JP2000319708A - Production of blast furnace slag fine aggregate - Google Patents

Production of blast furnace slag fine aggregate

Info

Publication number
JP2000319708A
JP2000319708A JP12722099A JP12722099A JP2000319708A JP 2000319708 A JP2000319708 A JP 2000319708A JP 12722099 A JP12722099 A JP 12722099A JP 12722099 A JP12722099 A JP 12722099A JP 2000319708 A JP2000319708 A JP 2000319708A
Authority
JP
Japan
Prior art keywords
slag
fine aggregate
blast furnace
furnace slag
granulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12722099A
Other languages
Japanese (ja)
Other versions
JP3619389B2 (en
Inventor
Tetsuji Ibaraki
哲治 茨城
Masato Mazawa
正人 真沢
Yuji Toda
祐治 遠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12722099A priority Critical patent/JP3619389B2/en
Publication of JP2000319708A publication Critical patent/JP2000319708A/en
Application granted granted Critical
Publication of JP3619389B2 publication Critical patent/JP3619389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

PROBLEM TO BE SOLVED: To produce fine aggregate for concrete and mortar at a low cost in a large quantity with simple equipment by using water-granulated slag rapidly cooled with water as the raw material. SOLUTION: Classification and crushing are applied to the granular blast furnace slag which is rapidly cooled by using the water, to improve the grain diameter distribution and grain shape. The producing method is: the water- granulated blast furnace slag is crushed after classifying otherwise, the water granulated blast furnace slag is classified after crushing. Then, it is desirable to separately crush each of ones obtd. on plus sieve and minus sieve and mix them, after classifying the water-granulated blast furnace slag.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉から排出され
る際に、水を用いて急冷して製造した粒状の固形スラグ
を破砕して、コンクリートやモルタル等に用いられる細
骨材の製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention crushes granular solid slag produced by quenching with water when discharged from a blast furnace to produce fine aggregate used for concrete, mortar and the like. It is about the method.

【0002】[0002]

【従来の技術】高炉から排出されるスラグの処理方法
は、スラグを溶融状態でヤードやドライピットに流して
徐冷する方法と、溶融状態のスラグを、加圧水を噴出し
ている水樋の中で水冷し、急速冷却する方法がある。こ
のうち、水冷する方法で製造された高炉スラグは、水砕
スラグと呼ばれる5mm以下の粒径のガラス質の固形ス
ラグである。この水砕スラグは、微破砕して、高炉セメ
ント原料とする用途があるとともに、無加工もしくは、
軽破砕して、天然砂代替の土木建築用の原料としても利
用されている。この土木建築用の用途のうちには、コン
クリートやモルタル等に使用される細骨材、以降、スラ
グ細骨材と称す、がある。特に、近年は海砂の採取規制
や陸砂開発に伴う環境破壊の問題も発生しており、天然
資源を保全するための重要なリサイクル材料として、ス
ラグ細骨材の需要が高まっている。
2. Description of the Related Art There are two methods for treating slag discharged from a blast furnace: a method in which slag is flown in a molten state through a yard or a dry pit, and a method in which the slag is gradually cooled. There is a method of cooling with water and rapid cooling. Among them, the blast furnace slag produced by the water-cooling method is a vitreous solid slag having a particle diameter of 5 mm or less, called granulated slag. This granulated slag is finely crushed and used as a blast furnace cement raw material.
Lightly crushed, it is also used as a raw material for civil engineering construction instead of natural sand. Among the uses for civil engineering and construction, there is a fine aggregate used for concrete, mortar, and the like, and hereinafter referred to as a slag fine aggregate. In particular, in recent years, there has also been a problem of environmental destruction caused by sea sand extraction regulations and land sand development, and demand for slag fine aggregate as an important recycled material for preserving natural resources has been increasing.

【0003】スラグ細骨材は、高炉セメント原料用の微
粉末に用いられる水砕スラグとは異なる物性が要求され
ており、JIS A5011にも規定されているよう
に、比較的比重が大きく、吸水率の少ない水砕スラグで
ある。例えば、特開昭55−136151号公報記載の
方法のように、その冷却方法も、高炉セメント原料用と
は異なっており、比較的冷却の強い条件で製造されてい
る。このような冷却方法の改善で、絶対乾燥比重、単位
容積質量の大きい、細骨材に適用しやすい水砕スラグを
製造することは可能である。しかし、冷却後の製品スラ
グを無加工で、スラグ細骨材としての性能を満足させる
ために十分な強い冷却条件を作るために、冷却水量が過
大となり、ポンプ等の設備費が高くなる、用役費用が高
くなる、といった問題があった。
Slag fine aggregate is required to have different physical properties from granulated slag used as fine powder for blast furnace cement raw materials, and as specified in JIS A5011, has a relatively large specific gravity and water absorption. Granulated slag with low rate. For example, as in the method described in Japanese Patent Application Laid-Open No. 55-136151, the cooling method is also different from that for the blast furnace cement raw material, and is produced under relatively strong cooling conditions. By improving such a cooling method, it is possible to produce a granulated slag having a large absolute dry specific gravity and a large unit volume mass and easily applicable to fine aggregate. However, in order to create a sufficiently strong cooling condition to satisfy the performance as a slag fine aggregate without cooling the product slag after cooling, the amount of cooling water becomes excessive, and equipment costs such as pumps increase. There was a problem that the service cost was high.

【0004】また、冷却されて製造された無加工の水砕
スラグ、以下、原鉱水砕スラグと称す、には、粒状のス
ラグに混じって、細かい針状のガラス化したスラグが混
合している。この針状スラグが混合しているために、水
砕スラグ粒子は密に詰まった状態になりづらい特徴を持
っている。この結果、スラグ粒子の空間占有率、以下、
実績率を称す、が低く、従って、各種の物性指標がJI
S規定の物性範囲に入っていても、細骨材としては、必
ずしも良い性能が発揮できていなかった。
[0004] In addition, unprocessed granulated slag produced by cooling, hereinafter referred to as raw ore granulated slag, contains fine needle-like vitrified slag mixed with granular slag. . Because the needle-shaped slag is mixed, the granulated slag particles have a characteristic that it is difficult to be in a densely packed state. As a result, the space occupancy of the slag particles,
Refers to the actual rate, but is low.
Even in the physical property range defined by S, good performance was not necessarily exhibited as fine aggregate.

【0005】つまり、従来の土木工学の知見から、一般
に細骨材の実績率が低いと、生コンクリートの流動性が
悪くなり、コンクリート打ち施工時のポンプ圧送時に、
ポンプ詰まりを起こしたり、型枠のコーナー部までコン
クリートが廻らないため、仕上がりの表面性状が悪くな
るといった問題が認められている。スラグ細骨材におい
ても同様の現象があることから、実績率の高い水砕スラ
グ細骨材を製造することが重要であった。
[0005] In other words, from the knowledge of conventional civil engineering, if the performance rate of fine aggregate is generally low, the fluidity of ready-mixed concrete deteriorates, and when concrete is pumped during construction,
Problems such as clogging of the pump and deterioration of the surface properties of the finish are recognized because concrete does not turn to the corners of the formwork. Since there is a similar phenomenon in slag fine aggregate, it was important to produce a granulated slag fine aggregate with a high achievement rate.

【0006】したがって、実績率を高くする方法とし
て、例えば、特開昭53−22522号公報に記載され
ているように、従来から、原鉱水砕スラグをインパクト
クラッシャー等の破砕機を用いて破砕することが行われ
ている。つまり、原鉱水砕スラグを軽破砕することによ
り、粒径を小さくするとともに、針状スラグを破壊し
て、実績率及び単位容積質量を向上させ、細骨材として
の性能を向上させることが行われている。
Accordingly, as a method of increasing the achievement rate, for example, as described in Japanese Patent Application Laid-Open No. 53-22522, crushed raw ore slag is conventionally crushed using a crusher such as an impact crusher. That is being done. In other words, by lightly crushing the raw ore granulated slag, it is possible to reduce the particle size, destroy the acicular slag, improve the performance rate and unit mass, and improve the performance as fine aggregate. Have been done.

【0007】また、破砕の操作によって、水砕スラグの
粒径分布を細骨材に適正なものとすることも重要であ
る。つまり、原鉱水砕スラグの粒径を小さくして、か
つ、粒径分布を広げて、粒径分布を細かいものから粗い
ものを適正な比率とすることが、生コンクリートやモル
タルの流動性を向上させることもまた重要で、破砕操作
により、粒径を改善することも可能である。
[0007] It is also important to make the particle size distribution of the granulated slag appropriate for the fine aggregate by the crushing operation. In other words, reducing the particle size of the ore granulated slag and widening the particle size distribution, and setting the appropriate ratio from fine to coarse to improve the fluidity of ready-mixed concrete and mortar It is also important that the particle size be improved by a crushing operation.

【0008】[0008]

【発明が解決しようとする課題】前述のように、細骨材
としての性能を向上させるために、原鉱水砕スラグを破
砕機を用いて、軽破砕することは有効である。しかし、
粒径が1mmから5mmと大きい水砕スラグは、表面に
凹凸があるものの、比較的球に近い形状をしているが、
1mm以下の粒径の水砕スラグには、針状スラグが混じ
っている。原鉱の段階では、この針状スラグは、比較的
大きい粒状スラグの間に入りやすく、その結果、原鉱水
砕スラグの実績率は低く、緻密な細骨材はできなかっ
た。
As described above, in order to improve the performance as fine aggregate, it is effective to lightly crush raw granulated slag using a crusher. But,
Granulated slag with a large particle size of 1 mm to 5 mm has a surface that is uneven, but has a shape relatively close to a sphere,
Needle-like slag is mixed in the granulated slag having a particle size of 1 mm or less. At the stage of the ore, the needle-like slag easily enters between relatively large granular slags, and as a result, the performance rate of the ore granulated slag was low, and dense fine aggregate could not be obtained.

【0009】また、水砕スラグの細骨材としての性能を
向上させるために、従来から、原鉱水砕スラグを破砕す
ることが行われていたが、従来法では、ただ破砕すれば
良いとの考えしかなく、十分な細骨材としての性能向上
の効果が上げられてこなかった。つまり、原鉱スラグを
破砕する場合にも、針状スラグが比較的大きい粒状スラ
グの間に分散していることが、原鉱スラグの破砕を行っ
たにおいても良好な細骨材の製造の障害になっていた。
すなわち、従来法の破砕機で、原鉱水砕スラグをそのま
ま破砕する場合、針状スラグが粒径が大きい粒状スラグ
の間に入り込んでしまい、針状スラグが効果的に破砕機
の破砕作用面と接触しないことから、針状スラグの形状
が破壊しづらい問題があった。したがって、従来法での
破砕方法では、破砕の完了した水砕スラグでも、針状ス
ラグが残ってしまい、充填密度が低くなるため、破砕処
理を行っても、さぼど実績率が上がらず、スラグ細骨材
としての性能が十分には向上しなかった。
[0009] In addition, in order to improve the performance of the granulated slag as a fine aggregate, the ore granulated slag has been conventionally crushed. However, in the conventional method, only crushing is required. There was only an idea, and the effect of improving the performance as a sufficient fine aggregate was not raised. In other words, even when crushing ore slag, the fact that needle-like slag is dispersed between relatively large granular slags is an obstacle to the production of fine aggregate even when crushing ore slag. Had become.
In other words, in the case of crushing raw ore granulated slag as it is with a conventional crusher, the acicular slag enters between the granular slag having a large particle size, and the acicular slag effectively becomes a crushing surface of the crusher. Since there is no contact, there is a problem that the shape of the needle-shaped slag is difficult to break. Therefore, in the conventional crushing method, even in the crushed granulated slag, needle-shaped slag remains, and the packing density becomes low. The performance as fine aggregate did not improve sufficiently.

【0010】また、従来法のこの欠点を補うため、原鉱
水砕スラグの破砕の程度を上げると、針状スラグの形状
が破壊され、水砕スラグの実績率を十分に向上するもの
の、水砕スラグの粒径が小さくなりすぎて、粗骨材との
なじみに影響する粗めの2mmから5mm径の粒子が不
足して、やはり生コンクリートの流動性の点で不十分な
結果となっていた。したがって、破砕加工を十分に行
い、粒径を相当に小さくする破砕方法の場合でも、水砕
スラグの細骨材としての性能を確保することは難しかっ
た。
In order to make up for this drawback of the conventional method, if the degree of crushing of the raw ore granulated slag is increased, the shape of the acicular slag is destroyed, and the actual rate of the granulated slag is sufficiently improved. The particle size of the slag became too small, and the coarse particles having a diameter of 2 to 5 mm, which affect the compatibility with the coarse aggregate, were insufficient, and the result was also insufficient in terms of the flowability of the ready-mixed concrete. . Therefore, even in the case of the crushing method in which the crushing process is performed sufficiently and the particle size is considerably reduced, it has been difficult to secure the performance of the granulated slag as fine aggregate.

【0011】このように、従来法によって製造された水
砕スラグ細骨材は、生コンクリートの流動性を確保する
ための性能が不十分で、これを使用した生コンクリート
では、生コンクリート施工用のポンプ詰まりを起こしや
すいといった問題や、生コンクリートの流動性を確保す
るために、セメントと水の使用量が増加して、コンクリ
ート製造費用が増加するといった問題、が生じていた。
[0011] As described above, the granulated slag fine aggregate produced by the conventional method has insufficient performance to ensure the fluidity of the ready-mixed concrete. Problems such as easy clogging of the pump and problems such as an increase in the amount of cement and water used to secure the fluidity of the ready-mixed concrete and an increase in concrete production costs have occurred.

【0012】[0012]

【課題を解決するための手段】本発明は、下記の(1)
から(5)の発明の通りである。 (1)水を用いて急冷した粒粉状の高炉スラグに分級と
破砕を施することにより、粒径分布および粒形状を改善
すること特徴とする高炉スラグ細骨材の製造方法。 (2)水を用いて急冷した粒粉状の高炉スラグを分級後
に破砕することを特徴とする請求項1の高炉スラグ細骨
材の製造方法。 (3)水を用いて急冷した粒粉状の高炉スラグを破砕後
に分級することを特徴とする請求項1の高炉スラグ細骨
材の製造方法。 (4)水を用いて急冷した粒粉状の高炉スラグを分級し
た後、篩の上と下で得られたものを各々破砕して、これ
らを混合することを特徴とする(2)の高炉スラグ細骨
材の製造方法。 (5)0.3mmから1.2mmを分級点として、破砕
加工された粒粉状の高炉スラグを分級することを特徴と
する(1)〜(4)の高炉スラグ細骨材の製造方法。
Means for Solving the Problems The present invention provides the following (1):
To (5). (1) A method for producing blast furnace slag fine aggregate, characterized by improving the particle size distribution and particle shape by subjecting blast furnace slag in the form of granulated powder quenched with water to classification and crushing. (2) The method for producing blast furnace slag fine aggregate according to claim 1, wherein the granulated blast furnace slag quenched with water is crushed after classification. (3) The method for producing blast furnace slag fine aggregate according to claim 1, wherein the granulated blast furnace slag quenched with water is classified after crushing. (4) The granulated blast furnace slag quenched by using water is classified, and then the blast furnace slag obtained above and below the sieve is crushed, and these are mixed and mixed. Aggregate manufacturing method. (5) The method for producing blast furnace slag fine aggregate according to (1) to (4), wherein the crushed and granular blast furnace slag is classified with the classification point of 0.3 mm to 1.2 mm.

【0013】[0013]

【発明の実施の形態】図1に、本発明の水砕スラグ破砕
方法を実施する設備の1例を示す。本図では、破砕を行
った後に分級を行う装置を示す。原鉱水砕スラグ供給ホ
ッパー1内の原鉱水砕スラグをベルトコンベア2で、破
砕機3に供給し、ここで、原鉱水砕スラグを軽破砕す
る。軽破砕後の水砕スラグを分級装置4に送り、篩上と
篩下に分ける。篩上の水砕スラグをスラグ細骨材として
製品水砕スラグホッパー5に回収する。この際、分級の
際に篩上の水砕スラグの平均粒径が、1.2mmから2
mmになるように、分級することが望ましい。スラグ細
骨材として、破砕機3と分級装置4を調整する。特に、
篩効率も考慮すれば、分級装置4の分級点を0.3mm
から1.2mmに調整することが望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of equipment for carrying out the granulated slag crushing method of the present invention. This figure shows an apparatus for performing classification after crushing. The raw ore granulated slag in the raw ore granulated slag supply hopper 1 is supplied to the crusher 3 by the belt conveyor 2, where the raw ore granulated slag is lightly crushed. The lightly crushed granulated slag is sent to the classification device 4 and divided into upper and lower sieves. The granulated slag on the sieve is collected in the granulated slag hopper 5 as slag fine aggregate. At this time, the average particle size of the granulated slag on the sieve at the time of classification is from 1.2 mm to 2 mm.
It is desirable to classify so as to obtain mm. The crusher 3 and the classifier 4 are adjusted as slag fine aggregate. In particular,
Considering the sieve efficiency, the classification point of the classification device 4 is 0.3 mm
It is desirable to adjust the height to 1.2 mm.

【0014】この分級後の篩上として、回収された細骨
材は、粒径の小さい部分に含まれる針状スラグの大半が
除去されるため、実績率が高く、絶対乾燥比重も高い、
良好な細骨材が製造できる。
The fine aggregate recovered on the sieve after the classification has a high performance rate and a high absolute dry specific gravity because most of the needle-like slag contained in the portion having a small particle diameter is removed.
Good fine aggregate can be manufactured.

【0015】また、図2に、本発明の水砕スラグ破砕方
法を実施する設備の他の1例を示す。原鉱水砕スラグ供
給ホッパー1内の原鉱水砕スラグをベルトコンベア2
で、分級装置4に送り、篩上と篩下に分ける。各々の水
砕スラグを破砕機3に供給し、ここで、軽破砕する。各
々の軽破砕後のスラグを製品水砕ホッパー5に回収す
る。必要に応じて、この軽破砕後の水砕スラグを混合装
置6にて、混合する。この際、水砕スラグ中の大きい球
状に近いものに、針状のものの混合が少なくなる分級点
は、0.3mmから1.2mmである。水砕スラグの冷
却方法によって、針状スラグの粒径分布の状態が変わる
ため、前述の分級点の範囲で、いくつかの篩を用意し
て、原鉱水砕スラグの粒径分布により、篩を選択して設
置し、分級する。本図では、分級を行った後に破砕を行
う装置を示す。場合によっては、各々の破砕後の水砕ス
ラグを混合できる設備である。
FIG. 2 shows another example of equipment for implementing the granulated slag crushing method of the present invention. The ore granulated slag in the ore granulated slag supply hopper 1 is transferred to the belt conveyor 2.
Then, it is sent to the classification device 4 and divided into upper and lower sieves. Each granulated slag is supplied to a crusher 3, where it is lightly crushed. The slag after each light crushing is collected in the product granulation hopper 5. If necessary, the lightly crushed granulated slag is mixed in the mixing device 6. At this time, the classification point at which the mixing of needle-like ones with those close to the large spheres in the granulated slag is 0.3 mm to 1.2 mm. Depending on the cooling method of the granulated slag, the state of the particle size distribution of the acicular slag changes.Therefore, within the range of the classification point described above, several sieves are prepared. Select and install and classify. This figure shows an apparatus that performs crushing after performing classification. In some cases, it is equipment that can mix the granulated slag after each crushing.

【0016】[0016]

【実施例】表1に示す原鉱水砕スラグ1を、図1に示さ
れた設備で軽破砕された後、1.0mmの篩で分級した
篩上で集められた水砕スラグの平均粒径、実績率、単位
容積質量を、実施例1として表2に示す。なお、破砕は
インパクトクラッシャーで行ったが、ロッドミル等の他
方式の破砕機でも良い。また、生コンクリートの流動特
性を示すスランプ試験結果も表2に示す。スランプ試験
は、JISに適合した良好な天然細骨材で、スランプが
15cmとなる条件で生コンクリートを準備・調合し
て、スランプ試験したものである。なお、細骨材の性能
が悪化すると、流動性が悪化し、スランプ値は小さくな
る。なお、原鉱水砕スラグ性状は表1に記載されたとお
りである。
EXAMPLE The average particle size of the granulated slag collected from the raw ore granulated slag 1 shown in Table 1 after being lightly crushed by the equipment shown in FIG. , Actual rate, and unit volume mass are shown in Table 2 as Example 1. The crushing was performed with an impact crusher, but a crusher of another type such as a rod mill may be used. Table 2 also shows the slump test results indicating the flow characteristics of the ready-mixed concrete. In the slump test, a ready-mixed concrete was prepared and mixed under a condition in which the slump was 15 cm using a good natural fine aggregate conforming to JIS, and the slump test was performed. When the performance of the fine aggregate deteriorates, the fluidity deteriorates and the slump value decreases. The properties of the ore granulated slag are as shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】実施例1では、平均粒径は、1.7mmと
比較例よりもやや大きいものの、細骨材として適正な範
囲にあった。また、実績率は、57%と高く、単位容積
質量も1.55kg/lと高かった。その結果、細骨材
としての性能は良好で、スランプが、14.5cmとな
り、このスラグ細骨材を用いた生コンクリートとしての
流動性が十分であった。
In Example 1, the average particle size was 1.7 mm, which was slightly larger than that of the comparative example, but was in an appropriate range as a fine aggregate. The performance rate was as high as 57%, and the unit volume mass was as high as 1.55 kg / l. As a result, the performance as fine aggregate was good, the slump was 14.5 cm, and the fluidity as ready-mixed concrete using this slag fine aggregate was sufficient.

【0020】また、実施例2として、表1に示す原鉱水
砕スラグ2を同設備で、0.4mmで分級したスラグ細
骨材の試験結果も表2に示す。
Further, as Example 2, Table 2 also shows the test results of fine aggregate of slag obtained by classifying raw granulated slag 2 shown in Table 1 with the same equipment at 0.4 mm.

【0021】実施例2では、平均粒径は1.6mmと比
較例と同等であったが、実績率は56%と高く、単位容
積質量も1.52kg/lと高かった。その結果、スラ
ンプが14.0cmとなり、この実施例のスラグ細骨材
を用いた生コンクリートとしての流動性が十分であっ
た。
In Example 2, the average particle size was 1.6 mm, which was equivalent to that of the comparative example. However, the actual rate was as high as 56%, and the mass per unit volume was as high as 1.52 kg / l. As a result, the slump was 14.0 cm, and the fluidity as ready-mixed concrete using the slag fine aggregate of this example was sufficient.

【0022】表1に示す原鉱水砕スラグ1を、図2に示
された設備で1.0mmの篩で分級した後、篩の上下各
々を軽破砕し、両者を混合した結果を、表2に実施例3
として示す。なお、ここでも破砕はインパクトクラッシ
ャーを用いて行った。このスラグ細骨材の平均粒径は、
1.55mmと細骨材として適正な範囲にあった。実績
率は58%と高く、単位容積質量も1.59kg/lと
高かった。その結果、スランプが15.5cmであっ
て、良好な天然細骨材と全く同等の生コンクリートとし
ての流動性であることが分かった。
The granulated raw ore slag 1 shown in Table 1 was classified with a 1.0 mm sieve using the equipment shown in FIG. 2, and the upper and lower sides of the sieve were lightly crushed. Example 3
As shown. Here, crushing was also performed using an impact crusher. The average particle size of this slag fine aggregate is
It was 1.55 mm, which was in an appropriate range as fine aggregate. The performance rate was as high as 58%, and the unit volume mass was as high as 1.59 kg / l. As a result, the slump was 15.5 cm, and it was found that the fluidity as ready-mixed concrete was completely equivalent to that of a good natural fine aggregate.

【0023】また、表1に示す原鉱水砕スラグ2を同設
備で、0.4mmの篩で分級した後、篩の上下各々を軽
破砕した篩上の水砕スラグを細骨材として評価した結果
を実施例4として、表2に示す。水砕スラグの平均粒径
は、1.45mmと細骨材として適正な範囲にあった。
実績率は57%と高く、単位容積質量も1.52 kg
/lと高かった。その結果、スランプが14.5cmで
あって、良好な生コンクリートとしての流動性が確保さ
れていることが分かった。
The raw ore granulated slag 2 shown in Table 1 was classified with a 0.4 mm sieve using the same equipment, and the granulated slag on the sieve obtained by slightly crushing the upper and lower sides of the sieve was evaluated as fine aggregate. The results are shown in Table 2 as Example 4. The average particle size of the granulated slag was 1.45 mm, which was in an appropriate range as fine aggregate.
The achievement rate is as high as 57%, and the unit mass is 1.52 kg.
/ L. As a result, the slump was 14.5 cm, and it was found that good fluidity as ready-mixed concrete was secured.

【0024】このように、原鉱水砕スラグの性状の変化
にともなって、分級装置の分級点を変更することが望ま
しく、一般的な原鉱水砕スラグの加工には、分級点を
0.3mmから1.2mmの範囲とすることが有効であ
る。
As described above, it is desirable to change the classification point of the classifying device in accordance with the change in the properties of the raw ore granulated slag. It is effective to set the range to 1.2 mm.

【0025】ところが、従来法で製造した水砕スラグ細
骨材は骨材としての性能を十分に発揮できなかった。従
来法での水砕スラグ細骨材製造の結果を示す。従来法で
原鉱水砕スラグ1を軽破砕のみ実施した結果を、表2の
比較例1として示す。比較例1では、平均粒径は、1.
5mmと細骨材として適正な範囲にあるが、実績率は5
3%と低く、単位容積質量も1.45kg/lと比較的
低かった。その結果、細骨材としての性能が十分でな
く、スランプが12.5cmしかなく、生コンクリート
としての流動性が低いことが分かった。
However, the granulated slag fine aggregate produced by the conventional method could not sufficiently exhibit the performance as an aggregate. The result of manufacture of granulated slag fine aggregate by the conventional method is shown. The result of performing only light crushing of the raw ore granulated slag 1 by the conventional method is shown as Comparative Example 1 in Table 2. In Comparative Example 1, the average particle size was 1.
5mm, which is in the appropriate range as fine aggregate, but the actual rate is 5
It was as low as 3%, and the unit mass was relatively low as 1.45 kg / l. As a result, it was found that the performance as fine aggregate was not sufficient, the slump was only 12.5 cm, and the fluidity as ready-mixed concrete was low.

【0026】次に、分級の際の分級点の影響を調査する
ために、篩目の大きい試験結果と篩目の小さい試験結果
を示す。試験製造は、図2の設備で行い、比較例として
表1に記載の原鉱水砕スラグ1を用いた。
Next, in order to investigate the influence of the classification point at the time of classification, a test result with a large sieve and a test result with a small sieve are shown. The test production was performed using the equipment shown in FIG. 2, and the raw ore granulated slag 1 shown in Table 1 was used as a comparative example.

【0027】破砕した後、篩の分級点を1.3mmとし
た場合の試験操業結果を、比較例2として表2に示す。
実績率と単位容積質量は良好であったが、平均粒径が、
2.1mmと大きすぎることが理由で、潤滑のために重
要な微細な粒子が不足しており、生コンクリートでの流
動性が悪くなっており、スランプが12.5cmと、細
骨材としての性能が十分に満足できないことが判明し
た。
Table 2 shows the results of the test operation when the classification point of the sieve was 1.3 mm after crushing.
The actual rate and unit mass were good, but the average particle size was
Due to being too large as 2.1 mm, fine particles important for lubrication are lacking, fluidity in ready-mixed concrete is poor, slump is 12.5 cm, and fine aggregate as fine aggregate It turned out that the performance was not satisfactory enough.

【0028】また、篩の分級点が、0.3mm以下の例
として、0.25mmの篩で分級した場合の例を比較例
3に示すが、平均粒径が1.1mmと小さすぎ、比較的
粗い水砕スラグが不足していることと、針状の水砕スラ
グの除去が不十分であり、実績率が上がっていないこと
の理由で、やはり、スランプが12.0cmと、細骨材
としての性能が満足できないことが判明した。以上の理
由から、本発明での分級装置の分級点を0.3mmから
1.2mmとした。
As an example in which the classification point of the sieve is 0.3 mm or less, an example in which the classification is performed with a 0.25 mm sieve is shown in Comparative Example 3. The average particle size is too small at 1.1 mm. Due to the lack of coarse granulated slag and insufficient removal of needle-shaped granulated slag, the slump was still 12.0 cm due to the lack of achievement rate. It turned out that the performance as was not satisfactory. For the above reasons, the classification point of the classification device according to the present invention is set to 0.3 mm to 1.2 mm.

【0029】また、表2の比較例4a及び4bに、原鉱
水砕スラグ1を破砕をせずに、0.7mmの篩を用いて
分級を行っただけのスラグ細骨材の評価も行った結果を
示す。分級後の水砕スラグの測定値では、比較例4aに
は、篩上の水砕スラグの結果を示すが、平均粒径は1.
8mmと良好な値を示していたが、実績率は50%とか
なり低く、単位容積質量も1.27kg/lと低かっ
た。この結果、スランプ値は10.5cmと小さく、劣
質な細骨材であることが分かった。また、比較例4bに
は篩下の水砕スラグの結果を示すが、平均粒径は1.0
mmと小さく、実績率は49%とかなり低く、単位容積
質量も1.22kg/lと低かった。この結果、スラン
プ値は10.0cmと小さく、これも劣質の細骨材であ
ることが分かった。
Further, in Comparative Examples 4a and 4b of Table 2, the slag fine aggregate obtained by merely sieving using a 0.7 mm sieve without crushing the raw ore granulated slag 1 was also evaluated. The results are shown. The measured values of the granulated slag after classification show the results of the granulated slag on the sieve in Comparative Example 4a.
Although the value was as good as 8 mm, the actual rate was as low as 50% and the unit mass was as low as 1.27 kg / l. As a result, the slump value was as small as 10.5 cm, indicating that it was a poor fine aggregate. Comparative Example 4b shows the results of granulated slag under a sieve.
mm, the performance rate was as low as 49%, and the unit volume mass was as low as 1.22 kg / l. As a result, the slump value was as small as 10.0 cm, which was also found to be poor fine aggregate.

【0030】分級したのみの水砕スラグ細骨材を光学顕
微鏡にて調査したところ、針状のガラス化したスラグが
大量に存在しており、これが、実績率が上がらないこと
の原因であることが判明した。このように、水砕スラグ
に分級のみを施すことでは、良質の水砕スラグ細骨材を
製造することができなかった。
When the finely divided granulated slag aggregate that had just been classified was examined with an optical microscope, a large amount of needle-like vitrified slag was present, which was the reason that the performance rate did not increase. There was found. Thus, by applying only classification to the granulated slag, a high-quality granulated slag fine aggregate could not be produced.

【0031】以上に説明したように、本発明を用いてス
ラグ細骨材を製造した結果、生コンクリート向けに適正
なスラグ細骨材を経済的に製造することができた。ま
た、モルタル用細骨材にもコンクリート向けと同様に流
動性を良好とする性質を要求されていることから、モル
タル用スラグ細骨材製造にも、本発明は、同様に有効で
ある。
As described above, as a result of producing a slag fine aggregate using the present invention, a slag fine aggregate suitable for ready-mixed concrete can be economically produced. In addition, since fine aggregates for mortar are required to have good fluidity as well as concrete, the present invention is similarly effective for manufacturing slag fine aggregates for mortar.

【0032】[0032]

【発明の効果】本発明によれば、水を用いて急冷した水
砕スラグを原料として、簡易な設備で、安価かつ大量に
コンクリート、モルタル向け等の細骨材を製造できる。
また、破砕と分級を行うことにより、水砕スラグの製造
時の冷却方法の変動にともなう原鉱水砕スラグの性状の
変化を修正して、適正な細骨材を製造できる。
According to the present invention, fine aggregates for concrete and mortar can be manufactured inexpensively and in large quantities with simple equipment using granulated slag quenched with water as a raw material.
In addition, by performing the crushing and classification, it is possible to correct the change in the properties of the ore granulated slag due to the change in the cooling method at the time of producing the granulated slag, and to produce an appropriate fine aggregate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水砕スラグの破砕・分級装置の例を示
す図である。
FIG. 1 is a view showing an example of a crushing and classifying apparatus for granulated slag of the present invention.

【図2】本発明の水砕スラグの破砕・分級装置の他の実
施例を示す図である。
FIG. 2 is a view showing another embodiment of the crushing and classifying apparatus for granulated slag of the present invention.

【符号の説明】[Explanation of symbols]

1 原鉱水砕スラグ供給ポッパー 2 ベルトコンベア 3 破砕機 4 分級装置 5 製品水砕スラグホッパー 6 混合装置 DESCRIPTION OF SYMBOLS 1 Raw crushed slag supply popper 2 Belt conveyor 3 Crusher 4 Classifier 5 Product granulated slag hopper 6 Mixing device

フロントページの続き (72)発明者 遠田 祐治 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 Fターム(参考) 4K012 AA02 Continued on the front page (72) Inventor Yuji Toda 1 Kimitsu, Kimitsu City Nippon Steel Corporation Kimitsu Works F-term (reference) 4K012 AA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水を用いて急冷した粒粉状の高炉スラグ
に分級と破砕を施すことを特徴とする高炉スラグ細骨材
の製造方法。
1. A method for producing blast-furnace slag fine aggregate, comprising classifying and crushing granular blast-furnace slag quenched with water.
【請求項2】 水を用いて急冷した粒粉状の高炉スラグ
を分級後に破砕することを特徴とする請求項1に記載の
高炉スラグ細骨材の製造方法。
2. The method for producing blast furnace slag fine aggregate according to claim 1, wherein the granulated blast furnace slag quenched with water is classified and then crushed.
【請求項3】 水を用いて急冷した粒粉状の高炉スラグ
を破砕後に分級することを特徴とする請求項1に記載の
高炉スラグ細骨材の製造方法。
3. The method for producing blast furnace slag fine aggregate according to claim 1, wherein the granulated blast furnace slag quenched with water is classified after crushing.
【請求項4】 水を用いて急冷した粒粉状の高炉スラグ
を分級した後、篩の上と下で得られたものを各々破砕し
て、これらを混合することを特徴とする請求項2に記載
の高炉スラグ細骨材の製造方法。
4. The method according to claim 2, wherein the granulated blast furnace slag quenched with water is classified, and then the slag obtained above and below the sieve is crushed and mixed. Production method of blast furnace slag fine aggregate.
【請求項5】 0.3mmから1.2mmを分級点とし
て分級することを特徴とする請求項1乃至4のいずれか
に記載の高炉スラグ細骨材の製造方法。
5. The method for producing a blast furnace slag fine aggregate according to claim 1, wherein the classification is performed using a classification point of 0.3 mm to 1.2 mm.
JP12722099A 1999-05-07 1999-05-07 Method for producing blast furnace slag fine aggregate Expired - Fee Related JP3619389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12722099A JP3619389B2 (en) 1999-05-07 1999-05-07 Method for producing blast furnace slag fine aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12722099A JP3619389B2 (en) 1999-05-07 1999-05-07 Method for producing blast furnace slag fine aggregate

Publications (2)

Publication Number Publication Date
JP2000319708A true JP2000319708A (en) 2000-11-21
JP3619389B2 JP3619389B2 (en) 2005-02-09

Family

ID=14954706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12722099A Expired - Fee Related JP3619389B2 (en) 1999-05-07 1999-05-07 Method for producing blast furnace slag fine aggregate

Country Status (1)

Country Link
JP (1) JP3619389B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219958A (en) * 2004-02-05 2005-08-18 Nippon Steel Corp Blast furnace slag fine aggregate, method of producing the same and fine aggregate for cement concrete or mortar
JP2008184341A (en) * 2007-01-29 2008-08-14 Takuma Co Ltd Method and apparatus for regulating particle size of water-granulated slag
JP2013137250A (en) * 2011-12-28 2013-07-11 Pan Pacific Copper Co Ltd Sample acquisition device and sample acquisition method
KR101417335B1 (en) 2012-09-03 2014-08-07 주식회사 포스코 Manufacturing Process for Aggregate Using Blast Furnace Slag and FINEX Slag and Aggregate
JP2015221734A (en) * 2014-05-23 2015-12-10 Jfeミネラル株式会社 Concrete composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219958A (en) * 2004-02-05 2005-08-18 Nippon Steel Corp Blast furnace slag fine aggregate, method of producing the same and fine aggregate for cement concrete or mortar
JP2008184341A (en) * 2007-01-29 2008-08-14 Takuma Co Ltd Method and apparatus for regulating particle size of water-granulated slag
JP2013137250A (en) * 2011-12-28 2013-07-11 Pan Pacific Copper Co Ltd Sample acquisition device and sample acquisition method
KR101417335B1 (en) 2012-09-03 2014-08-07 주식회사 포스코 Manufacturing Process for Aggregate Using Blast Furnace Slag and FINEX Slag and Aggregate
JP2015221734A (en) * 2014-05-23 2015-12-10 Jfeミネラル株式会社 Concrete composition

Also Published As

Publication number Publication date
JP3619389B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
JP5321845B2 (en) Wet classification equipment for steel slag
JP2006111523A (en) Method for manufacturing regenerated aggregate
EP0542330B1 (en) Porous granulated steel slag composition and use of such a steel slag composition as aggregate or cement replacement in building materials, road building materials and embankment materials
JP3619389B2 (en) Method for producing blast furnace slag fine aggregate
JP6113957B2 (en) Treatment method of soil mixed with slag
JP2006016212A (en) Concrete composition
JP2896663B2 (en) Method and apparatus for producing fine aggregate for concrete
JP2001048612A (en) Production of aggregate for architecture and civil engineering construction
JP2000290049A (en) Fine aggregate for concrete and its production
JP4406328B2 (en) Granulating treatment method of granulated blast furnace slag
JP3518736B2 (en) Method for producing granulated blast furnace slag sand
JPH1015523A (en) Heavy aggregate
CN106311436A (en) Method for manufacturing building sand by mountain material
JP2006083062A (en) Fine aggregate and its manufacturing method
CN111348855A (en) Method for producing machine-made sand by using ore-smelting slag
JP3583323B2 (en) Blast furnace slag fine aggregate, method for producing the same, and fine aggregate for concrete or mortar
JP2005219958A (en) Blast furnace slag fine aggregate, method of producing the same and fine aggregate for cement concrete or mortar
JP3831693B2 (en) Classification method of granulated blast furnace slag
JPH11314948A (en) Production of artificial sand and its apparatus
JP6188022B2 (en) Slag manufacturing method and slag manufacturing system
JP3687291B2 (en) Granule screening method
JP2001048603A (en) Production of blast-furnace slag fine aggregate
WO1997014760A1 (en) Method for processing iron-containing materials and products produced thereby
JP2011006311A (en) Method of producing aggregate
JPS62158986A (en) Grading device for sintered ore

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees