JP2011006311A - Method of producing aggregate - Google Patents

Method of producing aggregate Download PDF

Info

Publication number
JP2011006311A
JP2011006311A JP2009154000A JP2009154000A JP2011006311A JP 2011006311 A JP2011006311 A JP 2011006311A JP 2009154000 A JP2009154000 A JP 2009154000A JP 2009154000 A JP2009154000 A JP 2009154000A JP 2011006311 A JP2011006311 A JP 2011006311A
Authority
JP
Japan
Prior art keywords
aggregate
fine
fine aggregate
coarse
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009154000A
Other languages
Japanese (ja)
Inventor
Yozo Yamamoto
洋三 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009154000A priority Critical patent/JP2011006311A/en
Publication of JP2011006311A publication Critical patent/JP2011006311A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing aggregate by which aggregate having improved particle shape and adequate particle size constitution is produced by suppressing the occurrence of fine powder.SOLUTION: Initial aggregate 2 having a diameter below a prescribed value is obtained by crushing a raw material 1 using a crusher. A primary classifying step of classifying the resultant initial aggregate 2 into primary coarse aggregate 3 and primary fine aggregate 4 is carried out. A milling step of milling an aggregate mixture 5 obtained by mixing the primary coarse aggregate 3 with the primary fine aggregate 4 with a mill is carried out. A secondary classifying step of classifying the milled aggregate 6 obtained in the milling step into secondary coarse aggregate 7, first secondary fine aggregate 8 and second secondary fine aggregate 9 having particle size more coarse than the first secondary fine aggregate is carried out. Thus, the first secondary fine aggregate 8 used as the aggregate for concrete or the likde is obtained and the second secondary fine aggregate 9 is returned and mixed with the aggregate mixture 5. In such a case, the quantity of the fine aggregate (the primary fine aggregate 6 and the second secondary fine aggregate 9) is controlled to 90-35 mass% based on the total quantity of aggregate mixture 5.

Description

本発明は骨材の製造方法に関する。詳しくは、コンクリート用骨材の製造方法に係るものである。   The present invention relates to an aggregate manufacturing method. Specifically, the present invention relates to a method for producing a concrete aggregate.

コンクリートは複合材料であり、その構成成分は、セメント、骨材、混和材料、および水などである。そして、コンクリートの強度を高めるためには、骨材の強度などを高める必要がある。
そこで、コンクリートを強化することによって、高強度コンクリート構造物を実現するために、品質のバラツキの少ない良質の高強度な骨材が求められている。
一方、良質な河川骨材(川砂、川砂利)などの枯渇に伴い、多種多様な骨材(砕砂、高炉スラグ骨材、コンクリート再生骨材など)が使用されるようになり、その結果、低品質例えば強度(硬度)の低い骨材を採用してしまうという問題も発生する。そして、強度の低い骨材が使用されると、セメントペーストの強度を高めても、構造体としての強度には問題が生じ、安定した強度を有する高強度コンクリート構造物を構築できない。
そこで、高強度コンクリート構造物を構築するために、様々な改善が提案されている。
Concrete is a composite material, and its constituent components are cement, aggregate, admixture, and water. In order to increase the strength of the concrete, it is necessary to increase the strength of the aggregate.
Therefore, in order to realize a high-strength concrete structure by reinforcing concrete, a high-quality and high-strength aggregate with little quality variation is required.
On the other hand, with the depletion of high-quality river aggregates (river sand, river gravel), a wide variety of aggregates (crushed sand, blast furnace slag aggregate, concrete recycled aggregates, etc.) have come to be used. There also arises a problem that an aggregate having a low quality (hardness), for example, is used. If an aggregate with low strength is used, even if the strength of the cement paste is increased, a problem arises in the strength as a structure, and a high strength concrete structure having a stable strength cannot be constructed.
Therefore, various improvements have been proposed in order to construct a high-strength concrete structure.

例えば特許文献1には、砕石である粗骨材の球形率を65%から80%に高めることによって、高強度のコンクリート硬化物を得ることが記載されている。   For example, Patent Document 1 describes that a hardened concrete with high strength is obtained by increasing the sphericity of coarse aggregate, which is crushed stone, from 65% to 80%.

特開2001−240455号公報Japanese Patent Laid-Open No. 2001-240455

しかしながら、特許文献1に記載の発明では、球形率を限定してはいるものの、粗骨材であるがため微粉末などが発生しやすく、発生した微粉末によりコンクリートの品質に支障が生じる場合があった。   However, in the invention described in Patent Document 1, although the sphericity is limited, since it is a coarse aggregate, fine powder and the like are likely to be generated, and the generated fine powder may hinder the quality of concrete. there were.

また、砕砂(砕石砂)は、天然骨材(海砂、川砂など)に比べて、(1)実積率が小さい(粒形が角張っている)、(2)粒度構成に偏りがある、(3)微粒分量が多い、という特徴があった。特に、砕砂は、粒形が角張るため、天然骨材を使用した場合に比べて、所要のスランプを確保するためには、単位水量が増加する傾向にある。そして、単位水量の増加はコンクリートの耐久性の低下の一因ともなる。
一方、単位水量を一定とした場合は、スランプが小さくなるため、コンクリートの施工性の低下を招く。
このような状況であるため、天然骨材に近づけるべく、粒度分布が適切な(バラツキの少ない)骨材を製造する方法が求められている。
In addition, crushed sand (crushed stone sand) is (1) smaller actual volume ratio (grain shape is square) compared to natural aggregate (sea sand, river sand, etc.), (2) there is a bias in particle size composition, (3) There was a feature that the amount of fine particles was large. In particular, crushed sand has an angular particle shape, so that the amount of unit water tends to increase in order to secure a required slump as compared with the case of using natural aggregate. And the increase in unit water quantity will also contribute to the fall of durability of concrete.
On the other hand, when the unit water amount is constant, the slump becomes small, which causes a decrease in concrete workability.
Because of this situation, there is a need for a method for producing an aggregate with an appropriate particle size distribution (with little variation) in order to approach the natural aggregate.

本発明は、以上の点に鑑みて創案されたものであり、微粉末の発生を抑制し、粒形の改善と適度な粒度構成を有する骨材を製造することができる骨材の製造方法を提供することを目的とする。   The present invention was devised in view of the above points, and is an aggregate production method capable of suppressing the generation of fine powder and producing an aggregate having an improved particle shape and an appropriate particle size configuration. The purpose is to provide.

上記の目的を達成するために、本発明の骨材の製造方法は、原料を破砕して得られた初期骨材を、粗骨材と、細骨材とに分級する分級工程と、該分級工程によって得られた、粗骨材と細骨材とを混合して得られた骨材混合物を摩砕する摩砕工程とを備え、前記骨材混合物の全量基準で、細骨材の量を90〜35質量%とする。   In order to achieve the above object, the aggregate production method of the present invention comprises a classification step of classifying an initial aggregate obtained by crushing raw materials into a coarse aggregate and a fine aggregate, and the classification A grinding step of grinding the aggregate mixture obtained by mixing the coarse aggregate and the fine aggregate obtained by the process, and the amount of fine aggregate is determined based on the total amount of the aggregate mixture. 90 to 35% by mass.

ここで、粗骨材と細骨材の混合物である骨材混合物の全量基準で、細骨材の量を90〜35質量%として、この骨材混合物を摩砕することによって、ぶつかり合うと共にすり合う粗骨材の間に細骨材が入り込み、粗骨材同士のぶつかり合いが緩和され、適度な「すり合い」状態が生じる。
また、本発明において「破砕」とは、骨材を砕いて、さらに直径の小さい骨材にすることを意味する。
また、本発明において「摩砕」とは、骨材を砕いて直径の小さい骨材にするのではなく、角張った骨材の角を取ったり、骨材の表面の凹凸を改善して滑らかにしたりすることを意味する。換言すれば、「粒形の改善処理」である。
なお、通常、破砕処理は破砕機で、摩砕処理は摩砕機で行うが、1つの機械において、処理条件などを変えて、破砕処理と摩砕処理を行うこともある。
また、破砕処理において部分的に骨材が摩砕されることもあるが、破砕処理では骨材を砕くことで、さらに直径の小さい骨材にすることを目的として処理を行なっているのであり、角張った骨材の角を取ることを目的として処理を行なっているのではない。また逆に、摩砕処理において部分的に骨材が破砕されることもあるが、摩砕処理では角張った骨材の角を取ったり、骨材の表面の凹凸を改善して滑らかにしたりすることを目的として処理を行なっているのであり、骨材を砕くことで、さらに直径の小さい骨材にすることを目的として処理を行なっているものではない。
Here, on the basis of the total amount of the aggregate mixture, which is a mixture of coarse aggregate and fine aggregate, the amount of fine aggregate is set to 90 to 35% by mass, and this aggregate mixture is ground and crushed. Fine aggregates enter between the matching coarse aggregates, the collision between the coarse aggregates is alleviated, and an appropriate “balance” state occurs.
In the present invention, “crushing” means that the aggregate is crushed into an aggregate having a smaller diameter.
In the present invention, “milling” does not mean that the aggregate is crushed into a small-diameter aggregate, but the corners of the angular aggregate are removed or the irregularities on the surface of the aggregate are improved to make it smoother. It means to do. In other words, “grain shape improvement processing”.
In general, the crushing process is performed by a crusher and the crushing process is performed by a crusher. However, in one machine, the crushing process and the crushing process may be performed by changing processing conditions and the like.
In addition, the aggregate may be partially ground in the crushing process, but in the crushing process, the aggregate is crushed, and processing is performed for the purpose of making the aggregate smaller in diameter. The processing is not performed for the purpose of removing the corners of the angular aggregate. Conversely, the aggregate may be partially crushed during the grinding process, but the grinding process may remove the corners of the angular aggregate or improve the surface roughness of the aggregate to make it smoother. However, the processing is not performed for the purpose of making the aggregate smaller in diameter by crushing the aggregate.

また、本発明の骨材の製造方法において、骨材混合物の全量基準で、細骨材の量を90〜40質量%とすることや、骨材混合物の全量基準で、細骨材の量を90〜45質量%とすることができる。   In the aggregate production method of the present invention, the amount of fine aggregate is 90 to 40% by mass based on the total amount of the aggregate mixture, or the amount of fine aggregate is based on the total amount of the aggregate mixture. It can be 90-45 mass%.

また、本発明の骨材の製造方法において、摩砕工程で摩砕して得られた摩砕骨材を、粗骨材と、第1の細骨材と、第1の細骨材よりも粒度が粗い第2の細骨材とに分級し、第2の細骨材をリターンして骨材混合物に混合する場合、第1の細骨材をそのまま砕砂などの製品として販売することも可能となり、また、余分な粗い粒度の第2の細骨材を骨材混合物と混合して、骨材混合物中の細骨材量を増やすので、余分な第2の細骨材を有効利用することができる。   Moreover, in the manufacturing method of the aggregate of this invention, the grinding | pulverization aggregate obtained by grinding at a grinding process is more than a coarse aggregate, a 1st fine aggregate, and a 1st fine aggregate. When the second fine aggregate is classified into the coarser second fine aggregate, and the second fine aggregate is returned and mixed with the aggregate mixture, it is also possible to sell the first fine aggregate as it is as a product such as crushed sand. In addition, since the amount of fine aggregate in the aggregate mixture is increased by mixing the second fine aggregate with an extra coarse particle size with the aggregate mixture, the extra second fine aggregate must be used effectively. Can do.

本発明に係る骨材の製造方法によって、微粉末の発生を抑制し、粒形の改善と適度な粒度構成を有する骨材を製造することができる。   By the method for producing an aggregate according to the present invention, the generation of fine powder can be suppressed, and an aggregate having an improved particle shape and an appropriate particle size configuration can be produced.

本発明である骨材の製造方法の流れの一例を示す概略図である。It is the schematic which shows an example of the flow of the manufacturing method of the aggregate which is this invention.

以下、本発明の実施の形態について図面を参照しながら説明し、本発明の理解に供する。
図1は、本発明である骨材の製造方法の流れの一例を示す概略図である。
原料(例えば岩山から採取された岩石や、溶融スラグ)1を破砕機で破砕して、所定の直径未満の初期骨材2を得る。
次に、得られた初期骨材2を、一次粗骨材3と、一次細骨材4とに分級(ふるい分け)する一次分級工程を行なう。この場合、一次粗骨材3の直径が、例えば、23mm未満5mm以上、もしくは15mm未満5mm以上、もしくは13mm未満5mm以上、もしくは10mm未満5mm以上となるように分級する。
さらに、一次粗骨材3と一次細骨材4とを混合して得られる骨材混合物5を摩砕機(例えば、デッドストック型のバーマック(商標))で摩砕する摩砕工程を行なう。
そして、摩砕工程で得られた摩砕骨材6を、二次粗骨材7と、第1の二次細骨材8と、第1の二次細骨材よりも粒度が粗い第2の二次細骨材9とに分級する二次分級工程を行なう。このとき、摩砕工程を行ないながら二次分級工程も行なう。
そして、コンクリートなどの骨材として利用される第1の二次細骨材8を得ると共に、第2の二次細骨材9をリターンして、骨材混合物5へ混合する。
このとき、骨材混合物5の全量基準で、細骨材(一次細骨材6と第2の二次細骨材9)の量は、上限値が90質量%以下、もしくは80質量%以下、もしくは65質量%以下であり、下限値が35質量%以上、もしくは40質量%以上、もしくは45質量%以上、もしくは50質量%以上、もしくは55質量%以上、もしくは60質量%以上、もしくは70質量%以上である。
なお、当然ながら、第2の二次細骨材9をリターンしていないときは、細骨材の量は、一次細骨材6のみの量である。したがって、例えば、第2の二次細骨材9をリターンするときであって、骨材混合物5の細骨材の量を70質量%に設定する場合は、リターンする第2の二次細骨材9の量も考慮して、一次細骨材6の量は設定量よりも少なくする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings to facilitate understanding of the present invention.
FIG. 1 is a schematic diagram showing an example of the flow of an aggregate manufacturing method according to the present invention.
A raw material (for example, a rock collected from a rocky mountain or molten slag) 1 is crushed with a crusher to obtain an initial aggregate 2 having a diameter less than a predetermined diameter.
Next, a primary classification step of classifying (sieving) the obtained initial aggregate 2 into primary coarse aggregate 3 and primary fine aggregate 4 is performed. In this case, the primary coarse aggregate 3 is classified so that the diameter thereof is, for example, less than 23 mm, 5 mm or more, or less than 15 mm, 5 mm or more, less than 13 mm, 5 mm or more, or less than 10 mm, 5 mm or more.
Further, a grinding process is performed in which the aggregate mixture 5 obtained by mixing the primary coarse aggregate 3 and the primary fine aggregate 4 is ground with a grinding machine (for example, dead stock type Barmac (trademark)).
Then, the milled aggregate 6 obtained in the milling process is a second coarser grain than the second coarse aggregate 7, the first secondary fine aggregate 8, and the first secondary fine aggregate. A secondary classification step of classifying the secondary fine aggregate 9 is performed. At this time, the secondary classification step is also performed while performing the grinding step.
And while obtaining the 1st secondary fine aggregate 8 utilized as aggregates, such as concrete, the 2nd secondary fine aggregate 9 is returned and mixed with the aggregate mixture 5. FIG.
At this time, based on the total amount of the aggregate mixture 5, the amount of fine aggregate (primary fine aggregate 6 and second secondary fine aggregate 9) has an upper limit of 90% by mass or less, or 80% by mass or less, Or 65 mass% or less, and a lower limit is 35 mass% or more, or 40 mass% or more, or 45 mass% or more, or 50 mass% or more, or 55 mass% or more, or 60 mass% or more, or 70 mass%. That's it.
Of course, when the second secondary fine aggregate 9 is not returned, the amount of fine aggregate is the amount of the primary fine aggregate 6 alone. Therefore, for example, when the second secondary fine aggregate 9 is returned and the amount of the fine aggregate of the aggregate mixture 5 is set to 70% by mass, the second secondary fine bone to be returned is returned. Considering the amount of the material 9, the amount of the primary fine aggregate 6 is made smaller than the set amount.

また、骨材混合物の全量基準で、細骨材の割合が90質量%より多い場合、骨材混合物が細骨材のみに近い状態となり、摩砕の効果が低下してしまうので好ましくない。また、骨材混合物の全量基準で、細骨材の割合が35質量%より少ない場合、骨材混合物の中で粗骨材が増加する方向になり、粗骨材同士のぶつかりが多くなって、摩砕よりも破砕される方が強くなり、角張った骨材が生産されるようになるので好ましくない。   In addition, when the proportion of fine aggregate is more than 90% by mass based on the total amount of the aggregate mixture, the aggregate mixture becomes a state close to only fine aggregate, which is not preferable. Moreover, when the proportion of fine aggregate is less than 35% by mass based on the total amount of the aggregate mixture, the coarse aggregate increases in the aggregate mixture, and the collision between the coarse aggregates increases. Crushing is stronger than grinding, and angular aggregates are produced, which is not preferable.

また、骨材混合物の全量基準で、細骨材の割合を90〜35質量%にするのであれば、必ずしも摩砕工程で摩砕して得られた摩砕骨材を、粗骨材と、第1の細骨材と、第1の細骨材よりも粒度が粗い第2の細骨材とに分級し、第2の細骨材をリターンして骨材混合物に混合しなくてもよい。しかし、第1の細骨材と、第2の細骨材とに分級すれば、第1の細骨材をそのまま砕砂などの製品として販売することも可能となり、また、余分な粗い粒度の第2の細骨材をリターンして骨材混合物と混合すれば、骨材混合物中の細骨材量を増やせるので、余分な第2の細骨材を有効利用することができ、好ましい。   Moreover, if the ratio of fine aggregate is 90 to 35% by mass based on the total amount of the aggregate mixture, the ground aggregate obtained by grinding in the grinding process is not necessarily coarse aggregate, It is not necessary to classify into the first fine aggregate and the second fine aggregate having a coarser particle size than the first fine aggregate, and return the second fine aggregate and not mix it with the aggregate mixture. . However, if the first fine aggregate and the second fine aggregate are classified, it is possible to sell the first fine aggregate as it is as a product such as crushed sand and the like. If the fine aggregate of 2 is returned and mixed with the aggregate mixture, the amount of the fine aggregate in the aggregate mixture can be increased, so that the excess second fine aggregate can be used effectively, which is preferable.

次に、実施例を示して、本発明をさらに詳細に説明する。   Next, an Example is shown and this invention is demonstrated further in detail.

岩山から採取された岩石を破砕機で破砕して、直径100mm未満の初期骨材を得た。
次に、得られた直径100mm未満の初期骨材を、直径23mm未満5mm以上の粗骨材と、直径5mm未満の細骨材とに分級した。
次に、得られた細骨材と、粗骨材とを混合して得られた骨材混合物を摩砕し、得られた摩砕骨材を、直径5mm以上の粗骨材と、直径3.5mm未満の第1の細骨材(砕砂(コンクリート用骨材))と、直径5mm未満3.5mm以上の第2の細骨材とに分級した。
そして、直径5mm未満3.5mm以上の第2の細骨材をリターンして骨材混合物へ混合した。このとき、骨材混合物の全量基準で、細骨材の量を70質量%、粗骨材の量を30質量%とした。
製造された砕砂の、表乾密度、吸水率、粗粒率、微粒分量、及び粒形判定実積率を表1に示す。
なお、表乾密度と吸水率は、「JIS A 1109 細骨材の密度及び吸水率試験方法」に準拠して求めた。
また、粗粒率は、「JIS A 1102 骨材のふるい分け試験方法」に準拠して求めた。
また、微粒分量は、「JIS A 1103 骨材の微粒分量試験方法」に準拠して求めた。骨材から持ち込まれる微粉がコンクリートの品質に影響を及ぼさないためには、微粒分量の値が小さいことが望ましい。
また、粒形判定実積率は、「JIS A 1104 骨材の単位容積質量及び実積率試験方法」に準拠して求めた。一般に、粒形が丸みをおび、大小粒が適度に混合していれば、粒形判定実積率は高くなる傾向が知られている。
The rock collected from the rock was crushed with a crusher to obtain an initial aggregate having a diameter of less than 100 mm.
Next, the obtained initial aggregate less than 100 mm in diameter was classified into coarse aggregate less than 23 mm in diameter and 5 mm or more, and fine aggregate less than 5 mm in diameter.
Next, the aggregate mixture obtained by mixing the obtained fine aggregate and the coarse aggregate is ground, and the obtained ground aggregate is divided into a coarse aggregate having a diameter of 5 mm or more and a diameter of 3 It was classified into a first fine aggregate (crushed sand (concrete aggregate)) of less than 5 mm and a second fine aggregate of less than 5 mm and a diameter of 3.5 mm or more.
Then, the second fine aggregate having a diameter of less than 5 mm and 3.5 mm or more was returned and mixed into the aggregate mixture. At this time, the amount of fine aggregate was 70% by mass and the amount of coarse aggregate was 30% by mass based on the total amount of the aggregate mixture.
Table 1 shows the surface dry density, water absorption rate, coarse particle rate, fine particle content, and particle shape determination actual volume ratio of the crushed sand produced.
The surface dry density and water absorption were determined according to “JIS A 1109 Fine Aggregate Density and Water Absorption Test Method”.
The coarse particle ratio was determined in accordance with “JIS A 1102 Aggregate Screening Test Method”.
Moreover, the fine particle amount was calculated | required based on "JIS A1103 aggregate fine particle amount test method". In order to prevent the fine powder brought from the aggregate from affecting the quality of the concrete, it is desirable that the value of the amount of fine particles is small.
Moreover, the particle shape determination actual volume ratio was determined in accordance with “JIS A 1104 Aggregate Unit Volume Mass and Actual Volume Ratio Test Method”. In general, it is known that if the grain shape is rounded and the large and small grains are mixed appropriately, the grain shape determination actual volume ratio tends to increase.

次に、製造された砕砂を細骨材として、表2に示される配合1〜3に使用し、練混ぜ直後のコンクリートの品質について、スランプと、空気量と、温度と、圧縮強度とを測定した。結果を表3に示す。   Next, the produced crushed sand is used as fine aggregate for the blends 1 to 3 shown in Table 2, and the slump, air amount, temperature, and compressive strength are measured for the quality of the concrete immediately after mixing. did. The results are shown in Table 3.

ここで、セメントとして、株式会社トクヤマ製の普通ポルトランドセメント(密度3.16g/m)を使用した。
また、粗骨材として、福岡県糸島郡志摩町大字桜井で産出された砕石(密度2.78g/m)を使用した。
また、混和剤として、日本シーカ株式会社製のAE減水剤(プラストクリート(登録商標)30N)を使用した。
また、水として、地下水を利用した。
なお、スランプは、「JIS A 1011 コンクリートのスランプ試験方法」に準拠して測定した。
また、空気量は、「JIS A 1128 フレッシュコンクリートの空気量の圧力による試験方法」に準拠して測定した。
また、圧縮強度は、「JIS A 1132 コンクリートの強度試験用供試体の作り方」及び「JIS A 1108 コンクリートの圧縮強度試験方法」に準拠して測定した。また、材令28日の供試体を用いた。
Here, ordinary Portland cement (density 3.16 g / m 3 ) manufactured by Tokuyama Corporation was used as the cement.
In addition, crushed stone (density 2.78 g / m 3 ) produced in Sakurai, Shima-machi, Itoshima-gun, Fukuoka, was used as the coarse aggregate.
Further, an AE water reducing agent (Plastocrete (registered trademark) 30N) manufactured by Nippon Seika Co., Ltd. was used as an admixture.
In addition, groundwater was used as water.
The slump was measured in accordance with “JIS A 1011 Concrete Slump Test Method”.
The amount of air was measured in accordance with “Test method by pressure of air amount of JIS A 1128 fresh concrete”.
The compressive strength was measured in accordance with “How to make a specimen for strength test of JIS A 1132 concrete” and “Method for testing compressive strength of JIS A 1108 concrete”. In addition, a specimen with a material age of 28 days was used.

比較例1Comparative Example 1

摩砕骨材を、直径5mm以上の粗骨材と、直径3.5mm未満の第1の細骨材とに分級しただけで、直径5mm未満3.5mm以上の第2の細骨材をリターンして骨材混合物に混合しなかった点と、このとき、骨材混合物の全量基準で、細骨材の量を10質量%、粗骨材の量を90質量%とした点以外は、実施例1と同様にして直径3.5mm未満の砕砂を製造した。
製造された砕砂の、表乾密度、吸水率、粗粒率、微粒分量、及び粒形判定実積率を表1に示す。
Simply classify the ground aggregate into coarse aggregate with a diameter of 5 mm or more and a first fine aggregate with a diameter of less than 3.5 mm, and return a second fine aggregate with a diameter of less than 5 mm and more than 3.5 mm. Then, except for the point that it was not mixed into the aggregate mixture, and at this time, the amount of fine aggregate was 10% by mass and the amount of coarse aggregate was 90% by mass based on the total amount of the aggregate mixture. In the same manner as in Example 1, crushed sand having a diameter of less than 3.5 mm was produced.
Table 1 shows the surface dry density, water absorption rate, coarse particle rate, fine particle content, and particle shape determination actual volume ratio of the crushed sand produced.

次に、製造された砕砂を細骨材として、表2に示される配合1〜3に使用し、練混ぜ直後のコンクリートの品質について、スランプと、空気量と、温度と、圧縮強度とを測定した。結果を表3に示す。   Next, the produced crushed sand is used as fine aggregate for the blends 1 to 3 shown in Table 2, and the slump, air amount, temperature, and compressive strength are measured for the quality of the concrete immediately after mixing. did. The results are shown in Table 3.

Figure 2011006311
Figure 2011006311

Figure 2011006311
Figure 2011006311

Figure 2011006311
Figure 2011006311

骨材混合物の全量基準で、細骨材の量を90質量%、粗骨材の量を10質量%とした点以外は、実施例1と同様にして直径3.5mm未満の砕砂を製造した。
製造された砕砂の、表乾密度、吸水率、粗粒率、微粒分量、及び粒形判定実積率を表4に示す。
次に、製造された砕砂を細骨材として、表5に示される配合4〜6に使用し、練混ぜ直後のコンクリートの品質について、スランプと、空気量と、温度と、圧縮強度とを測定した。結果を表6に示す。
Crushed sand having a diameter of less than 3.5 mm was produced in the same manner as in Example 1 except that the amount of fine aggregate was 90% by mass and the amount of coarse aggregate was 10% by mass based on the total amount of the aggregate mixture. .
Table 4 shows the surface dry density, water absorption, coarse particle ratio, fine particle amount, and particle shape determination actual volume ratio of the crushed sand produced.
Next, the manufactured crushed sand is used as fine aggregate for the blends 4 to 6 shown in Table 5, and the slump, air amount, temperature, and compressive strength are measured for the quality of the concrete immediately after mixing. did. The results are shown in Table 6.

ここで、セメントとして、株式会社トクヤマ製の普通ポルトランドセメント(密度3.16g/m)を使用した。
また、粗骨材として、大分県津久見市津久見願寺で産出された石灰石(密度2.70g/m)を使用した。
また、混和剤として、日本シーカ株式会社製のAE減水剤(プラストクリート(登録商標)30N)を使用した。
また、水として、地下水を利用した。
Here, ordinary Portland cement (density 3.16 g / m 3 ) manufactured by Tokuyama Corporation was used as the cement.
As coarse aggregate, limestone (density 2.70 g / m 3 ) produced at Tsukumi Ganji Temple, Tsukumi City, Oita Prefecture was used.
Further, an AE water reducing agent (Plastocrete (registered trademark) 30N) manufactured by Nippon Seika Co., Ltd. was used as an admixture.
In addition, groundwater was used as water.

比較例2Comparative Example 2

骨材混合物の全量基準で、細骨材の量を10質量%、粗骨材の量を90質量%とした点以外は、比較例1と同様にして直径3.5mm未満の砕砂を製造した。
製造された砕砂の、表乾密度、吸水率、粗粒率、微粒分量、及び粒形判定実積率を表4に示す。
次に、製造された砕砂を細骨材として、表5に示される配合4〜6に使用し、練混ぜ直後のコンクリートの品質について、スランプと、空気量と、温度と、圧縮強度とを測定した。結果を表6に示す。
Crushed sand having a diameter of less than 3.5 mm was produced in the same manner as in Comparative Example 1 except that the amount of fine aggregate was 10% by mass and the amount of coarse aggregate was 90% by mass based on the total amount of the aggregate mixture. .
Table 4 shows the surface dry density, water absorption, coarse particle ratio, fine particle amount, and particle shape determination actual volume ratio of the crushed sand produced.
Next, the manufactured crushed sand is used as fine aggregate for the blends 4 to 6 shown in Table 5, and the slump, air amount, temperature, and compressive strength are measured for the quality of the concrete immediately after mixing. did. The results are shown in Table 6.

Figure 2011006311
Figure 2011006311

Figure 2011006311
Figure 2011006311

Figure 2011006311
Figure 2011006311

表1及び表4の結果から明らかなように、本発明の方法で製造された砕砂は、従来の方法で製造された砕砂に比べて微粒分量が少なかった。これは、本発明の方法が、過粉砕を抑制し、その結果、微粉末の発生を抑制していることを示している。
また、表1及び表4の結果から明らかなように、本発明の方法で製造された砕砂は、従来の方法で製造された砕砂に比べて粒形判定実積率が高かった。このことから、本発明の方法で製造された砕砂は、従来の方法で製造された砕砂に比べて、尖った角が少なく、扁平率も少なく、粒形及び粒度分布が良いことが判る。
As is clear from the results of Tables 1 and 4, the crushed sand produced by the method of the present invention had a smaller amount of fine particles than the crushed sand produced by the conventional method. This indicates that the method of the present invention suppresses over-pulverization and, as a result, suppresses the generation of fine powder.
Moreover, as is clear from the results of Tables 1 and 4, the crushed sand produced by the method of the present invention had a higher particle shape determination actual volume ratio than the crushed sand produced by the conventional method. From this, it can be seen that the crushed sand produced by the method of the present invention has fewer sharp corners, less flatness, and better particle shape and particle size distribution than the crushed sand produced by the conventional method.

また、表3及び表6の結果から明らかなように、本発明の方法で製造した砕砂を用いて練混ぜたコンクリートは、従来の方法で製造した砕砂を用いて練混ぜたコンクリートよりも大きなスランプを示した。よって、本発明の方法で製造した砕砂を用いたコンクリートは、従来の方法で製造した砕砂を用いたコンクリートに比べて施工性(ワーカビリティ)が高いと言える。   Further, as is apparent from the results of Tables 3 and 6, the concrete kneaded using the crushed sand produced by the method of the present invention is larger in slump than the concrete kneaded using the crushed sand produced by the conventional method. showed that. Therefore, it can be said that the concrete using the crushed sand manufactured by the method of the present invention has higher workability (workability) than the concrete using the crushed sand manufactured by the conventional method.

以上のように、本発明の方法は、粗骨材と細骨材の混合物である骨材混合物の全量基準で、細骨材の量を90〜35質量%として、この骨材混合物を摩砕するので、ぶつかり合うと共にすり合う粗骨材の間に細骨材が入り込み、粗骨材同士のぶつかり合いが緩和され、適度な「すり合い」状態が生じる。すなわち、粗骨材も細骨材も、どちらも大きく砕かれることなく、それぞれ角が取れて粒形が整えられ、よって、微粉末の発生を抑制し、粒形の改善と適度な粒度構成を有する骨材を製造することができる。   As described above, the method of the present invention grinds this aggregate mixture by setting the amount of fine aggregate to 90 to 35% by mass based on the total amount of the aggregate mixture which is a mixture of coarse aggregate and fine aggregate. As a result, the fine aggregate enters between the coarse aggregates that collide with each other, and the collision between the coarse aggregates is alleviated, resulting in an appropriate “balance” state. In other words, both coarse and fine aggregates are not crushed greatly, they are rounded and the shape of the particles is adjusted, thereby suppressing the generation of fine powder, improving the shape of the particles, and achieving an appropriate particle size structure. The aggregate which has can be manufactured.

また、直径3.5mm未満の第1の細骨材と、直径5mm未満3.5mm以上の第2の細骨材とに分級しているので、直径3.5mm未満の第1の細骨材をそのまま砕砂などの製品として販売することも可能となる。
また、直径5mm未満3.5mm以上の第2の細骨材をリターンして、骨材混合物中の細骨材量を増やしているので、直径5mm未満3.5mm以上という余分な第2の細骨材を有効利用できる。
Moreover, since it classify | categorized into the 1st fine aggregate less than 3.5 mm in diameter and the 2nd fine aggregate less than 5 mm in diameter and 3.5 mm or more, the 1st fine aggregate less than 3.5 mm in diameter Can be sold as a product such as crushed sand.
Moreover, since the amount of fine aggregate in the aggregate mixture is increased by returning the second fine aggregate having a diameter of less than 5 mm and not less than 3.5 mm, an extra second fine aggregate having a diameter of less than 5 mm and not less than 3.5 mm. Aggregate can be used effectively.

1 原料
2 初期骨材
3 一次粗骨材
4 一次細骨材
5 骨材混合物
6 摩砕骨材
7 二次粗骨材
8 第1の二次細骨材
9 第2の二次細骨材
DESCRIPTION OF SYMBOLS 1 Raw material 2 Initial aggregate 3 Primary coarse aggregate 4 Primary fine aggregate 5 Aggregate mixture 6 Grind aggregate 7 Secondary coarse aggregate 8 First secondary fine aggregate 9 Second secondary fine aggregate

Claims (4)

原料を破砕して得られた初期骨材を、粗骨材と、細骨材とに分級する分級工程と、
該分級工程によって得られた、粗骨材と細骨材とを混合して得られた骨材混合物を摩砕する摩砕工程とを備え、
前記骨材混合物の全量基準で、細骨材の量を90〜35質量%とする
骨材の製造方法。
A classification step of classifying the initial aggregate obtained by crushing the raw material into coarse aggregate and fine aggregate;
A grinding step of grinding the aggregate mixture obtained by mixing the coarse aggregate and the fine aggregate obtained by the classification step,
A method for producing an aggregate, wherein the amount of fine aggregate is 90 to 35 mass% based on the total amount of the aggregate mixture.
前記骨材混合物の全量基準で、細骨材の量を90〜40質量%とする
請求項1に記載の骨材の製造方法。
The method for producing an aggregate according to claim 1, wherein the amount of fine aggregate is 90 to 40% by mass based on the total amount of the aggregate mixture.
前記骨材混合物の全量基準で、細骨材の量を90〜45質量%とする
請求項1に記載の骨材の製造方法。
The method for producing an aggregate according to claim 1, wherein the amount of fine aggregate is 90 to 45 mass% based on the total amount of the aggregate mixture.
前記摩砕工程で摩砕して得られた摩砕骨材を、粗骨材と、第1の細骨材と、該第1の細骨材よりも粒度が粗い第2の細骨材とに分級し、該第2の細骨材をリターンして前記骨材混合物に混合する
請求項1〜3のいずれか1つに記載の骨材の製造方法。
The ground aggregate obtained by grinding in the grinding step includes a coarse aggregate, a first fine aggregate, and a second fine aggregate having a coarser particle size than the first fine aggregate. The aggregate production method according to any one of claims 1 to 3, wherein the second fine aggregate is returned to and mixed with the aggregate mixture.
JP2009154000A 2009-06-29 2009-06-29 Method of producing aggregate Pending JP2011006311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009154000A JP2011006311A (en) 2009-06-29 2009-06-29 Method of producing aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009154000A JP2011006311A (en) 2009-06-29 2009-06-29 Method of producing aggregate

Publications (1)

Publication Number Publication Date
JP2011006311A true JP2011006311A (en) 2011-01-13

Family

ID=43563454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009154000A Pending JP2011006311A (en) 2009-06-29 2009-06-29 Method of producing aggregate

Country Status (1)

Country Link
JP (1) JP2011006311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007178A (en) * 2018-07-05 2020-01-16 大成建設株式会社 Method for adjusting grain size of aggregate for concrete
JP7366719B2 (en) 2019-12-04 2023-10-23 日本製紙株式会社 hydraulic composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007178A (en) * 2018-07-05 2020-01-16 大成建設株式会社 Method for adjusting grain size of aggregate for concrete
JP7049199B2 (en) 2018-07-05 2022-04-06 大成建設株式会社 How to adjust the grain size of concrete aggregate
JP7366719B2 (en) 2019-12-04 2023-10-23 日本製紙株式会社 hydraulic composition

Similar Documents

Publication Publication Date Title
USRE49415E1 (en) Particle packed cement-SCM blends
US10233116B1 (en) Activitation of natural pozzolans
JP5597467B2 (en) Manufacturing method of recycled concrete
JP5562863B2 (en) How to process pozzolana
US9034101B2 (en) Method for manufacturing of supplementary cementitious materials (SCMS)
CN109279796B (en) Design and preparation method of continuous surrounding stacking dense-grade prepared machine-made sand
CN105174765B (en) The method producing construction sand and active ground-slag with water quenching schreyerite slag
US20230406764A1 (en) Activation of natural pozzolans
KR102008742B1 (en) Wet Concrete Secondary Products Using Recycled Aggregate Recycling Waste Electric Pole And Manufacturing Method Thereof
CN102584135A (en) Preparation method for multielement mixed regenerated fiber enhanced regenerated concrete
JP2011006311A (en) Method of producing aggregate
JP5035932B2 (en) Circulating concrete manufacturing method
JP2006016212A (en) Concrete composition
JP2018145056A (en) Fine aggregate for concrete, and selecting method thereof
Cepurītis Manufactured sand crushing process parameters: short review and evaluation for sand performance in fresh concrete
JP2009234840A (en) Method for manufacturing mortar and concrete
JP5483336B2 (en) Fine aggregate for mortar or concrete, and mortar and concrete manufacturing method using the same
CN111348855A (en) Method for producing machine-made sand by using ore-smelting slag
Ghiasvand et al. Effect of grinding method on energy consumption and particle size distribution of blended cements
JP3583323B2 (en) Blast furnace slag fine aggregate, method for producing the same, and fine aggregate for concrete or mortar
JP5550052B2 (en) Method for producing copper slag fine aggregate
KR20120102881A (en) Concrete compound using granulated slag-water cooled and manufacturing method thereof
JP5484655B2 (en) Method for suppressing alkali-aggregate reaction in concrete or mortar
RU2405746C1 (en) Method of producing construction sands from siftings resulted in broken stone production
WO2015181447A1 (en) Method and apparatus for manufacturing cement