1) IL189314A (en)
RU (1) RU2430827C2 (en)
TW (1) TWI406736B (en)
WO (1) WO2007023949A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113133A (en) * 2007-11-05 2009-05-28 Hiroshi Ishizuka Cmp-pad conditioner
EP2563549B1 (en) * 2010-04-27 2022-07-13 3M Innovative Properties Company Ceramic shaped abrasive particles, methods of making the same, and abrasive articles containing the same
US20120171935A1 (en) * 2010-12-20 2012-07-05 Diamond Innovations, Inc. CMP PAD Conditioning Tool
JP5809880B2 (en) * 2011-08-25 2015-11-11 新日鉄住金マテリアルズ株式会社 Polishing cloth dresser
KR20140106713A (en) * 2011-12-30 2014-09-03 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Shaped abrasive particle and method of forming same
CN102862121B (en) * 2012-09-17 2015-05-20 上海华力微电子有限公司 Chemical mechanical polishing (CMP) grinding pad finishing structure
EP2835220B1 (en) * 2013-08-07 2019-09-11 Reishauer AG Trimming tool, and method for manufacturing the same
JP5976228B2 (en) * 2013-08-26 2016-08-23 株式会社東京精密 Dicing blade
WO2015057562A1 (en) * 2013-10-18 2015-04-23 3M Innovative Properties Company Coated abrasive article and method of making the same
CN106463379B (en) * 2014-03-21 2019-08-06 恩特格里斯公司 Chemical-mechanical planarization pad adjuster with elongated cut edge
TWI609742B (en) * 2015-04-20 2018-01-01 中國砂輪企業股份有限公司 Grinding tool
WO2017145491A1 (en) 2016-02-22 2017-08-31 株式会社アライドマテリアル Abrasive tool
CN106078516B (en) * 2016-06-21 2018-09-04 大连理工大学 A kind of CMP pad trimmer
JP2020519468A (en) * 2017-05-12 2020-07-02 スリーエム イノベイティブ プロパティズ カンパニー Tetrahedral abrasive particles in abrasive articles
EP3713714B1 (en) 2017-11-21 2022-04-13 3M Innovative Properties Company Coated abrasive disc and methods of making and using the same
EP3713711A4 (en) * 2017-11-21 2021-08-18 3M Innovative Properties Company Coated abrasive disc and methods of making and using the same
JP6899490B2 (en) 2017-11-21 2021-07-07 スリーエム イノベイティブ プロパティズ カンパニー Coated polishing disc and its manufacturing method and usage method
KR102026250B1 (en) 2018-02-05 2019-09-27 에스케이실트론 주식회사 Wafer polishing pad and Manufacturing Method of it
JP6918217B2 (en) * 2018-04-27 2021-08-11 住友電気工業株式会社 Polycrystalline abrasive grains and grinding wheels equipped with them
TWI735795B (en) * 2018-08-24 2021-08-11 宋健民 Polishing pad dresser and chemical mechanical planarization method
KR102440315B1 (en) * 2020-05-11 2022-09-06 한국생산기술연구원 Pad for chemical mechanical polishing having pattern structure and manufacturing method therefor
CN112677062B (en) * 2019-10-18 2022-12-09 江苏韦尔博新材料科技有限公司 Special abrasive grain landform for polishing steel grinding disc, diamond grinding disc and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09254042A (en) * 1996-03-15 1997-09-30 Symtec:Kk Grinding wheel for cutting groove and manufacture thereof
JPH1071559A (en) * 1996-05-23 1998-03-17 Asahi Daiyamondo Kogyo Kk Dresser and its manufacture
JPH10138120A (en) * 1996-10-31 1998-05-26 Kyocera Corp Jig for dressing
JP2000190200A (en) * 1998-12-25 2000-07-11 Mitsubishi Materials Silicon Corp Seasoning jig for polishing cloth
JP2000326318A (en) * 1999-03-18 2000-11-28 Denso Corp Die for molding honeycomb structural body and manufacture thereof
JP2001088028A (en) * 1999-09-17 2001-04-03 Koremura Toishi Seisakusho:Kk Rotary dressor
US6524523B1 (en) * 1999-11-16 2003-02-25 Asia Ic Mic-Process, Inc. Method for forming dresser of chemical mechanical polishing pad
JP2003511255A (en) * 1999-10-12 2003-03-25 フナテック カンパニー リミテッド Conditioner for polishing pad and method of manufacturing the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739106A (en) * 1980-08-14 1982-03-04 Hiroshi Ishizuka Production of diamond ultrahard alloy composite
JPS58199776A (en) * 1982-05-12 1983-11-21 住友電気工業株式会社 Diamond sintered body for tool and manufacture
JPS6184303A (en) * 1984-09-28 1986-04-28 Ishizuka Kenkyusho:Kk Manufacture of composite sintered body
JP2601284B2 (en) * 1987-09-01 1997-04-16 株式会社石塚研究所 Sintered diamond composite and manufacturing method thereof
US4925457B1 (en) * 1989-01-30 1995-09-26 Ultimate Abrasive Syst Inc Method for making an abrasive tool
US5049165B1 (en) * 1989-01-30 1995-09-26 Ultimate Abrasive Syst Inc Composite material
US4954139A (en) * 1989-03-31 1990-09-04 The General Electric Company Method for producing polycrystalline compact tool blanks with flat carbide support/diamond or CBN interfaces
JPH08243927A (en) * 1995-03-02 1996-09-24 Fuji Xerox Co Ltd Grinding tool and its manufacture and grinding device
US5560754A (en) * 1995-06-13 1996-10-01 General Electric Company Reduction of stresses in the polycrystalline abrasive layer of a composite compact with in situ bonded carbide/carbide support
US6054183A (en) * 1997-07-10 2000-04-25 Zimmer; Jerry W. Method for making CVD diamond coated substrate for polishing pad conditioning head
US6027659A (en) * 1997-12-03 2000-02-22 Intel Corporation Polishing pad conditioning surface having integral conditioning points
JPH11267902A (en) * 1998-03-23 1999-10-05 Hiroshi Hashimoto Tool having ultra-fine cutting blade and processing tool having ultra-fine cutting blade
US6439986B1 (en) * 1999-10-12 2002-08-27 Hunatech Co., Ltd. Conditioner for polishing pad and method for manufacturing the same
JP2001347454A (en) * 2000-06-09 2001-12-18 Koremura Toishi Seisakusho:Kk Dresser and method of manufacturing the same
US20070060026A1 (en) * 2005-09-09 2007-03-15 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US20060258276A1 (en) * 2005-05-16 2006-11-16 Chien-Min Sung Superhard cutters and associated methods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09254042A (en) * 1996-03-15 1997-09-30 Symtec:Kk Grinding wheel for cutting groove and manufacture thereof
JPH1071559A (en) * 1996-05-23 1998-03-17 Asahi Daiyamondo Kogyo Kk Dresser and its manufacture
JPH10138120A (en) * 1996-10-31 1998-05-26 Kyocera Corp Jig for dressing
JP2000190200A (en) * 1998-12-25 2000-07-11 Mitsubishi Materials Silicon Corp Seasoning jig for polishing cloth
JP2000326318A (en) * 1999-03-18 2000-11-28 Denso Corp Die for molding honeycomb structural body and manufacture thereof
JP2001088028A (en) * 1999-09-17 2001-04-03 Koremura Toishi Seisakusho:Kk Rotary dressor
JP2003511255A (en) * 1999-10-12 2003-03-25 フナテック カンパニー リミテッド Conditioner for polishing pad and method of manufacturing the same
US6524523B1 (en) * 1999-11-16 2003-02-25 Asia Ic Mic-Process, Inc. Method for forming dresser of chemical mechanical polishing pad

Also Published As

Publication number Publication date
US20090215366A1 (en) 2009-08-27
TWI406736B (en) 2013-09-01
AU2006282293A1 (en) 2007-03-01
EP1944125B1 (en) 2012-01-25
AU2006282293B2 (en) 2011-06-23
KR101293461B1 (en) 2013-08-07
CN101247923B (en) 2010-12-08
TW200714416A (en) 2007-04-16
IL189314A0 (en) 2008-06-05
WO2007023949A1 (en) 2007-03-01
EP1944125A4 (en) 2009-12-16
CN101247923A (en) 2008-08-20
CA2620407A1 (en) 2007-03-01
CN101693353A (en) 2010-04-14
BRPI0615020A2 (en) 2009-08-04
JPWO2007023949A1 (en) 2009-03-05
RU2008110905A (en) 2009-09-27
EP1944125A1 (en) 2008-07-16
KR20080037693A (en) 2008-04-30
IL189314A (en) 2013-01-31
RU2430827C2 (en) 2011-10-10

Similar Documents

Publication Publication Date Title
JP5033630B2 (en) Tool having sintered body polishing portion and method for manufacturing the same
JP3829092B2 (en) Conditioner for polishing pad and method for producing the same
TWI429502B (en) Interconnected-multi-element-lattice polishing pad
TWI446424B (en) Layered-filament lattice for chemical mechanical polishing
JP5317574B2 (en) Chemical mechanical polishing pad with wetting control
US7503833B2 (en) Three-dimensional network for chemical mechanical polishing
TW200821092A (en) Conditioning disk having uniform structures
US7604529B2 (en) Three-dimensional network for chemical mechanical polishing
JP2012232378A (en) Tip for precision polishing tool, its manufacturing method, and polishing tool using tip
JP2012213833A (en) Sintered body for pad conditioning and its manufacturing method
JP2011161584A (en) Grinding tool
CN113199400A (en) Chemical mechanical grinding polishing pad dressing device and preparation method thereof
JP2013094907A (en) Rotary dresser and method for manufacturing the same
KR100502574B1 (en) Abrasive tools and manufacture thereof
JP2012121129A (en) Polishing tool suitable for pad conditioning and polishing method using the same
JP2011020182A (en) Polishing tool suitable for pad conditioning, and polishing method using the same
JP2009113133A (en) Cmp-pad conditioner
JP2012213834A (en) Super-abrasive sintered body polishing patch, and method for manufacturing the same
CN113172553A (en) Chemical mechanical grinding polishing pad dressing device and preparation method thereof
JPH05185373A (en) Diamond dresser
JP2004202603A (en) Rotary tool and its constituting method
KR20010070799A (en) Method for manufacturing cutting edge of cutting tool to manufacture boll-seat in piston of car compressor
JPH0584668A (en) Polishing tool for chamfering internal periphery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees