JP2002172469A - 高強度鋼板のスポット溶接方法 - Google Patents

高強度鋼板のスポット溶接方法

Info

Publication number
JP2002172469A
JP2002172469A JP2000366501A JP2000366501A JP2002172469A JP 2002172469 A JP2002172469 A JP 2002172469A JP 2000366501 A JP2000366501 A JP 2000366501A JP 2000366501 A JP2000366501 A JP 2000366501A JP 2002172469 A JP2002172469 A JP 2002172469A
Authority
JP
Japan
Prior art keywords
spot welding
welding
current
diameter
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000366501A
Other languages
English (en)
Inventor
Hatsuhiko Oikawa
初彦 及川
Takashi Tanaka
隆 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000366501A priority Critical patent/JP2002172469A/ja
Publication of JP2002172469A publication Critical patent/JP2002172469A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Resistance Welding (AREA)

Abstract

(57)【要約】 (修正有) 【課題】 高強度鋼板のスポット溶接において、溶接部
で発生する割れを防止し、溶接部の引張強さを向上させ
る溶接方法の提供。 【解決手段】 高強度鋼板又は表面にめっきが施された
高強度鋼板1のスポット溶接方法において、ナゲット径
3を電極先端径の1.2倍以下とすることを特徴とする
高強度鋼板のスポット溶接方法である。ここにおいて、
スポット溶接時の電流と電極間電圧を計測し、計測した
電流と電極間電圧および材料物性値を用いた計算を行
い、該計算結果に基づいて電流を制御する。また、前記
計測した電流と電極間電圧および材料物性値を用いた計
算は、熱伝導モデルに基づいた数値計算によりスポット
溶接部の任意の位置における各時刻毎の温度を求める数
値計算である。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、高強度鋼板のスポ
ット溶接において、溶接部で発生する割れを防止し、溶
接部の引張強さを向上させるためのスポット溶接方法に
関するものである。
【0002】
【従来の技術】近年、自動車の安全対策のため、また低
燃費化やCO2排出量削減を目的とした軽量化のため、
自動車の車体に高強度鋼板を使用する必要性が高まって
いる。自動車の車体組立工程においては、スポット溶接
が主に用いられており、高強度鋼板の溶接においてもス
ポット溶接が主に用いられるものと考えられる。スポッ
ト溶接は、鋼板同士を重ね合わせ、水冷された2つの対
向する銅電極の間に鋼板を挟みこみ、加圧しながら通電
して鋼板同士の接触部を溶融させ、通電後その部分を凝
固させてナゲットを形成させる溶接方法である。スポッ
ト溶接部の品質指標としては、引張せん断強さ(継手の
せん断方向に引張荷重を負荷したときの引張強さ)、十
字引張強さ(継手の剥離方向に引張荷重を負荷したとき
の引張強さ)などが重要である。
【0003】一般に、鋼板の強度が高くなるほど、下記
(1)式で示される炭素当量Ceqの値が高くなる。C
eqの値が高くなると、ナゲット(溶融)部と熱影響部
の硬さが増加し、その部分の靭性が低下して割れ感受性
が高まる。 Ceq=C+Si/30+Mn/20+2P+4S ・・(1) (式中、C、Si、Mn、P、Sは、それぞれ鋼中の炭
素、珪素、マンガン、リン、硫黄の含有量(質量%)を
示す。)
【0004】高強度鋼板のスポット溶接においては、溶
接部における鋼板間のギャップを加圧してなくすため
に、軟鋼板の場合に比べて高い電極加圧力、例えば、下
記(2)式で示す電極加圧力より高い加圧力で溶接する
場合がある。 P=2.45×t (kN) ・・(2) ただし、P:電極加圧力(kN)、t:板厚(mm)
【0005】このように、鋼板間にギャップが存在した
状態で高強度鋼板をスポット溶接する場合には、軟鋼板
をスポット溶接する場合に比べて電極加圧力を高く設定
する必要性があるが、この場合にはスポット溶接中の電
極加圧力により、溶接部(電極と接触する部分)が変形
する。この部分の変形が大きいと、高強度鋼板のスポッ
ト溶接部の割れ感受性が高いこととの相乗作用で溶接部
に容易にクラックが発生し、その部分で破壊が生じて溶
接部の引張強さが低下する。同時に、電極加圧力によっ
て溶接部の板厚が薄くなることも引張強さ低下に影響し
ている。
【0006】自動車の車体では、耐食性向上の観点か
ら、通常、めっき材を用いることが多く、高強度鋼板に
おいてもめっき材を用いることが検討されている。表面
にめっきが施された高強度鋼板をスポット溶接すると、
図1に示すように、電極2と接触するスポット溶接部の
表面や鋼板間のナゲット3端部から割れ(マイクロクラ
ック)4が発生する。この割れは、めっきの主成分であ
るZnがスポット溶接部に侵入することによって起こ
る。すなわち、スポット溶接中にめっきの主成分である
Znや銅電極から拡散したCuが、鋼板表面からオース
テナイト粒界に浸入し、あるいはめっきの主成分である
Znが鋼板間からナゲット内に浸入する。めっき成分が
浸入した部分は融点が低下するため、溶接後の凝固時に
おいてめっきが浸入した部分では凝固が遅れる。そのた
め、凝固時の収縮応力によって融点が低下したこの部分
で割れが発生するのである。このような現象は、従来か
ら、鋼板を真鍮ろう(Cu−Zn)でろう付けした場合
にも観察され、はんだ脆性としてよく知られている。
【0007】表面にめっきが施された軟鋼板をスポット
溶接した場合には、上記高強度めっき鋼板をスポット溶
接した場合に見られる溶接部の割れは発生しない。高強
度鋼板では、上記(1)式で示される炭素当量Ceqが
高いためにナゲット(溶融)部と熱影響部の硬さが増加
して靭性が低下し、軟鋼板と比較して割れ感受性が高く
なり、めっき成分が侵入した部分において容易にクラッ
クが発生しやすくなるのである。
【0008】一般的な自動車組立ラインにおいて鋼板を
スポット溶接する場合には、溶接時に散りが発生するよ
うな溶接条件を選択することが多い。散りとは、鋼板間
で生成されたナゲットの径が電極先端径を超え、溶融金
属が鋼板間から飛散する現象である。もちろん、溶接電
流の調整によってナゲット径を調整し、散りを発生させ
ないで溶接することも可能である。しかし、電極使用開
始時において散りが発生しないような適正な条件で溶接
を行ったとしても、打点数の増加とともに電極先端径が
増加して溶接電流密度が低下するため、打点数とともに
ナゲット径が低下し、やがてナゲットが形成されなくな
る。散りが発生しない条件で溶接を行うと、このような
ナゲット径の低下を把握することができない。一方、散
りが発生するような条件で溶接を行う場合には、打点数
の増加でナゲット径が小さくなり散りが発生しなくなる
ことでナゲット径の低下が把握できるので、現状の組立
ラインでは、必要なナゲット径を確実に得るために、散
りを発生させるような条件でスポット溶接を行ってい
る。
【0009】
【発明が解決しようとする課題】高強度鋼板のスポット
溶接においては、以上に述べたように、スポット溶接部
で割れが発生し、溶接部の引張強さが低い値を示すなど
の問題が生じる。したがって、高強度鋼板を用いた場合
には、高品質な溶接部、即ち外観に優れ、引張強さが高
く、耐食性が優れた溶接部を得ることが困難であった。
自動車の車体を軽量化するためには、板厚の薄い高強度
鋼板を用いることが必要であるが、上記のような問題を
抱えている限り、例えば溶接点数を増やすなどの手段を
用いない限り使用は困難である。しかし、このような手
段を用いたのでは生産時間の増加を招き、ひいてはコス
ト上昇の原因となる。また、設計の自由度もかなり制限
されるものと考えられる。
【0010】本発明は、高強度鋼板のスポット溶接にお
いて、溶接部で発生する割れを防止し、溶接部の引張強
さを向上させることを目的とする。
【0011】
【課題を解決するための手段】高強度鋼板のスポット溶
接において、溶接部の引張強さ、特に十字引張強さが低
下する理由は、従来用いられていたスポット溶接条件で
は溶接部に過大電流が流れ、過大入熱となっているため
であることが判明した。高強度鋼板においては、前述し
たように炭素当量Ceqが高いために、ナゲット部と熱
影響部の硬さが増大して靭性が低下し、割れ感受性が高
くなる。過大入熱域では電極加圧力による溶接部の変形
が大きくなり、その部分の割れ感受性が高いと容易にク
ラックが発生し、その状態で溶接部に引張荷重を負荷す
るとその部分で破壊が生じて溶接部の引張強さが低い値
を示すのである。そして、ナゲット径を電極先端径の
1.2倍以下とするように溶接条件を調整すれば、溶接
部の過大入熱を防止して溶接部の引張強さを高く保つこ
とが可能であることを明らかにした。
【0012】また、前述のように、通常のラインでのス
ポット溶接においては、溶接時に散りの発生がある。散
りが発生するとナゲット端部で欠陥が発生し、この欠陥
がノッチとなるため、溶接部の割れ感受性が高い場合に
は、この部分から容易にクラックが発生して引張強さが
低下することが判明した。特に、十字引張試験の場合に
は、ナゲット周辺部での応力集中が激しいため、これら
の影響は顕著になり、高強度鋼板の場合には十字引張強
さが低い値を示すのである。そして、ナゲット径を電極
先端径の1.2倍以下とするように溶接条件を制御すれ
ば、溶接時の散りの発生が低減されるかあるいは散りが
全く発生しないので、散り発生に起因するナゲット端部
の欠陥発生を防止することができ、十字引張強さを高く
保つことが可能であることを明らかにした。
【0013】高強度めっき鋼板のスポット溶接部で発生
する割れについても、溶接時の過大電流による過大入熱
が原因で発生するものであり、ナゲット径を電極先端径
の1.2倍以下とするように溶接条件を制御すれば、溶
接部の過大入熱を防止して高強度めっき鋼板のスポット
溶接部の割れ発生を防止することができることを明らか
にした。
【0014】ナゲット径を電極先端径の1.2倍以下と
するように溶接条件を制御すると、溶接時の散りの発生
は非常に少なくなるかあるいは全く発生しない。従っ
て、従来のように散りを発生させることによってナゲッ
ト径が確保されていると確認することができない。本発
明においては、溶接時の電流と電極間電圧を測定するこ
とにより、たとえ、電極の経時変化によって電極先端径
が変化したとしても適正なナゲット径を確保することを
可能にした。
【0015】本発明は、以上の知見に基づいてなされた
ものであり、その要旨とするところは以下のとおりであ
る。 (1)高強度鋼板のスポット溶接方法において、ナゲッ
ト径を電極先端径の1.2倍以下とすることを特徴とす
る高強度鋼板のスポット溶接方法。 (2)表面にめっきが施された高強度鋼板のスポット溶
接方法において、ナゲット径を電極先端径の1.2倍以
下とすることを特徴とする高強度鋼板のスポット溶接方
法。 (3)スポット溶接時の電流と電極間電圧を計測し、計
測した電流と電極間電圧および材料物性値を用いた計算
を行い、該計算結果に基づいて電流を制御することを特
徴とする上記(1)又は(2)に記載の高強度鋼板のス
ポット溶接方法。 (4)前記計測した電流と電極間電圧および材料物性値
を用いた計算は、熱伝導モデルに基づいた数値計算によ
りスポット溶接部の任意の位置における各時刻毎の温度
を求める数値計算であることを特徴とする上記(3)に
記載の高強度鋼板のスポット溶接方法。
【0016】なお、本発明において、ナゲットとはスポ
ット溶接部において溶融凝固した部分をいい、ナゲット
径とは鋼板表面に平行である最大径をいう。また、電極
先端径とは、新品電極における電極の先端径をいう。通
常、JIS C9304に規定されているドームラジア
ス(DR)形、円すい台(CF)形、円すい台ラジアス
(CR)形、偏心(EF)形、偏心ラジアス(ER)形
では先端電極径を規定できるが、ラジアス(R)形やド
ーム(D)形では規定できないため、これらの場合は新
品電極での鋼板との接触径と規定する。
【0017】
【発明の実施の形態】従来、スポット溶接における適正
なナゲット径の指標として、被溶接材の板厚t(mm)
との関係が用いられてきた。ナゲット径(mm)は、
3.5√t〜5.5√t程度が適切であるとされてい
た。この指標においては適正ナゲット径は電極先端径に
よらない。一般的に、電極先端径としては5√t程度が
用いられることが多いが、これに対し、本発明において
は、高強度鋼板のスポット溶接において、電極先端径次
第では、従来不適切といわれていたナゲット径でも溶接
部の引張強さを確保することができる場合があることを
明らかにした。
【0018】所定の電極先端径を有する電極を用いてス
ポット溶接を行なう場合、溶接電流を大きくすれば溶接
によって生成するナゲット径が大きくなり、逆に溶接電
流を小さくすればナゲット径が小さくなる。従って、溶
接電流を制御することによって、本発明のようにナゲッ
ト径を電極先端径の1.2倍以下に保つことができる。
ナゲット径を電極先端径の1.2倍以下にすることによ
り、溶接部における過大入熱を回避することができ、高
強度鋼板のスポット溶接において溶接部の割れを防止
し、溶接部の引張強さを向上させることが可能になっ
た。
【0019】ナゲット径を電極先端径の1.1倍以下に
制御すれば、高強度鋼板のスポット溶接部の割れ防止、
引張強さの向上の観点からより好ましい結果が得られ
る。
【0020】一方、健全なスポット溶接部を形成する上
では、ナゲット径を電極先端径の0.7倍以上、鋼板板
厚さt(mm)との関係ではナゲット径(mm)を3.
5√t倍以上とすると好ましい。
【0021】溶接電極先端と鋼板との接触面積は、表面
にめっきを施していない鋼板を溶接する場合において
は、通常15000回程度の打点まではほとんど変化し
ない。表面にめっきが施された鋼板の溶接においては、
電極先端の経時変化が速くなるが、それでも4000回
程度の打点まではほとんど変化しない。従って、上記電
極先端の経時変化が現れるまでの間については、使用初
期の電極を用いてナゲット径を最適化した溶接条件にお
いて、本発明を適正に実施することができる。
【0022】スポット溶接の連続打点回数を更に増大し
た場合、電極先端と鋼板との接触面の状況が変化し、電
極と鋼板との接触面積が増加する。接触面積の増加は、
鋼板中における溶接電流の通電直径すなわち通電面積の
増加をもたらす。通電直径が増加すれば、たとえ溶接電
流として一定の電流を流したとしても、鋼板中における
通電部の電流密度が低下して発熱量が低下し、また、発
熱部位が変化する。このような発熱状況の変化は、溶接
電流を観察しているのみではキャッチすることができな
い。従って、溶接電流を一定として溶接を行なう際にお
いて、打点数の増加と共に電極と鋼板の接触面積が増大
した場合、鋼板中における電流密度が低下して発熱量が
低下し、次第にナゲット径が小さくなるという現象が発
生し、最終的には溶接が不完全となる。従来は、溶接時
に散りが発生する条件で溶接を行ない、散りの有無を監
視することによってナゲット径が過少になることを防止
していたが、ナゲット径を電極先端径の1.2倍以下と
する本発明においてはこの手法を用いることができな
い。
【0023】以上述べたように、発熱状況の変化は、溶
接電流を観察しているのみではキャッチすることができ
ないが、通電電流と共に電極間電圧を観察することによ
って状況をキャッチすることが可能になる。即ち、通電
電流と電極間電圧とから電極間抵抗Rを求めることがで
き、電極間抵抗と鋼板の板厚、固有抵抗から通電面積S
を求めることができるのである。そして、これらの値を
用いることによって、鋼板中の通電部位における単位体
積あたりの発熱量を求めることができる。従って、溶接
通電中の通電電流と電極間電圧とを計測することによ
り、電極と鋼板、鋼板同士の接触状況をある程度推定す
ることができる。
【0024】本発明の上記(3)は、この計算結果を用
いることを特徴とする。この推定結果に基づいて電極と
鋼板との接触面積を推定し、この推定接触面積において
ナゲット径を適正ナゲット径とすることのできる溶接電
流を選択して電流を調整することにより、たとえ電極の
経時変化があってもその経時変化に対応してナゲット径
を一定に保つことが可能であり、溶接品質を安定して良
好に保つことができる。適正ナゲット径は電極先端径の
1.2倍以下であるが、ここにおいて電極先端径とは電
極先端が経時変化する前の初期電極先端径をいう。
【0025】図2は、本発明の高強度鋼板のスポット溶
接方法を説明するための図である。図2に示したよう
に、高強度鋼板1(非めっき材あるいはめっき材)同士
を重ね合せ、銅電極2で加圧しながら通電し、鋼板間で
溶融部を形成させ、通電後、冷却して溶融部を凝固さ
せ、ナゲット3を形成させる。溶接時の電流と電極間電
圧を計測装置5で計測し、演算装置6で必要な演算を行
なう。演算結果に基づき、制御装置7を用いて溶接電流
の制御を行なう。
【0026】次に、本発明の上記(4)における熱伝導
モデルに基づいた数値計算について、同じく図2にもと
づいて説明する。
【0027】熱伝導モデルにおいては、鋼板中の発熱、
鋼板中の熱伝導、鋼板から電極への熱伝導、鋼板から外
気への熱伝導に関してモデルを作成し数値計算を行な
う。鋼板から電極への熱伝導に関しては、鋼板と電極と
の接触面積が、上記において求めた通電面積Sに基づい
て定めることができるので、熱伝導モデルに組み込むこ
とが可能になる。鋼板中の熱伝導、鋼板から外気への熱
伝導は一般的なモデルを用いることができ、鋼板中の発
熱は通電面積に依存するが、上記のようにこれは通電電
流と電極間電圧とから求められるので、全体としての熱
伝導モデルを構築することが可能である。この熱伝導モ
デルに基づいた数値計算により、溶接部の任意の位置に
おける各時刻毎の温度を求めることができる。
【0028】スポット溶接においては、通常は50Hz
又は60Hzの交流電流を印加して行なう。通電中に計
測装置5を用い、交流電流の半サイクルにおいて通電電
流と電極間電圧との測定を行ない、残り半サイクルにお
いて演算装置6で上記熱伝導モデルに基づいた数値計算
を行なって溶接部の任意の位置における温度を求めるこ
とができる。最近のコンピュータの能力の向上に伴い、
以上のような熱伝導計算を交流電流の半サイクル内に実
行することについては困難性はない。
【0029】電極先端が経時変化する前の電極を用い、
最適なナゲット径を得ることのできる溶接条件を確立し
ておく。同時にこの条件での溶接時における溶接部の任
意の位置、例えば溶接中心部における温度履歴を上記熱
伝導モデルに基づく数値計算で明らかにし、これを適正
温度履歴とする。次いで、連続打点時において、溶接中
に計測装置5で計測した電流と電極間電圧を用いて演算
装置6で熱伝導モデルに基づく数値計算を行ない、その
ときの温度履歴が適正温度履歴に比較して温度が高すぎ
るようであれば制御装置7からの指令で電流を低下さ
せ、温度が低すぎるようであれば同じく制御装置7から
の指令で電流を増大させ、電極先端が経時変化しても常
に温度履歴を適正温度履歴と同等になるように電流を調
整する。これによって、たとえ電極先端が経時変化して
もナゲット径を常に本発明の適正条件に保持することが
でき、高強度鋼板のスポット溶接部の割れ発生を防止す
ることができ、引張強さを良好に保つことができる。
【0030】以上に述べた熱伝導モデルに基づく数値計
算は、従来、スポット溶接における散りの発生を低減す
る目的で使用されていた。例えば、溶接学会誌第67巻
第4号第45ページ〜第49ページに開示されていると
おりである。本発明の上記(4)においては、この熱伝
導モデルに基づく数値計算を、高強度鋼板のスポット溶
接における溶接部の割れ防止および引張強さの向上を目
的として適用したところに最大の特徴がある。
【0031】本発明で用いる高強度鋼板は、特に限定す
るものではなく、引張強さが420〜1200MPa程
度のものであり、固溶強化型、析出強化型(Ti析出
型、Nb析出型)、2相組織型(フェライト中にマルテ
ンサイトを含む組織、あるいはフェライト中にベイナイ
トを含む組織)、加工誘起変態型(フェライト中に残留
オーステナイトを含む組織)、などいずれの種類の鋼板
であっても良い。板厚については、一般的に自動車など
で使う鋼板の板厚、例えば、0.4mm〜4.0mm程
度で良い。鋼板の製造方法は、熱間圧延法でも冷間圧延
法でも良い。高強度鋼板に被覆するめっきの種類として
は、Znを成分としたもの、例えば、Zn、Zn−F
e、Zn−Al、Sn−Znなど、何れの種類であって
もよい。ナゲットを形成させるスポット溶接条件、すな
わち電極形状、電極加圧力、溶接電流、溶接時間は、一
般のスポット溶接条件に準ずれば良いが、上記で述べた
ように、電極加圧力を上げた方が高強度めっき鋼板のス
ポット溶接部で割れが発生する電流が高くなるため、電
極加圧力Pを高く設定してスポット溶接をすると好まし
い。
【0032】
【実施例】(第1の実施例)本第1の発明を用いて、高
強度鋼板(裸材)のスポット溶接を実施した。供試材と
して、表1に示した、めっきが施されていない加工誘起
変態型の複合組織高強度鋼板(記号:780TBS)を
用いた。スポット溶接継手の断面試験方法(JIS Z
3139)に基づいて断面組織観察用試験片を、また、
引張試験方法(JIS Z3136 Z3137)に基
づいて引張せん断試験片、十字引張試験片を作製し、図
2で示したように、スポット溶接を行った。スポット溶
接に際しては、表1に示したように、先端径が、5.
5、6.0、6.5mmのCR形電極を用い、加圧力を
2段階(2.94、4.75kN)に設定して、ナゲッ
ト径が電極先端径の1.2倍以下になるような条件(ナ
ゲット径が4√t、5√t、6√tmmになるような条
件、ただし、tは板厚(mm))と、ナゲット径が電極
先端径の1.2倍を越えるような条件に設定した。断面
組織から割れの発生状況を、また、引張試験から引張せ
ん断強さ(TSS)と十字引張強さ(CTS)を調べ
た。その結果を表1に併せて示す。780TBSをスポ
ット溶接した場合には、いずれの場合も、表面からの割
れは発生していなかった。いずれの電極を用いた場合に
も、ナゲット径が電極先端径の1.2倍以下になるよう
な条件でスポット溶接した場合(条件1〜3、7〜9、
13〜15、19〜21)には、鋼板間で割れが発生し
ておらず、引張せん断強さと十字引張強さもナゲット径
の増加とともに増加したが、ナゲット径がそれを越える
散りが発生するような過大電流域でスポット溶接した場
合(条件4〜6、10〜12、16〜18、22〜2
4)には、鋼板間で割れが発生し、引張せん断強さと十
字引張強さも電流の増加とともに低下する傾向が認めら
れ、加圧力が高い場合には、十字引張強さの低下は顕著
であった。加工誘起変態型の複合組織鋼板以外の鋼種を
用いても、あるいは板厚を変化させて実験を実施して
も、結果は同様であった。
【0033】
【表1】
【0034】(第2の実施例)本第2の発明を用いて、
高強度鋼板(めっき材)のスポット溶接を実施した。供
試材として、表2、表3に示した、両面に合金化溶融亜
鉛めっきが施された2種類の加工誘起変態型の複合組織
高強度鋼板(記号:590TGA、780TGA)を用
いた。第1の実施例と同様に、断面組織観察用試験片、
引張せん断試験片、十字引張試験片を作製し、図2で示
したように、スポット溶接を行った。590TGAを、
表2に示したように、先端径が6.5mmのCR形電極
を用い、加圧力を2段階(2.94kN、4.75k
N)に設定して、ナゲット径が電極先端径の1.2倍以
下になるような条件(ナゲット径が4√t、5√t、6
√tmmになるような条件、ただし、tは板厚(m
m))と、ナゲット径が電極先端径の1.2倍を越える
ような条件でスポット溶接した。断面組織から割れの発
生状況を、また、引張試験から引張せん断強さ(TS
S)と十字引張強さ(CTS)を調べた。その結果を表
2に併せて示す。ナゲット径が電極先端径の1.2倍以
下になるような条件でスポット溶接した場合(条件1〜
3、7〜9)には、表面および鋼板間で割れが発生して
おらず、引張せん断強さ(TSS)と十字引張強さ(C
TS)もナゲット径の増加とともに増加したが、ナゲッ
ト径がそれを越える散りが発生するような過大電流域で
スポット溶接した場合(条件4〜6、10〜12)に
は、表面および鋼板間で割れが発生しており、引張せん
断強さと十字引張強さも電流の増加とともに低下する傾
向が認められ、加圧力が高い場合には、十字引張強さは
顕著に低下した。同様に、780TGAを、先端径が、
5.5、6.0mmのCR形電極を用い、加圧力を2段
階(2.94kN、4.75kN)に設定して、表3に
示した条件でスポット溶接した。割れの発生状況と引張
せん断強さ(TSS)、十字引張強さ(CTS)を調べ
た結果を表3に併せて示す。いずれの電極を用いた場合
にも、ナゲット径が電極先端径の1.2倍以下になるよ
うな条件でスポット溶接した場合(条件13〜15、1
9〜21、25〜27、31〜33)には、表面および
鋼板間で割れが発生しておらず、引張せん断強さ(TS
S)と十字引張強さ(CTS)もナゲット径の増加とと
もに増加したが、ナゲット径がそれを越える散りが発生
するような過大電流域でスポット溶接した場合(条件1
6〜18、22〜24、28〜30、34〜36)に
は、表面および鋼板間で割れが発生しており、引張せん
断強さと十字引張強さも電流の増加とともに低下する傾
向が認められ、加圧力が高い場合には、十字引張強さは
顕著に低下した。加工誘起変態型の複合組織鋼板以外の
鋼種あるいは板厚を変化させて同様の実験を実施した
が、結果は同様であった。
【0035】
【表2】
【0036】
【表3】
【0037】(第3の実施例)本第3、第4の発明を用
いて、高強度鋼板(裸材、めっき材)のスポット溶接を
実施した。供試材として、表4に示した、めっきが施さ
れていない、あるいは、両面に合金化溶融亜鉛めっきが
施された2種類の加工誘起変態型の複合組織高強度鋼板
(記号:780TBS、780TGA)を用いた。第1
の実施例と同様に、断面組織観察用試験片、引張せん断
試験片、十字引張試験片を作製した。これらの試験片を
用い、図2で示したように、スポット溶接時の電流と電
極間電圧を計測しながら、ナゲット径が電極先端径の
1.2倍以下である5.5mm(5√tmm、ただし、
tは板厚(mm))一定値になるように電流を制御して
スポット溶接の連続打点試験を行った。また、ナゲット
径が電極先端径の1.2倍を越えるような過大電流域で
スポット溶接の連続打点試験を行い、さらに、溶接電流
の制御を行わずに電流一定のままスポット溶接の連続打
点試験を行った。割れの発生状況と引張せん断強さ(T
SS)、十字引張強さ(CTS)を調べた結果を表4に
併せて示す。780TBSを供試材に用い、電流を制御
してナゲット径を電極先端径の1.2倍以下である一定
値(5.5mm)に保った場合(条件1〜5)には、表
面および鋼板間で割れが発生しておらず、引張せん断強
さ(TSS)と十字引張強さ(CTS)も安定した高い
値を示したが、ナゲット径がそれを越える散りが発生す
るような過大電流域でスポット溶接した場合(条件6〜
10)には、鋼板間で割れが発生しており、引張せん断
強さと十字引張強さは低い値を示し、特に十字引張強さ
で顕著であった。同様に、780TGAを供試材に用
い、電流を制御してナゲット径が電極先端径の1.2倍
以下である一定値(5.5mm)に保った場合(条件1
1〜15)には、表面および鋼板間で割れが発生してお
らず、引張せん断強さ(TSS)と十字引張強さ(CT
S)も安定した高い値を示したが、ナゲット径がそれを
越える散りが発生するような過大電流域でスポット溶接
した場合(条件16〜20)には、表面および鋼板間で
割れが発生しており、引張せん断強さと十字引張強さは
低い値を示し、特に十字引張強さで顕著であった。ま
た、ナゲット径が一定になるように電流を制御せず、電
流一定でスポット溶接を行った場合には、表面および鋼
板間で割れは発生していなかったが、打点数の増加とと
もにナゲット径が低下し、それに伴って引張せん断強さ
と十字引張強さも低下した。
【0038】
【表4】
【0039】
【発明の効果】本発明において、ナゲット径を電極先端
径の1.2倍以下とするように溶接条件を調整すること
により、溶接部の過大入熱を防止して高強度鋼板のスポ
ット溶接における溶接部の引張強さを向上させることが
でき、高強度めっき鋼板のスポット溶接における溶接部
の割れ発生を防止することができる。
【0040】本発明においては、溶接時の電流と電極間
電圧を測定することにより、さらには熱伝導モデルに基
づいた数値計算を行なうことにより、たとえ電極の経時
変化によって電極先端と鋼板との接触状況が変化したと
しても適正なナゲット径を確保することができる。
【図面の簡単な説明】
【図1】スポット溶接、及び高強度めっき鋼板のスポッ
ト溶接における溶接部の割れを説明するための断面図で
ある。
【図2】本発明のスポット溶接方法を説明するための断
面図である。
【符号の説明】
1 高強度(めっき)鋼板 2 銅電極 3 ナゲット 4 割れ(マイクロクラック) 5 計測装置 6 演算装置 7 制御装置

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 高強度鋼板のスポット溶接方法におい
    て、ナゲット径を電極先端径の1.2倍以下とすること
    を特徴とする高強度鋼板のスポット溶接方法。
  2. 【請求項2】 表面にめっきが施された高強度鋼板のス
    ポット溶接方法において、ナゲット径を電極先端径の
    1.2倍以下とすることを特徴とする高強度鋼板のスポ
    ット溶接方法。
  3. 【請求項3】 スポット溶接時の電流と電極間電圧を計
    測し、計測した電流と電極間電圧および材料物性値を用
    いた計算を行い、該計算結果に基づいて電流を制御する
    ことを特徴とする請求項1又は2に記載の高強度鋼板の
    スポット溶接方法。
  4. 【請求項4】 前記計測した電流と電極間電圧および材
    料物性値を用いた計算は、熱伝導モデルに基づいた数値
    計算によりスポット溶接部の任意の位置における各時刻
    毎の温度を求める数値計算であることを特徴とする請求
    項3に記載の高強度鋼板のスポット溶接方法。
JP2000366501A 2000-12-01 2000-12-01 高強度鋼板のスポット溶接方法 Withdrawn JP2002172469A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000366501A JP2002172469A (ja) 2000-12-01 2000-12-01 高強度鋼板のスポット溶接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000366501A JP2002172469A (ja) 2000-12-01 2000-12-01 高強度鋼板のスポット溶接方法

Publications (1)

Publication Number Publication Date
JP2002172469A true JP2002172469A (ja) 2002-06-18

Family

ID=18837114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000366501A Withdrawn JP2002172469A (ja) 2000-12-01 2000-12-01 高強度鋼板のスポット溶接方法

Country Status (1)

Country Link
JP (1) JP2002172469A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283860A (ja) * 2003-03-20 2004-10-14 Daihen Corp 抵抗溶接制御方法
JP2006061962A (ja) * 2004-08-30 2006-03-09 Daihen Corp 抵抗溶接制御方法
JP2010110816A (ja) * 2008-10-08 2010-05-20 Nippon Steel Corp 鋼板のスポット溶接方法
CN110480142A (zh) * 2019-08-26 2019-11-22 攀钢集团攀枝花钢铁研究院有限公司 控制中上限Mn含量R350HT钢轨闪光焊接接头组织的工艺
CN110480144A (zh) * 2019-08-26 2019-11-22 攀钢集团攀枝花钢铁研究院有限公司 控制中限Mn含量R350HT钢轨闪光焊接接头组织的工艺
CN110480143A (zh) * 2019-08-26 2019-11-22 攀钢集团攀枝花钢铁研究院有限公司 控制极下限Mn含量R350HT钢轨闪光焊接接头组织的工艺
CN110480140A (zh) * 2019-08-26 2019-11-22 攀钢集团攀枝花钢铁研究院有限公司 控制上限Mn含量R350HT钢轨闪光焊接接头组织的工艺
CN110480141A (zh) * 2019-08-26 2019-11-22 攀钢集团攀枝花钢铁研究院有限公司 控制中下限Mn含量R350HT钢轨闪光焊接接头组织的工艺
JP2020082102A (ja) * 2018-11-19 2020-06-04 株式会社神戸製鋼所 接合構造体及び接合構造体の製造方法
JP2020082105A (ja) * 2018-11-19 2020-06-04 株式会社神戸製鋼所 接合構造体及び接合構造体の製造方法
CN110480139B (zh) * 2019-08-26 2022-08-05 攀钢集团攀枝花钢铁研究院有限公司 控制下限Mn含量R350HT钢轨闪光焊接接头组织的工艺
CN110480138B (zh) * 2019-08-26 2022-08-09 攀钢集团攀枝花钢铁研究院有限公司 控制极上限Mn含量R350HT钢轨闪光焊接接头组织的工艺

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283860A (ja) * 2003-03-20 2004-10-14 Daihen Corp 抵抗溶接制御方法
JP2006061962A (ja) * 2004-08-30 2006-03-09 Daihen Corp 抵抗溶接制御方法
JP2010110816A (ja) * 2008-10-08 2010-05-20 Nippon Steel Corp 鋼板のスポット溶接方法
JP2020082102A (ja) * 2018-11-19 2020-06-04 株式会社神戸製鋼所 接合構造体及び接合構造体の製造方法
JP2020082105A (ja) * 2018-11-19 2020-06-04 株式会社神戸製鋼所 接合構造体及び接合構造体の製造方法
CN110480144A (zh) * 2019-08-26 2019-11-22 攀钢集团攀枝花钢铁研究院有限公司 控制中限Mn含量R350HT钢轨闪光焊接接头组织的工艺
CN110480140A (zh) * 2019-08-26 2019-11-22 攀钢集团攀枝花钢铁研究院有限公司 控制上限Mn含量R350HT钢轨闪光焊接接头组织的工艺
CN110480141A (zh) * 2019-08-26 2019-11-22 攀钢集团攀枝花钢铁研究院有限公司 控制中下限Mn含量R350HT钢轨闪光焊接接头组织的工艺
CN110480143A (zh) * 2019-08-26 2019-11-22 攀钢集团攀枝花钢铁研究院有限公司 控制极下限Mn含量R350HT钢轨闪光焊接接头组织的工艺
CN110480142A (zh) * 2019-08-26 2019-11-22 攀钢集团攀枝花钢铁研究院有限公司 控制中上限Mn含量R350HT钢轨闪光焊接接头组织的工艺
CN110480140B (zh) * 2019-08-26 2021-07-13 攀钢集团攀枝花钢铁研究院有限公司 控制上限Mn含量R350HT钢轨闪光焊接接头组织的工艺
CN110480142B (zh) * 2019-08-26 2021-07-13 攀钢集团攀枝花钢铁研究院有限公司 控制中上限Mn含量R350HT钢轨闪光焊接接头组织的工艺
CN110480143B (zh) * 2019-08-26 2021-07-13 攀钢集团攀枝花钢铁研究院有限公司 控制极下限Mn含量R350HT钢轨闪光焊接接头组织的工艺
CN110480141B (zh) * 2019-08-26 2021-07-13 攀钢集团攀枝花钢铁研究院有限公司 控制中下限Mn含量R350HT钢轨闪光焊接接头组织的工艺
CN110480144B (zh) * 2019-08-26 2021-07-13 攀钢集团攀枝花钢铁研究院有限公司 控制中限Mn含量R350HT钢轨闪光焊接接头组织的工艺
CN110480139B (zh) * 2019-08-26 2022-08-05 攀钢集团攀枝花钢铁研究院有限公司 控制下限Mn含量R350HT钢轨闪光焊接接头组织的工艺
CN110480138B (zh) * 2019-08-26 2022-08-09 攀钢集团攀枝花钢铁研究院有限公司 控制极上限Mn含量R350HT钢轨闪光焊接接头组织的工艺

Similar Documents

Publication Publication Date Title
KR101805284B1 (ko) 스폿 용접 조인트 및 스폿 용접 방법
TWI505890B (zh) 電阻點銲接頭的評估方法
JP5210552B2 (ja) 高強度スポット溶接継手
Hayat et al. The effect of welding parameters on fracture toughness of resistance spot-welded galvanized DP600 automotive steel sheets
Salimi Beni et al. Resistance spot welding metallurgy of thin sheets of zinc-coated interstitial-free steel
JP6384603B2 (ja) スポット溶接方法
US11524351B2 (en) Multistage joining process with thermal sprayed layers
JP2002172469A (ja) 高強度鋼板のスポット溶接方法
WO2004105994A1 (ja) 金属機械部品の液相拡散接合方法および金属機械部品
Han et al. Weld nugget development and integrity in resistance spot welding of high-strength cold-rolled sheet steels
JP5168204B2 (ja) 鋼板のスポット溶接方法
JP2002103054A (ja) 高強度鋼板のスポット溶接方法
JP6105993B2 (ja) 抵抗熱により接合されたステンレス鋼箔製成型品
JP3849508B2 (ja) 高張力亜鉛系めっき鋼板のスポット溶接方法
JP7115223B2 (ja) 抵抗スポット溶接継手の製造方法
Shi et al. Techniques for improving the weldability of TRIP steel using resistance spot welding
Habib et al. Experimental study of spot weld parameters in resistance spot welding process
Viňáš et al. Optimization of resistance spot welding parameters for microalloyed steel sheets
JP5070866B2 (ja) 熱延鋼板およびスポット溶接部材
JP3875878B2 (ja) 溶接部の疲労強度特性に優れた高強度鋼板のスポット溶接方法
Kaščák et al. Evaluation of the influence of the welding current on the surface quality of spot welds
Han et al. Effects of expulsion in spot welding of cold rolled sheet steels
JP5347416B2 (ja) 片側スポット溶接性に優れた高強度鋼材および片側スポット溶接方法
WO2022219968A1 (ja) 抵抗スポット溶接方法
WO2024063010A1 (ja) 溶接部材およびその製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205