JP2002173348A - Method of manufacturing blast furnace granulated slag - Google Patents

Method of manufacturing blast furnace granulated slag

Info

Publication number
JP2002173348A
JP2002173348A JP2000371655A JP2000371655A JP2002173348A JP 2002173348 A JP2002173348 A JP 2002173348A JP 2000371655 A JP2000371655 A JP 2000371655A JP 2000371655 A JP2000371655 A JP 2000371655A JP 2002173348 A JP2002173348 A JP 2002173348A
Authority
JP
Japan
Prior art keywords
slag
water
iron oxide
granulated
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000371655A
Other languages
Japanese (ja)
Inventor
Naoki Hirai
直樹 平井
Kiyoshi Shibata
清 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000371655A priority Critical patent/JP2002173348A/en
Publication of JP2002173348A publication Critical patent/JP2002173348A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing granulated slag which has a high coarse grain rate and is dense. SOLUTION: The method of manufacturing the granulated slag comprising adding an iron oxide-containing material at <=2 mass% of the mass of molten slag flowing out of a blast furnace in terms of the weight of the iron oxide to the molten slag, than granulating the slag with water above 60 deg.C. At this time, the slag is granulated with the water at a water flow rate/slag flow rate of >=5 to <30 for an added effect. The iron oxide-containing material is preferably <=5 mass% in content as water of crystallization.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水砕によるコンク
リート用高炉スラグ細骨材の製造方法に関し、特に粗粒
率が高くかつ緻密な高炉水砕スラグを製造する方法に関
する。
The present invention relates to a method for producing blast furnace slag fine aggregate for concrete by water granulation, and more particularly to a method for producing dense granulated blast furnace slag having a high coarse grain ratio.

【0002】[0002]

【従来の技術】高炉スラグは、セメント原料や路盤材、
コンクリート用骨材などに有効活用されている。スラグ
の処理方法はこれらの用途に対応して選択され、溶融ス
ラグに直接加圧水を噴射して水砕した後更に破砕処理し
て必要粒度に調整する方法、また溶融スラグをヤードに
流し出して徐冷固化した後、破砕処理して必要粒度に調
整する方法がある。セメント原料やコンクリート用細骨
材の製造には前者の水砕方法が用いられている。
2. Description of the Related Art Blast furnace slag is used as a raw material for cement, roadbed material,
It is effectively used as aggregate for concrete. The method of treating slag is selected in accordance with these applications. Directly, pressurized water is sprayed on the molten slag to granulate it and then crushed to adjust it to the required particle size. After cooling and solidifying, there is a method of adjusting to a required particle size by crushing. The former granulation method is used in the production of cement raw materials and fine aggregate for concrete.

【0003】コンクリート用細骨材向けには、密度に関
するJIS規格を満足する緻密な水砕スラグが要求され
るが、高炉スラグは水砕時に発泡して軽質化しやすい問
題がある。これを解決する技術として、例えば特開昭5
4−56627号公報には、緻密とほぼ同意義で硬質と
記述しているが、溶滓温度を1300℃〜850℃に低
下調整する技術が、特開昭55−136151号公報に
は水温70℃以下で水流量/スラグ流量比8〜12の加
圧水を噴射する技術が、特開昭62−113738号公
報には特定領域の水温および水流量/スラグ流量比を有
する圧力水を噴射する技術がそれぞれ開示されている。
この他にも、特公昭60−37066号公報には、酸化
鉄含有物質を溶融スラグに添加する方法が開示されてい
る。
[0003] For fine aggregate for concrete, dense granulated slag that satisfies the JIS standard for density is required. However, there is a problem that blast furnace slag is easily foamed and lightened during granulation. As a technique to solve this, for example,
Japanese Patent Application Laid-Open No. 4-56627 describes hard as having almost the same meaning as dense. However, Japanese Patent Application Laid-Open No. 55-136151 discloses a technique for lowering and adjusting the slag temperature to 1300 ° C. to 850 ° C. A technique for injecting pressurized water having a water flow rate / slag flow rate ratio of 8 to 12 at a temperature of not more than 0 ° C is disclosed in Japanese Patent Application Laid-Open No. 62-113338. Each is disclosed.
In addition, Japanese Patent Publication No. 60-37066 discloses a method of adding an iron oxide-containing substance to molten slag.

【0004】また、高炉水砕スラグをコンクリート用細
骨材として利用するには、天然砂に似た適度な粒度分布
が必要である。しかし高炉水砕スラグは単身でコンクリ
ート用細骨材に使用されることは少なく、天然砂などと
混合して使用されることが多いため、混合する砂の粒度
に応じて粗目から細目までの多様な粒度が望まれること
が多い。
Further, in order to use granulated blast furnace slag as fine aggregate for concrete, an appropriate particle size distribution similar to natural sand is required. However, granulated blast furnace slag is rarely used alone as fine aggregate for concrete, and is often used in the form of a mixture with natural sand. Fine particle sizes are often desired.

【0005】高炉水砕スラグの粒度分布および粒形状を
改善するためには、水砕後の破砕を行うことが多い。と
ころが水砕後のスラグの粒径が既に小さいと、破砕すれ
ば更に細かくなり、混合可能な砂が限られて細骨材とし
ての利用範囲が狭くなる。従って、水砕後のスラグの粒
径は適度に大きいほうが、粒形状や粒度を改善する上で
は好ましい。粗粒率の高い細骨材は、混合する砂が粗い
時には、更に破砕加工を行うことで粗粒率を低下させて
利用することができ、利用価値が高いからである。粗粒
の硬質水砕スラグを製造する方法としては、例えば特開
平11−236255号公報に、冷却水温を60〜80
℃で水砕する、更には水流量のスラグ流量に対する比
(以後水流量/スラグ流量比と呼ぶ)を30以上にして
水砕する方法が開示されている。
[0005] In order to improve the particle size distribution and particle shape of the granulated blast furnace slag, crushing after granulation is often performed. However, if the particle size of the slag after the water granulation is already small, the slag becomes finer when crushed, the sand that can be mixed is limited, and the range of use as fine aggregate is narrowed. Therefore, it is preferable that the particle size of the slag after water granulation is appropriately large in order to improve the particle shape and particle size. This is because fine aggregate having a high coarse particle ratio can be used by lowering the coarse particle ratio by further crushing when the sand to be mixed is coarse, and is highly useful. As a method for producing coarse granulated hard granulated slag, for example, Japanese Patent Application Laid-Open No.
There is disclosed a method of performing water granulation at a temperature of ° C., and further setting the ratio of water flow rate to slag flow rate (hereinafter referred to as water flow rate / slag flow rate ratio) to 30 or more.

【0006】[0006]

【発明が解決しようとする課題】従来技術において、緻
密な水砕スラグを粗粒化する方法に関するものは、前述
の特開平11−236255号公報以外には見出せなか
った。本発明者らは炉前方式において該公報技術を実験
的に検討したところ、冷却水温が高くなると粗粒率が高
くなることは確認したが、一方で密度が低下した。そこ
で、該公報技術では炉前方式で密度を向上させるには、
水流量/スラグ流量比を30以上にするとしており、本
発明者らも同様な試験を行うことにより密度が高くなる
ことを確認したが、一方で粗粒率は低下した。該公報に
は、粗粒率は、冷却水温以外の項目とは明確な関係がな
かったと記載されているが、本発明者らが鋭意検討した
ところ、前述のように水流量/スラグ流量比を高くする
と密度は高くなるが粗粒率が低下することを見出した。
即ち、このような技術では粗粒率が高くかつ緻密な水砕
スラグが得られなかった。
In the prior art, no method relating to a method of coarsening fine granulated slag could be found other than the above-mentioned Japanese Patent Application Laid-Open No. 11-236255. The present inventors have experimentally examined the publication technology in the pre-furnace method, and confirmed that the higher the cooling water temperature, the higher the coarse particle ratio, but the lower the density. Therefore, in order to improve the density in the pre-furnace method in this publication,
The water flow rate / slag flow rate ratio is set to 30 or more, and the present inventors also confirmed that the density was increased by performing the same test, but on the other hand, the coarse particle ratio was reduced. The publication states that the coarse particle ratio did not have a clear relationship with items other than the cooling water temperature. However, the present inventors have conducted extensive studies and found that the water flow rate / slag flow rate ratio was as described above. It has been found that the higher the density, the higher the density but the lower the coarse particle ratio.
That is, such a technique cannot obtain a dense granulated slag having a high coarse particle ratio.

【0007】一方、特公昭60−37066号公報に
は、得られる水砕スラグの粗粒率について記載されてい
ないが、該公報の緻密化水砕スラグを得るためには通常
は冷却水温を下げる方法が用いられる。本発明者らが該
公報の技術を実験的に検討したところ、冷却水温度が低
い場合には粗粒率が低下した。また用いる酸化鉄含有物
質によっては十分な緻密性が得られない場合があった。
On the other hand, Japanese Patent Publication No. 60-37066 does not disclose the coarse particle ratio of the obtained granulated slag, but in order to obtain the densified granulated slag of the publication, the cooling water temperature is usually lowered. A method is used. The present inventors have experimentally studied the technology of the publication and found that when the cooling water temperature was low, the coarse particle ratio was reduced. Also, depending on the iron oxide-containing substance used, sufficient denseness was not obtained in some cases.

【0008】上記事項に鑑み、本発明は、粗粒率が高く
かつ緻密な水砕スラグを製造する方法を提供することを
目的とする。
[0008] In view of the above, an object of the present invention is to provide a method for producing dense granulated slag having a high coarse particle ratio.

【0009】[0009]

【課題を解決するための手段】本発明者らは粗目の高炉
水砕スラグを得る目的で調査を行ったところ、出滓末期
の水砕水温が高い場合に粗粒率が高くなることが明らか
となったが、水砕スラグの密度は低下した。そこで試験
的に酸化鉄含有物質を添加して水砕したところ、出滓末
期に、粗粒率が高くしかも緻密な水砕スラグが得られる
ことを見出した。本発明は、上記事項に鑑み、粗粒率が
高く緻密な水砕スラグを安定して製造するための条件を
鋭意検討し完成されたものである。
Means for Solving the Problems The inventors of the present invention conducted a study for the purpose of obtaining coarse granulated blast furnace slag, and it became clear that when the granulated water temperature at the end of slagging is high, the coarse particle ratio increases. However, the density of the granulated slag decreased. Therefore, it was found that a fine granulated slag having a high coarse-grain ratio and a dense granulated slag can be obtained in the final stage of the slag when the iron oxide-containing substance is added and granulated experimentally. In view of the above, the present invention has been completed by earnestly studying conditions for stably producing dense granulated slag having a high coarse particle ratio.

【0010】即ち本発明は、高炉から流出する溶融スラ
グに、酸化鉄含有物質を酸化鉄量として該溶融スラグ質
量に対して2質量%以下添加した後、水温60℃以上の
水で水砕することを特徴とする水砕スラグの製造方法で
ある。
That is, according to the present invention, an iron oxide-containing substance is added to a molten slag flowing out of a blast furnace in an amount of iron oxide of 2% by mass or less based on the mass of the molten slag, and then granulated with water having a water temperature of 60 ° C. or higher. A method for producing granulated slag, characterized in that:

【0011】このとき、水流量/スラグ流量が5以上3
0未満で水砕すると効果的である。
At this time, the water flow rate / slag flow rate is 5 or more and 3
It is effective to granulate at less than 0.

【0012】また、酸化鉄含有物質は、結晶水としての
含有量が5質量%以下のものを用いることが好ましい。
It is preferable to use an iron oxide-containing substance having a water content of 5% by mass or less.

【0013】[0013]

【発明の実施の形態】本発明は、高炉から流出する溶融
スラグに、酸化鉄含有物質を酸化鉄量にして2質量%以
下添加した後、水温60℃以上の水によって水砕するこ
とを特徴とする水砕スラグの製造方法である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is characterized in that an iron oxide-containing substance is added to molten slag flowing out of a blast furnace at a content of iron oxide of 2% by mass or less, and then granulated with water having a water temperature of 60 ° C or more. This is a method for producing granulated slag.

【0014】酸化鉄含有量の異なる酸化鉄含有物質を各
種試験したところ、酸化鉄の正味の添加量と密度との相
関関係が明確に示唆された。即ち、溶融スラグに対して
酸化鉄量を添加すると共に密度が向上した。添加される
酸化鉄量は0質量%すわなち全く加えない場合を除いて
向上し、2質量%も添加すれば十分緻密な水砕スラグが
得られた。2質量%より多く添加しても、それ以上の密
度向上は殆どなかった。本発明で酸化鉄とは、鉄(II)
と鉄(III)とを含む酸化物の合計であり、含有量はJ
IS M8212、M8213などに準拠して測定でき
る。酸化鉄含有物質は、できる限りスラグ温度が高いう
ちに添加することが好ましいが、酸化鉄含有物質が溶解
すれば十分な効果が得られる。このように、酸化鉄含有
物質を添加することで水砕スラグの密度を高めることが
でき、水砕条件のスラグ密度への影響は少なかった。
Various tests of iron oxide-containing substances having different iron oxide contents clearly showed a correlation between the net addition amount of iron oxide and the density. That is, the density was improved while the amount of iron oxide was added to the molten slag. The amount of iron oxide added was improved except for 0% by mass, that is, not added at all, and sufficiently dense granulated slag was obtained when 2% by mass was added. Even if more than 2% by mass was added, there was almost no further improvement in density. In the present invention, iron oxide is iron (II)
And the total of oxides containing iron (III) and the content is J
It can be measured according to IS M8212, M8213 and the like. The iron oxide-containing substance is preferably added while the slag temperature is as high as possible, but a sufficient effect can be obtained if the iron oxide-containing substance is dissolved. As described above, the density of the granulated slag could be increased by adding the iron oxide-containing substance, and the influence of the granulated conditions on the slag density was small.

【0015】上述したように、溶融スラグに対して2質
量%以下の酸化鉄を添加することによって本発明の効果
が得られるが、酸化鉄含有物質の添加量を可能な限り少
なくするため、酸化鉄含有物質中には40質量%以上の
酸化鉄が含まれることが好ましく、含有量は高いほど好
ましい。多量の酸化鉄含有物質を溶融スラグに添加する
ことによるスラグ温度の低下を防ぐためであり、また、
溶融スラグの粘性が高いため多量の酸化鉄含有物質を添
加することが困難だからである。酸化鉄含有物質の粒度
は1mm程度以下で十分であるが、溶融スラグとの混合
時間を短くし、均一に分散させるためには細かいほど好
ましい。
As described above, the effect of the present invention can be obtained by adding 2% by mass or less of iron oxide to the molten slag. However, in order to minimize the addition amount of the iron oxide-containing substance, The iron-containing substance preferably contains at least 40% by mass of iron oxide, and the higher the content, the more preferable. In order to prevent a decrease in the slag temperature by adding a large amount of iron oxide-containing substance to the molten slag,
This is because it is difficult to add a large amount of the iron oxide-containing substance due to the high viscosity of the molten slag. A particle size of about 1 mm or less is sufficient for the iron oxide-containing substance, but the finer the particle size, the shorter the mixing time with the molten slag and the more uniform the dispersion.

【0016】一方、粗粒率は水砕条件、特に水温によっ
て大きく変化する。そこで本発明では、酸化鉄含有物質
を添加した後、水温60℃以上の水によって水砕するこ
とが好ましい。水温が60℃より低いと密度は高いもの
の、粗粒率が低下する恐れがある。また、水温が高いほ
ど粗粒率が向上するが、液体の水で水砕するので最高で
も水の沸点以下で水砕することとなる。なお、高温過ぎ
ると水の蒸発が激しくなるなど循環水運転コストの点か
らは好ましくない現象が生じる恐れがあり、この点を考
慮すると水砕に用いられる水温は60〜85℃が好適で
ある。なお、本発明において水砕中に水温が変動する際
には、水温とは水温の平均値をいう。
On the other hand, the coarse particle ratio greatly varies depending on the granulation conditions, particularly the water temperature. Therefore, in the present invention, it is preferable to granulate with water having a water temperature of 60 ° C. or higher after adding the iron oxide-containing substance. If the water temperature is lower than 60 ° C., although the density is high, the coarse particle ratio may be reduced. Also, the higher the water temperature, the higher the coarse particle ratio, but since it is water-granulated with liquid water, it will be granulated below the boiling point of water at most. If the temperature is too high, an undesirable phenomenon may occur from the viewpoint of circulating water operation cost such as intense evaporation of water. Considering this point, the temperature of the water used for granulation is preferably 60 to 85 ° C. In the present invention, when the water temperature fluctuates during granulation, the water temperature means an average value of the water temperature.

【0017】水温が低い場合には酸化鉄含有物質添加の
粗粒率への影響は顕著でなかったが、水温が高い場合に
は水温が高いことによる粗粒化に加えて、酸化鉄含有物
質添加による粗粒化の相乗効果がある。以下この点につ
いて詳細に説明する。
When the water temperature was low, the effect of the addition of the iron oxide-containing substance on the coarse particle ratio was not remarkable, but when the water temperature was high, the addition of the iron oxide-containing substance There is a synergistic effect of coarsening by the addition. Hereinafter, this point will be described in detail.

【0018】図2に本発明と従来技術の水砕スラグ品質
の概念比較図を示す。通常の水砕方法において密度を向
上させるには水温を下げて急冷する方法が行われ、この
方法によって得られた水砕スラグの品質範囲1(低水温
による通常の水砕技術の品質範囲)を図2に示す。しか
しながら、図に示されるように密度は高いものの粗粒率
は低い。そこで粗粒率を向上させるため、水温を高くす
る方法が開示された。この方法によって得られた水砕ス
ラグの品質範囲2(高水温で粗粒化する従来技術の品質
範囲)を図2に示す。しかし、図示するように、粗粒率
は高くなったものの密度が低下した。そこで、密度を向
上させるために水流量/スラグ流量比を高める方法が適
用された。この方法によって得られた水砕スラグの品質
範囲3(高水温で粗粒化し、かつ高い水流量/スラグ流
量比で緻密化する従来技術の品質範囲)を図2に示す。
しかし、密度を高めることはできても粗粒率が低下し
た。一方、酸化鉄含有物質を添加することで緻密化を行
う従来技術があるが、前述のごとく通常の水砕で緻密化
するには水温を下げることから、これらの技術を組み合
わせた場合には領域4(酸化物含有物質で緻密化する従
来技術の品質範囲)の品質となり、若干の緻密化は可能
であるものの粗粒率は殆ど変化しない。
FIG. 2 is a conceptual comparison diagram of the granulated slag quality of the present invention and the prior art. In order to increase the density in a normal water granulation method, a method of lowering the water temperature and quenching is performed, and the quality range 1 of the granulated slag obtained by this method (the quality range of the normal water granulation technology at low water temperature) As shown in FIG. However, as shown in the figure, the density is high but the coarse grain ratio is low. Therefore, a method of increasing the water temperature in order to improve the coarse particle ratio has been disclosed. FIG. 2 shows the quality range 2 of the granulated slag obtained by this method (the quality range of the prior art for coarsening at high water temperature). However, as shown in the figure, although the coarse grain ratio increased, the density decreased. Therefore, a method of increasing the water flow rate / slag flow rate ratio has been applied to improve the density. FIG. 2 shows the quality range 3 of the granulated slag obtained by this method (the quality range of the prior art in which the granulated particles are coarsened at a high water temperature and densified at a high water flow rate / slag flow ratio).
However, although the density could be increased, the percentage of coarse particles decreased. On the other hand, there is a conventional technique for densification by adding an iron oxide-containing substance. However, as described above, the water temperature is lowered for densification by ordinary water granulation. 4 (quality range of the prior art in which densification is performed with an oxide-containing substance), and although a slight densification is possible, the coarse particle ratio hardly changes.

【0019】そこで本発明者らは酸化鉄含有物質を添加
することで緻密化を行う従来技術と、水温を高くするこ
とで粗粒化する従来技術とを組み合わせれば領域5(酸
化物含有物質で緻密化する従来技術と高水温で粗粒化す
る従来技術の組み合わせで予想される品質範囲)の品質
が得られると推定した。この推定領域は従来技術の酸化
鉄含有物質を添加することで得られる最大の効果(領域
4の絶乾密度)と、従来技術の水温を高くすることで得
られる最大の効果(領域2の粗粒率)とを単純に加えた
ものである。ところが、本発明者らが試験したところ、
得られた水砕スラグは領域6の品質を示しており、両技
術を組み合わせた場合の粗粒率が推定以上に高くなると
いう効果があることが新たに見出された。
The inventors of the present invention combined the conventional technique of densification by adding an iron oxide-containing substance and the conventional technique of coarsening by increasing the water temperature to obtain a region 5 (oxide-containing substance). It is estimated that the quality of the quality range expected by the combination of the conventional technology of densification and the conventional technology of coarsening at high water temperature can be obtained. The estimated area is the maximum effect obtained by adding the iron oxide-containing substance of the prior art (the absolute dry density in the area 4), and the maximum effect obtained by increasing the water temperature in the prior art (the coarse area of the area 2). (Grain ratio) is simply added. However, when the present inventors tested,
The obtained granulated slag shows the quality of the region 6, and it has been newly found that there is an effect that the coarse particle ratio when both techniques are combined is higher than estimated.

【0020】水砕方法としては、スラグ樋から流れ落ち
る溶融スラグに直接加圧水を噴射して水砕する炉前方式
と、スラグ樋からスラグ鍋に一旦溶融スラグを受け取っ
た後、高炉外に運んでから同様にして水砕する炉外方式
が実施されているが、本発明はいずれの方式にも適用可
能である。しかし炉前方式は炉外方式と比較して粗粒率
が高く緻密な水砕スラグが得られ易く、従って本発明を
炉前方式に適用すると、より顕著な効果が得られる。
The water granulation method includes a method in front of a furnace in which pressurized water is directly injected into molten slag flowing down from a slag gutter to granulate the water, and a method in which molten slag is once received from a slag gutter into a slag pot and then transported out of a blast furnace. Similarly, an out-of-furnace method for water granulation is implemented, but the present invention is applicable to any method. However, compared with the out-of-furnace method, the pre-furnace method has a higher coarse-grain ratio and makes it easier to obtain dense granulated slag. Therefore, when the present invention is applied to the before-furnace method, a more remarkable effect is obtained.

【0021】本発明では更に、水流量/スラグ流量が5
以上30未満で水砕することが好ましい。ここで、水流
量は水の質量流量を、またスラグ流量はスラグの質量流
量を意味しており、通常は1分当たりの質量(ton/
min)で表される。発明者らは鋭意実験を重ねた結
果、粗粒率は水温以外に水流量/スラグ流量比によって
も変化し、水流量/スラグ流量比が低いほど粗粒率が高
くなることを見出した。この観点より、水流量/スラグ
流量比は30未満であることが好ましい。一方、水流量
/スラグ流量比が5未満であると、水砕されずに水流を
通過して落下するスラグが増加するため、水流量/スラ
グ流量比は5以上であることが好ましい。なお、本発明
において水砕中に水流量/スラグ流量比が変動する際に
は、水流量/スラグ流量比とは水流量/スラグ流量比の
平均値をいう。
In the present invention, the ratio of water flow rate / slag flow rate is 5
It is preferable to carry out water granulation at a number not less than 30. Here, the water flow rate means the mass flow rate of the water, and the slag flow rate means the mass flow rate of the slag, and usually, the mass per minute (ton / ton)
min). As a result of intensive experiments, the inventors have found that the coarse particle ratio varies depending on the water flow rate / slag flow rate ratio in addition to the water temperature, and that the lower the water flow rate / slag flow rate ratio, the higher the coarse particle rate. From this viewpoint, the water flow rate / slag flow rate ratio is preferably less than 30. On the other hand, if the ratio of water flow rate / slag flow rate is less than 5, the amount of slag that falls without passing through the water flow without being granulated increases, so that the water flow rate / slag flow rate ratio is preferably 5 or more. In the present invention, when the water flow rate / slag flow rate fluctuates during granulation, the water flow rate / slag flow rate ratio means the average value of the water flow rate / slag flow rate ratio.

【0022】本発明に用いる酸化鉄含有物質は、結晶水
含有量が5質量%以下であることが好ましい。本発明に
おいて結晶水とは、100℃の乾燥でも除去されない水
分のことであり、酸化鉄含有物質中に水酸化物などの状
態で存在する水分である。なお、結晶水含有量はJIS
K0067に準拠して測定することができる。本発明
者らは酸化鉄含有物質を各種検討したところ、酸化鉄含
有量がほぼ同じ物質であっても、密度が期待したほど高
くならない場合があり、それは含有される結晶水が原因
であった。結晶水を含有する物質を仮焼(強熱と同意
義)して、結晶水を除去した物質を用いると、酸化鉄含
有量に見合う緻密化効果が得られた。従って本発明では
結晶水含有量のできる限り少ない酸化鉄含有物質を用い
ることを推奨するが、結晶水含有量が5質量%以下であ
れば、十分緻密なスラグが得られる。また、酸化鉄含有
量は多いが結晶質含有量も多い物質であっても、仮焼な
どによって結晶水含有量を5質量%以下にすれば本発明
に用いることができる。
The iron oxide-containing substance used in the present invention preferably has a crystallization water content of 5% by mass or less. In the present invention, the crystallization water is water that is not removed even when dried at 100 ° C., and is water present in the iron oxide-containing substance in the form of a hydroxide or the like. The water content of crystallization is based on JIS
It can be measured in accordance with K0067. The present inventors have conducted various studies on iron oxide-containing substances, and found that even if the iron oxide content is substantially the same, the density may not be as high as expected, which was caused by the contained crystallization water. . When a substance containing water of crystallization was calcined (equivalent to ignition) and a substance from which water of crystallization was removed was used, a densification effect commensurate with the iron oxide content was obtained. Therefore, in the present invention, it is recommended to use an iron oxide-containing substance having a crystallization water content as small as possible. However, if the crystallization water content is 5% by mass or less, a sufficiently dense slag can be obtained. Further, even a substance having a high iron oxide content but a high crystalline content can be used in the present invention if the crystallization water content is reduced to 5% by mass or less by calcination or the like.

【0023】なお、得られた水砕スラグは、絶乾密度を
向上させるのに効果的な方法や粒形状の改善に効果的な
各種公知の方法を適宜用いて加工することができる。例
えばインパクトクラッシャーやコーンクラッシャーなど
通常の破砕機を用いて好適な粗粒率を有するスラグを得
ることが可能である。
The obtained granulated slag can be processed by appropriately using a method effective for improving the absolute dry density and various known methods effective for improving the grain shape. For example, it is possible to obtain a slag having a suitable coarse particle ratio using a normal crusher such as an impact crusher or a cone crusher.

【0024】[0024]

【実施例】以下本発明に係る実施例について記載する。
添加される酸化鉄含有物質、水砕条件を変化させて、こ
れらの水砕スラグ品質に与える影響を調査した。
Embodiments of the present invention will be described below.
The influence on the quality of the granulated slag was investigated by changing the added iron oxide-containing substance and the granulation conditions.

【0025】酸化鉄含有物質は、高炉から流出する溶銑
から溶融スラグを分離した後のスラグ樋において、流れ
る溶融スラグ上に散布して添加した。添加量は、溶融ス
ラグの流量が変動するので予め変動傾向を把握してお
き、添加速度を調整して添加した。添加した酸化鉄含有
物質が十分溶解した後に、通常の水砕を行った。表1に
示した水砕水温は、水砕中に変動する水温の平均値であ
る。酸化鉄含有物質は、結晶水が5質量%を越える場合
には、仮焼して5質量%以下にした場合と、現物質をそ
のまま添加する場合も実施した。なお水砕方法は全て炉
前式で試験実施した。
The iron oxide-containing substance was dispersed and added onto the flowing molten slag in the slag trough after separating the molten slag from the hot metal flowing out of the blast furnace. Since the flow rate of the molten slag fluctuates, the amount of addition was determined in advance, and the addition rate was adjusted to add the amount. After the added iron oxide-containing substance was sufficiently dissolved, ordinary water granulation was performed. The granulated water temperature shown in Table 1 is an average value of the water temperature fluctuating during granulation. When the amount of water of crystallization exceeds 5% by mass, the iron oxide-containing material was calcined to 5% by mass or less, and the current material was added as it was. In addition, all the granulation methods were tested by the furnace front type.

【0026】高炉水砕スラグをコンクリート用細骨材と
して利用するには、JIS規格を満足することが望まれ
るが、粒度分布については、前述したように、混合され
る砂の粒度に対応できるよう、粗目から細目まで多様な
粒度を有することが好まれる。このため、本実施例にお
いては、粗粒率3以上を目標値とした。
In order to use granulated blast furnace slag as fine aggregate for concrete, it is desirable to satisfy the JIS standard. However, as described above, the particle size distribution should be such that it can correspond to the particle size of sand to be mixed. It is preferred to have various particle sizes from coarse to fine. For this reason, in the present embodiment, the target value was a coarse grain ratio of 3 or more.

【0027】水砕後の加工は、絶乾密度がJIS規格の
2.5未満である場合には2.5以上になるまで行い、
絶乾密度が既に2.5以上の場合には粒形状を改善する
に留め、できる限り粗粒率の高い細骨材を得ることとし
た。加工方法は、絶乾密度を向上させるのに効果的な方
法や粒形状の改善に効果的な方法を使い分け組み合わせ
て行い、例えばインパクトクラッシャーやコーンクラッ
シャーなど通常の破砕機を用いて行った。
Processing after granulation is performed until the absolute dry density is less than 2.5 of the JIS standard, and becomes 2.5 or more.
When the absolute dry density is already 2.5 or more, it is only necessary to improve the grain shape, and to obtain a fine aggregate having as high a coarse grain ratio as possible. The processing method was performed by combining and using a method effective for improving the absolute dry density and a method effective for improving the grain shape, for example, using a normal crusher such as an impact crusher or a cone crusher.

【0028】なお、水砕後および加工後の絶乾密度およ
び粗粒率は、JIS規格に準拠して測定し、スラグ品質
評価の目安とした。
The absolute dry density and the coarse particle ratio after granulation and processing were measured according to JIS standards, and were used as a guide for evaluating slag quality.

【0029】表1に実施例および比較例の条件と結果を
示す。また、図1に実施例および比較例に係るスラグの
水砕後と破砕後との品質変化を示す。
Table 1 shows the conditions and results of the examples and comparative examples. FIG. 1 shows a change in quality of the slag according to the example and the comparative example between after granulation and after crushing.

【0030】[0030]

【表1】 [Table 1]

【0031】実施例1は、酸化鉄含有量80質量%、結
晶水含有量8質量%の鉄鉱石2(ローブリバー)を仮焼
(電気炉で900℃×1時間加熱)して、結晶水含有量
を0.5質量%未満、酸化鉄含有量を87質量%とした
仮焼鉄鉱石2を、溶融スラグに対して平均0.5質量%
添加、即ち酸化鉄量にして約0.44質量%添加した
後、水温を平均70℃、水流量/スラグ流量比を平均1
2で水砕した例である。得られた水砕スラグが既に絶乾
密度、粗粒率とも目標値を上回ったので、粒形状改善程
度の加工に留め、粗粒率が高く緻密なスラグ細骨材が得
られた。
In Example 1, the iron ore 2 (lobe river) having an iron oxide content of 80% by mass and a crystallization water content of 8% by mass was calcined (heated in an electric furnace at 900 ° C. for 1 hour) to form a crystal water. The calcined iron ore 2 having a content of less than 0.5% by mass and an iron oxide content of 87% by mass was, on average, 0.5% by mass with respect to the molten slag.
After the addition, that is, about 0.44% by mass in terms of the amount of iron oxide, the water temperature was 70 ° C. on average, and the water flow rate / slag flow rate ratio was 1 on average.
This is an example in which granulation was performed in Step 2. Since the obtained granulated slag had already exceeded the target values in both the absolutely dry density and the coarse particle ratio, processing was performed to the extent of improving the grain shape, and a dense slag fine aggregate having a high coarse particle ratio was obtained.

【0032】実施例2は、実施例1と同様にして仮焼鉄
鉱石2を2質量%、酸化鉄量にして約1.7質量%添加
した例である。実施例1より絶乾密度、粗粒率とも高い
スラグ細骨材が得られた。
Example 2 is an example in which 2% by mass of calcined iron ore 2 and about 1.7% by mass of iron oxide were added in the same manner as in Example 1. A slag fine aggregate having both a high absolute dry density and a high coarse particle ratio was obtained from Example 1.

【0033】実施例3は、酸化鉄含有量88質量%、結
晶水含有量2質量%の鉄鉱石1(キャロルレイク)を、
結晶水含有量が少ないことからそのまま平均1質量%添
加、即ち酸化鉄量にして約0.88質量%添加した例で
ある。絶乾密度はやや低いが、絶乾密度、粗粒率とも目
標値を満足するスラグ細骨材が得られた。
In Example 3, iron ore 1 (Carroll Lake) having an iron oxide content of 88% by mass and a crystallization water content of 2% by mass was prepared.
Since the water content of crystallization is small, an average of 1% by mass is added as it is, that is, about 0.88% by mass of iron oxide is added. Although the absolute dry density was slightly low, a slag fine aggregate satisfying the target values in both the absolute dry density and the coarse particle ratio was obtained.

【0034】実施例4は、酸化鉄含有量75質量%、結
晶水含有量0.5質量%未満の焼結鉱を、結晶水含有量
が少ないことからそのまま平均1質量%添加、即ち酸化
鉄量にして約0.75質量%添加した例である。絶乾密
度、粗粒率とも目標値を満足するスラグ細骨材が得られ
た。
In Example 4, an average of 1% by mass of a sintered ore having an iron oxide content of 75% by mass and a crystallization water content of less than 0.5% by mass was added because the crystallization water content was small. In this example, about 0.75% by mass was added. A slag fine aggregate satisfying the target values in both the absolute dry density and the coarse particle ratio was obtained.

【0035】実施例5は転炉ダスト、実施例6は圧延ス
ラッジを用いた例であり、酸化鉄含有量の高いものを選
んで用いた。何れも製鉄工程で発生したものを回収した
ものであるが、固体分中の結晶水は低いものの、水分が
高いので乾燥してから利用した。いずれの実施例におい
ても、絶乾密度、粗粒率とも目標値を満足するスラグ細
骨材が得られた。
Example 5 is an example using converter dust, and Example 6 is an example using rolled sludge. Those having a high iron oxide content were selected and used. In each case, what was generated in the iron-making process was recovered. However, although the water of crystallization in the solid content was low, it was used after drying because of the high water content. In each of the examples, fine slag aggregates satisfying the target values in both the absolute dry density and the coarse particle ratio were obtained.

【0036】実施例7は、結晶水含有量が5質量%より
高い鉄鉱石2を仮焼せずにそのまま用いた例である。水
砕スラグの絶乾密度がやや低かったために加工を行い、
絶乾密度を2.50g/cm3にしたところ、粗粒率も
目標値である3以上を確保できた。
Example 7 is an example in which iron ore 2 having a water content of crystallization higher than 5% by mass was used without calcining. Processing was performed because the absolute dry density of the granulated slag was slightly low,
When the absolute dry density was set to 2.50 g / cm 3 , the coarse particle ratio was able to secure the target value of 3 or more.

【0037】比較例8および9は、酸化鉄含有物質を添
加しない通常の水砕であるが、それぞれ平均水温が高い
80℃、および低い50℃で水砕した例である。水温が
高いと、密度は低いが粗粒率の比較的高い水砕スラグが
得られた。これを絶乾密度2.5になるまで加工したと
ころ、粗粒率は低下し細目の細骨材しか得られなかっ
た。逆に水温が低いと絶乾密度2.5以上の水砕スラグ
が得られたので、粒形状改善程度の加工に留めたが、既
に粗粒率が低いため、より細目の細骨材しか得られなか
った。
Comparative Examples 8 and 9 are ordinary granulations without addition of an iron oxide-containing substance, but were conducted at a high average water temperature of 80 ° C. and a low average water temperature of 50 ° C., respectively. When the water temperature was high, granulated slag having a low density but a relatively high coarse particle ratio was obtained. When this was processed to an absolutely dry density of 2.5, the coarse particle ratio was reduced, and only fine aggregate was obtained. Conversely, if the water temperature was low, granulated slag with an absolutely dry density of 2.5 or more was obtained, so we stopped the processing to the degree of improving the grain shape, but because the coarse grain ratio was already low, we could only obtain finer fine aggregate. I couldn't.

【0038】比較例10は、酸化鉄含有物質を添加せ
ず、水温を60℃以上、平均80℃、水流量/スラグ流
量比を30以上、平均35で水砕した例であり、比較例
8に対し水流量/スラグ流量比を高めた例である。水砕
スラグの絶乾密度は2.5以上であったが粗粒率は低下
した。そこで粒形状改善程度の加工を行ったところ、粗
粒率が目標より低い細骨材になった。比較例10を比較
例8と比較すると、水流量/スラグ流量比を高めること
で、絶乾密度は向上したものの粗粒率を低下させる結果
となった。
Comparative Example 10 was an example in which the water temperature was 60 ° C. or higher, the average was 80 ° C., the water flow rate / slag flow ratio was 30 or higher, and the average was 35 without adding the iron oxide-containing substance. Comparative Example 8 This is an example in which the water flow rate / slag flow rate ratio is increased. The absolute dry density of the granulated slag was 2.5 or more, but the coarse particle ratio was reduced. Then, when processing was performed to the extent that the grain shape was improved, the fine aggregate had a coarse grain ratio lower than the target. Comparing Comparative Example 10 with Comparative Example 8, it was found that by increasing the water flow rate / slag flow rate ratio, although the absolute dry density was improved, the coarse particle ratio was reduced.

【0039】比較例11は、実施例3と同様に鉄鉱石1
を添加し、水温を平均50℃で水砕した例である。水砕
スラグは緻密ではあるが粗粒率が低く、粒形状改善程度
の加工を行ったところ、粗粒率が目標より低い細骨材に
なった。
In Comparative Example 11, iron ore 1
Was added and water was granulated at an average water temperature of 50 ° C. The granulated slag was dense but had a low coarse grain ratio, and after being processed to the extent that the grain shape was improved, the fine aggregate had a coarse grain ratio lower than the target.

【0040】上述したように、酸化鉄含有物質を添加
し、水温を調節した本発明に係る水砕スラグは、絶乾密
度および粗粒率が共に優れたものであった。
As described above, the granulated slag according to the present invention to which the iron oxide-containing substance was added and the water temperature was adjusted was excellent in both the absolute dry density and the coarse particle ratio.

【0041】[0041]

【発明の効果】本発明により、粗粒率が高くかつ緻密な
水砕スラグを製造することが可能となった。本発明に係
る水砕スラグは、粗粒率が高いため破砕加工により粗目
から細目まで種々の粒度に調整することが可能であり、
破砕加工後も良好な絶乾密度を有するため、細骨材に混
合される砂の粒度に応じて使いわけることが可能であ
る。即ち、細骨材としての利用範囲を大きく広げるもの
である。
According to the present invention, it is possible to produce dense granulated slag having a high coarse particle ratio. Granulated slag according to the present invention can be adjusted to various particle sizes from coarse to fine by crushing because of a high coarse particle ratio,
Since it has a good absolute dry density even after the crushing process, it can be properly used according to the particle size of the sand mixed with the fine aggregate. That is, the range of use as fine aggregate is greatly expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 水砕後スラグおよび破砕後スラグの絶乾密度
および粗粒率を示す図である。
FIG. 1 is a view showing the absolute dry density and the coarse particle ratio of slag after granulation and slag after crushing.

【図2】 本発明と従来技術の水砕スラグ品質の概念比
較図である。
FIG. 2 is a conceptual comparison diagram of the granulated slag quality of the present invention and the prior art.

【符号の説明】[Explanation of symbols]

1 低水温による通常の水砕技術の品質範囲 2 高水温で粗粒化する従来技術の品質範囲 3 高水温で粗粒化し、かつ高い水流量/スラグ流量比
で緻密化する従来技術の品質範囲 4 酸化物含有物質で緻密化する従来技術の品質範囲 5 酸化物含有物質で緻密化する従来技術と高水温で粗
粒化する従来技術の組み合わせで予想される品質範囲 6 本発明の品質範囲
1 Quality range of ordinary water granulation technology at low water temperature 2 Quality range of conventional technology for coarsening at high water temperature 3 Quality range of conventional technology for coarsening at high water temperature and densification at high water flow / slag flow ratio 4 Quality range of conventional technology for densification with oxide-containing material 5 Quality range expected by combination of conventional technology for densification with oxide-containing material and conventional technology for coarsening at high water temperature 6 Quality range of the present invention

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高炉から流出する溶融スラグに、酸化鉄
含有物質を酸化鉄量として該溶融スラグ質量に対して2
質量%以下添加した後、水温60℃以上の水で水砕する
ことを特徴とする水砕スラグの製造方法。
1. The molten slag flowing out of a blast furnace is provided with an iron oxide-containing substance in an amount of iron oxide of 2% based on the mass of the molten slag.
A method for producing granulated slag, wherein the granulated slag is granulated with water having a water temperature of 60 ° C. or higher after addition of not more than mass%.
【請求項2】 水砕する際の水流量/スラグ流量が、5
以上30未満であることを特徴とする請求項1に記載の
水砕スラグの製造方法。
2. The water flow rate / slag flow rate during granulation is 5
The method for producing granulated slag according to claim 1, wherein the slag is not less than 30.
【請求項3】 前記酸化鉄含有物質における結晶水含有
量が、5質量%以下であることを特徴とする請求項1ま
たは2に記載の水砕スラグの製造方法。
3. The method for producing granulated slag according to claim 1, wherein the water content of crystallization in the iron oxide-containing substance is 5% by mass or less.
JP2000371655A 2000-12-06 2000-12-06 Method of manufacturing blast furnace granulated slag Pending JP2002173348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000371655A JP2002173348A (en) 2000-12-06 2000-12-06 Method of manufacturing blast furnace granulated slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000371655A JP2002173348A (en) 2000-12-06 2000-12-06 Method of manufacturing blast furnace granulated slag

Publications (1)

Publication Number Publication Date
JP2002173348A true JP2002173348A (en) 2002-06-21

Family

ID=18841343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000371655A Pending JP2002173348A (en) 2000-12-06 2000-12-06 Method of manufacturing blast furnace granulated slag

Country Status (1)

Country Link
JP (1) JP2002173348A (en)

Similar Documents

Publication Publication Date Title
JP3173336B2 (en) High strength rock wool and method for producing the same
CN106661668A (en) Method for smelting nickel oxide ore
JP3820132B2 (en) Pretreatment method of sintering raw material
CN100491544C (en) Method for producing metallic iron
JP2002173348A (en) Method of manufacturing blast furnace granulated slag
JP3554389B2 (en) Manufacturing method of cement clinker
JP2007063061A (en) Method for aging slag
JPS5827917A (en) Treatment of converter slag or the like
CN108191414B (en) Process for improving volume density of tabular corundum
JP7112392B2 (en) Method for processing and activating steel mill slag
JP6188022B2 (en) Slag manufacturing method and slag manufacturing system
JP3394563B2 (en) Method for producing sintered ore with excellent softening and melting properties
US2912319A (en) Method for desulphurizing iron
JP3252646B2 (en) Sinter production method
CN110564949A (en) Method for reducing powder content of alkaline pellet
JPS6280230A (en) Unfired high-titanium pellet
CN111254279B (en) Vanadium-containing steel slag granulating and sintering method
JP2000319708A (en) Production of blast furnace slag fine aggregate
JPH09272925A (en) Production of sintered ore excellent in property at high temperature and cold strength
JP7216462B2 (en) Slag fine aggregate used for spraying mortar, spraying mortar using the same, and method for producing slag fine aggregate used for spraying mortar
JP6870328B2 (en) Slug
JPS61235519A (en) Production of sintered raw material from ferro nickel slag
JP2755036B2 (en) Method for producing calcined agglomerate
JP2001302291A (en) Method of producing granulated slag
JP2001058861A (en) Blast furnace slag fine aggregate and production thereof and fine aggregate for concrete or mortar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223