JP2002170847A - Manufacturing method of semiconductor device and semiconductor device - Google Patents

Manufacturing method of semiconductor device and semiconductor device

Info

Publication number
JP2002170847A
JP2002170847A JP2000366873A JP2000366873A JP2002170847A JP 2002170847 A JP2002170847 A JP 2002170847A JP 2000366873 A JP2000366873 A JP 2000366873A JP 2000366873 A JP2000366873 A JP 2000366873A JP 2002170847 A JP2002170847 A JP 2002170847A
Authority
JP
Japan
Prior art keywords
chip
metal
substrate
semiconductor device
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000366873A
Other languages
Japanese (ja)
Inventor
Masayoshi Shinoda
政佳 篠田
Makoto Araki
誠 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Renesas Eastern Japan Semiconductor Inc
Original Assignee
Hitachi Tokyo Electronics Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tokyo Electronics Co Ltd, Hitachi Ltd filed Critical Hitachi Tokyo Electronics Co Ltd
Priority to JP2000366873A priority Critical patent/JP2002170847A/en
Publication of JP2002170847A publication Critical patent/JP2002170847A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device manufacturing method that enables to conduct not through a contact but through a junction and can correspond to narrow pitch, many pin devices with high reliability in connection. method. SOLUTION: This semiconductor device with a single chip package is constituted of a multi-wiring layer structured board 1, a chip 2 mounted on the board 1, a sealant 3 sealing the joining part between the board 1 and the chip 2, external terminals and so on. The sealant 3 is made of a heat-hardening insulative resin 8 and fine microscopic particles 9 of Sn or Sn alloy, a metal with a low melting point, which are evenly dispersed in a film or a liquid of the resin 8 so that the particles do not touch each other. The particles 9 of Sn or Sn alloy are molten by pressure heating of two steps to form an alloy layer 10 in a joining part between a metal bump 7 of the chip 2 and a connecting metal pad 5 of the board 1 so as to bond both.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置および
その製造技術に関し、たとえばシングルチップパッケー
ジやマルチチップモジュールなどにおいて、特に狭ピッ
チ、多ピンに対応し、かつフリップチップ接続における
接続信頼性の高い接続工法に好適な半導体装置の製造方
法に適用して有効な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a manufacturing technique thereof, for example, in a single-chip package or a multi-chip module, in particular, which corresponds to a narrow pitch and a large number of pins and has high connection reliability in flip-chip connection. The present invention relates to a technique that is effective when applied to a method for manufacturing a semiconductor device suitable for a connection method.

【0002】[0002]

【従来の技術】本発明者が検討した技術として、たとえ
ばマルチチップモジュールに対応の狭ピッチ、多ピンの
フリップチップ接続には、絶縁樹脂に微細な導電粒子を
分散させたACF(Anstropic Conduc
tive Film)工法を適用する技術が考えられ
る。
2. Description of the Related Art As a technique studied by the present inventor, for example, for narrow-pitch, multi-pin flip-chip connection corresponding to a multi-chip module, an ACF (Anstropic Conductor) in which fine conductive particles are dispersed in an insulating resin is used.
A technique that applies the “Two Film” method is conceivable.

【0003】このACF工法では、基板上のNi(ニッ
ケル)/Au(金)めっきを施した接続金属パッド上
に、チップ搭載範囲にACFを貼り付け、Auバンプの
付いたチップをフェイスダウンで搭載し、加熱圧着さ
せ、チップ上のAuバンプと基板上の接続金属パッド
は、絶縁樹脂内の導電粒子を介在させた接触によって導
通を取る方法である。このACFの絶縁樹脂は、基板と
チップの熱膨張係数差や反りの緩和を目的とする封止材
として機能する。
In this ACF method, an ACF is attached to a chip mounting area on a Ni (nickel) / Au (gold) plated connection metal pad on a substrate, and a chip with an Au bump is mounted face down. In this method, the Au bumps on the chip and the connection metal pads on the substrate are electrically connected by conductive particles in the insulating resin. The insulating resin of the ACF functions as a sealing material for the purpose of reducing the difference in thermal expansion coefficient between the substrate and the chip and the warpage.

【0004】なお、このようなACF工法に関する技術
としては、たとえば2000年7月28日、株式会社工
業調査会発行、社団法人エレクトロニクス実装学会編の
「エレクトロニクス実装大事典」P653,654に記
載される技術などが挙げられる。
[0004] Such a technique related to the ACF method is described, for example, in “Electronic Packaging Encyclopedia”, pages 653 and 654, edited by the Japan Institute of Electronics Packaging on July 28, 2000. Technology.

【0005】[0005]

【発明が解決しようとする課題】ところで、前記のよう
なACF工法の技術について、本発明者が検討した結
果、以下のようなことが明らかとなった。たとえば、前
記のACF工法では、チップ上のAuバンプと基板上の
接続金属パッドとの接触のみの導通であるため、高温動
作時の樹脂膨張により接続抵抗が急激に上昇する問題が
ある。すなわち、接続状態が接触のみであるため、高温
環境における樹脂膨張などで接続抵抗の不安定やオープ
ン不良が発生し易いという問題が考えられる。
The inventors of the present invention have studied the technique of the ACF method as described above, and have found the following. For example, in the above-mentioned ACF method, since only the contact between the Au bump on the chip and the connection metal pad on the substrate is conducted, there is a problem that the connection resistance sharply increases due to resin expansion during high-temperature operation. That is, since the connection state is only contact, there may be a problem that the connection resistance is unstable and an open failure is likely to occur due to resin expansion or the like in a high-temperature environment.

【0006】そこで、本発明の目的は、封止材の絶縁性
樹脂材料に低融点金属の微細粒子を分散することによっ
て、接触による導通ではなく接合による導通を可能にし
て、狭ピッチ、多ピンに対応し、かつ接続信頼性の高い
接続工法を実現することができる半導体装置の製造方法
を提供するものである。
Accordingly, an object of the present invention is to disperse fine particles of a low-melting-point metal in an insulating resin material of a sealing material, thereby enabling conduction not by contact but by bonding to achieve narrow pitch, high pin count. And a method of manufacturing a semiconductor device capable of realizing a connection method with high connection reliability.

【0007】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述および添付図面から明らかに
なるであろう。
[0007] The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0008】[0008]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
次のとおりである。
SUMMARY OF THE INVENTION Among the inventions disclosed in the present application, the outline of a representative one will be briefly described.
It is as follows.

【0009】すなわち、本発明による半導体装置の製造
方法は、接続金属パッドが表面上に設けられた基板の表
面上に、熱硬化性絶縁性樹脂材料の内部に低融点金属の
微細粒子を分散させた封止材を供給し、基板上に供給さ
れた封止材の上から、金属バンプが表面上に設けられた
チップをフェイスダウンで搭載し、チップの裏面から加
熱加圧してチップ上の金属バンプと基板上の接続金属パ
ッドとを封止材の低融点金属の微細粒子を介して接合さ
せ、チップと基板との導通を取る、各工程を有するもの
である。
That is, in the method of manufacturing a semiconductor device according to the present invention, fine particles of a low-melting-point metal are dispersed inside a thermosetting insulating resin material on a surface of a substrate on which connection metal pads are provided. The chip with the metal bumps provided on the front surface is mounted face down from the top of the sealing material supplied on the substrate, and heated and pressurized from the back of the chip. The method includes the steps of joining the bump and the connection metal pad on the substrate via the fine particles of the low-melting-point metal of the sealing material to establish conduction between the chip and the substrate.

【0010】さらに、前記半導体装置の製造方法におい
て、チップの裏面から加熱加圧する際、低融点金属の微
細粒子の融点以下の温度により封止材を硬化し、低融点
金属の微細粒子の融点以上の温度により低融点金属の微
細粒子を溶融させて金属バンプと接続金属パッドとを接
合するようにしたものである。
Further, in the method of manufacturing a semiconductor device, when heating and pressurizing from the back surface of the chip, the encapsulant is cured at a temperature equal to or lower than the melting point of the low-melting-point metal fine particles, and is heated to the melting point of the low-melting-point metal fine particles. At this temperature, the fine particles of the low melting point metal are melted to join the metal bump and the connection metal pad.

【0011】さらに、前記半導体装置の製造方法におい
て、封止材を硬化する際、チップの裏面より荷重をかけ
て金属バンプと接続金属パッドとの間に挟んだ低融点金
属の微細粒子を薄く平らに変形させ、さらに金属バンプ
と接続金属パッドとを接合する際、薄く平らに変形され
た低融点金属の微細粒子を溶融させて薄く均一な合金層
を生成させるようにしたものである。
Further, in the method of manufacturing a semiconductor device, when the sealing material is cured, a load is applied from the back surface of the chip to thinly and flatten the fine particles of the low melting point metal sandwiched between the metal bump and the connection metal pad. When the metal bump and the connection metal pad are joined together, the thin and flat deformed fine particles of the low melting point metal are melted to form a thin and uniform alloy layer.

【0012】また、前記半導体装置の製造方法におい
て、基板上の封止材の上からチップを搭載する際、同一
の基板上に複数のチップをフェイスダウンで搭載するよ
うにしたものである。
Further, in the method of manufacturing a semiconductor device, a plurality of chips are mounted face-down on the same substrate when the chips are mounted on the sealing material on the substrate.

【0013】また、本発明による半導体装置は、接続金
属パッドが表面上に設けられた基板と、この基板の表面
上にフェイスダウンで搭載され、金属バンプが表面上に
設けられた1つまたは複数のチップと、この1つまたは
複数のチップ上の金属バンプと基板上の接続金属パッド
とを接合させるSn(すず)またはSn合金の微細粒子
を熱硬化性絶縁性樹脂材料の内部に均一分散させた封止
材とを有するものである。
Further, a semiconductor device according to the present invention comprises a substrate having connection metal pads provided on a surface thereof, and one or a plurality of semiconductor devices mounted face-down on the surface of the substrate and having metal bumps provided on the surface. And fine particles of Sn (tin) or a Sn alloy for joining the metal bumps on the one or more chips and the connection metal pads on the substrate are uniformly dispersed in the thermosetting insulating resin material. And a sealing material.

【0014】詳細に、本発明は、樹脂基板、テープ、ま
たはセラミック基板などの基板上の接続金属パッド上の
チップ搭載範囲に、低融点金属である微細なSnまたは
Sn合金粒子を互いが接触しないように均一分散させた
熱硬化性絶縁性樹脂封止材料を供給する。その上から、
金属バンプの付いたチップをフェイスダウンで搭載し、
チップの金属バンプと基板の接続金属パッドとの間にS
nまたはSn合金粒子を挟んだ状態で、チップの裏面か
らSnまたはSn合金の融点以下の温度で加熱加圧し、
粒子を薄く平らに変形させるとともに、絶縁性樹脂を硬
化させる。その後、チップ上の金属バンプと基板上の接
続金属パッドに、SnまたはSn合金の融点温度までチ
ップの裏面から加熱加圧して挟まれ薄く平らに変形した
SnまたはSn合金粒子を溶融し、金属バンプと接続金
属パッドを接合させることにより、チップと基板を導通
させることができるようにしたものである。
In detail, the present invention does not allow fine Sn or Sn alloy particles, which are low melting point metals, to come into contact with a chip mounting area on a connection metal pad on a substrate such as a resin substrate, a tape, or a ceramic substrate. The thermosetting insulating resin encapsulating material is uniformly dispersed as described above. From above,
A chip with metal bumps is mounted face down,
S between the metal bump of the chip and the connection metal pad of the substrate
While n or Sn alloy particles are sandwiched, heat and pressure are applied from the back surface of the chip at a temperature equal to or lower than the melting point of Sn or Sn alloy,
The particles are thinly and flatly deformed, and the insulating resin is cured. Then, the metal bumps on the chip and the connection metal pads on the substrate are heated and pressed from the back surface of the chip to the melting point temperature of Sn or Sn alloy to melt thin and flat deformed Sn or Sn alloy particles. And the connection metal pad, so that the chip and the substrate can be conducted.

【0015】特に、本発明では、絶縁性樹脂封止材料に
SnまたはSn合金粒子を均一分散することにより、チ
ップと基板との間で、従来の接触による導通ではなく、
接続信頼性の高い接合による導通を可能とすることがで
きる。
In particular, in the present invention, by uniformly dispersing Sn or Sn alloy particles in an insulating resin sealing material, the chip and the substrate are not electrically connected by the conventional contact,
Conduction by bonding with high connection reliability can be enabled.

【0016】よって、前記半導体装置の製造方法および
半導体装置によれば、接合界面に金属合金が生成される
ため、接触による導通と異なり、高温環境での導通不良
を生じ難くなる。また、接続抵抗についも安定させるこ
とができる。さらに、接合前に封止材を基板に供給する
ことで、接合後封止材供給の際に問題となるボイド発生
を抑制できる。また、SnまたはSn合金粒子を溶融前
に薄く平らに変形することにより、長期接合性が向上す
る。この結果、狭ピッチ、多ピン対応のフリップチップ
接続において、従来の工法と比較し、高温環境において
も安定した接合信頼性を確保できる。
Therefore, according to the method of manufacturing a semiconductor device and the semiconductor device, a metal alloy is generated at the bonding interface, and unlike the conduction due to contact, conduction failure in a high-temperature environment is less likely to occur. Also, the connection resistance can be stabilized. Further, by supplying the sealing material to the substrate before the joining, it is possible to suppress the generation of voids which is a problem when supplying the sealing material after the joining. In addition, long-term bondability is improved by deforming the Sn or Sn alloy particles thinly and flat before melting. As a result, in the flip-chip connection for a narrow pitch and a large number of pins, stable bonding reliability can be ensured even in a high-temperature environment as compared with the conventional method.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。図1は本発明の一実施の形
態の半導体装置(シングルチップパッケージ)を示す断
面図、図2は平面図、図3は底面図、図4は封止材を示
す断面図、図5および図6は半導体装置の製造方法を示
すフロー図、図7は他の半導体装置(マルチチップモジ
ュール)を示す断面図、図8は平面図、図9は底面図、
図10は封止材の変形例を示す断面図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 is a sectional view showing a semiconductor device (single chip package) according to an embodiment of the present invention, FIG. 2 is a plan view, FIG. 3 is a bottom view, FIG. 4 is a sectional view showing a sealing material, FIG. 6 is a flowchart showing a method for manufacturing a semiconductor device, FIG. 7 is a sectional view showing another semiconductor device (multi-chip module), FIG. 8 is a plan view, FIG.
FIG. 10 is a sectional view showing a modification of the sealing material.

【0018】まず、図1〜図3により、本実施の形態の
半導体装置の一例の構成を説明する。本実施の形態の半
導体装置は、たとえばシングルチップパッケージの半導
体装置とされ、多層配線層構造の絶縁基板1(以下基板
1と記載する)と、この基板1に実装される半導体チッ
プ2(以下チップ2と記載する)と、基板1とチップ2
との接合部分を封止する封止材3と、外部端子4などか
ら構成されている。
First, the configuration of an example of the semiconductor device of the present embodiment will be described with reference to FIGS. The semiconductor device of the present embodiment is, for example, a semiconductor device of a single chip package, and has an insulating substrate 1 (hereinafter, referred to as a substrate 1) having a multilayer wiring layer structure, and a semiconductor chip 2 (hereinafter, a chip) mounted on the substrate 1. 2), substrate 1 and chip 2
And an external terminal 4 and the like.

【0019】基板1は、たとえば多層構造の樹脂基板、
テープ、またはセラミック基板などからなり、たとえば
Au(金)などの接続金属パッド5(たとえば角50μ
m程度)が表面上に設けられ、また裏面上に、たとえば
Auなどの接続金属ランド6(たとえば直径50μm程
度)が設けられ、表面上の接続金属パッド5から各層間
のスルーホール、各層の金属配線パターンを通じて裏面
上の接続金属ランド6まで電気的に接続されている。
The substrate 1 is, for example, a resin substrate having a multilayer structure,
It is made of a tape, a ceramic substrate, or the like, and has a connection metal pad 5 (for example, a square
m) is provided on the front surface, and a connection metal land 6 (for example, about 50 μm in diameter) such as Au is provided on the back surface. From the connection metal pad 5 on the front surface, a through hole between each layer, a metal of each layer is provided. It is electrically connected to the connection metal land 6 on the back surface through the wiring pattern.

【0020】チップ2は、たとえばマイクロコンピュー
タ、メモリなどからなり、たとえばAuなどの金属バン
プ7(たとえば直径50μm程度)が表面上に設けら
れ、また内部にマイクロコンピュータ、メモリなどの所
定の集積回路が形成され、内部の集積回路の各端子から
表面上の金属バンプ7まで電気的に接続されている。
The chip 2 is composed of, for example, a microcomputer, a memory, or the like. For example, a metal bump 7 (for example, about 50 μm in diameter) of Au or the like is provided on the surface, and a predetermined integrated circuit such as a microcomputer, a memory, and the like is provided inside. It is formed and is electrically connected from each terminal of the internal integrated circuit to the metal bump 7 on the surface.

【0021】封止材3は、図4に示すように、たとえば
エポキシ系などの熱硬化性絶縁性樹脂材料8の内部に、
微細な低融点金属であるSn(すず)またはSn合金粒
子9(たとえば直径5μm程度以下)が互いに接触しな
いように均一分散されたフィルム形態(a)、または液
状形態(b)で形成されている。このSnまたはSn合
金粒子9は、2段階の加熱加圧による溶融によりチップ
2の金属バンプ7と基板1の接続金属パッド5との接合
部に合金層10が形成されて接合される。また、Snま
たはSn合金粒子9の径を微細にすることで狭ピッチ、
多ピンの際もショートを起こし難くできる。前記合金粒
子9の直径は、基板1の接続金属パッド5間の距離およ
びチップ2上の金属バンプ7間の距離よりも小さな値と
する。
As shown in FIG. 4, the sealing material 3 is provided inside a thermosetting insulating resin material 8 such as an epoxy-based material.
It is formed in a film form (a) or a liquid form (b) in which fine low melting point metal Sn (tin) or Sn alloy particles 9 (for example, having a diameter of about 5 μm or less) are uniformly dispersed so as not to contact each other. . The Sn or Sn alloy particles 9 are melted by two-stage heating and pressing to form an alloy layer 10 at a joint between the metal bump 7 of the chip 2 and the connection metal pad 5 of the substrate 1, and are joined. Further, by making the diameter of the Sn or Sn alloy particles 9 fine, a narrow pitch,
Short-circuiting is less likely to occur even with multiple pins. The diameter of the alloy particles 9 is smaller than the distance between the connection metal pads 5 on the substrate 1 and the distance between the metal bumps 7 on the chip 2.

【0022】外部端子4は、たとえばPb(鉛)/Sn
(すず)や、鉛フリーなどの半田ボールからなり、基板
1の裏面上の接続金属ランド6に接合され、基板1の裏
面上に周辺1列や2列、あるいはアレイ状(図1,図3
では周辺1列の例を示し、数は図を明確化するために実
際のものとは異なる場合がある)などで配列されてい
る。
The external terminal 4 is, for example, Pb (lead) / Sn
(Tin) or lead-free solder balls, which are joined to the connection metal lands 6 on the back surface of the substrate 1 and are arranged on the back surface of the substrate 1 in one or two rows or in an array (FIGS. 1, 3).
Shows an example of one peripheral row, and the number may be different from the actual one in order to clarify the figure).

【0023】次に、図5および図6により、本実施の形
態のシングルチップパッケージの半導体装置の製造方法
を説明する。図5および図6において、左側の図は製造
方法の各製造工程を示すフロー図、右側の図は各製造工
程に対応する半導体装置を示す断面図である。
Next, a method of manufacturing a single-chip package semiconductor device according to the present embodiment will be described with reference to FIGS. In FIGS. 5 and 6, the drawings on the left are flowcharts showing respective manufacturing steps of the manufacturing method, and the drawings on the right are cross-sectional views showing semiconductor devices corresponding to the respective manufacturing steps.

【0024】この半導体装置の製造に先立って、まず準
備段階として、シングルチップパッケージの半導体装置
の製造に必要な、前述した基板1、チップ2、封止材
3、外部端子4となる半田ボールなどを用意する。
Prior to the manufacture of the semiconductor device, first, as a preparatory step, the above-mentioned substrate 1, chip 2, sealing material 3, solder balls serving as external terminals 4, etc. necessary for manufacturing a semiconductor device of a single-chip package are provided. Prepare

【0025】(1)封止材供給工程(ステップS1)に
おいて、基板1上の接続金属パッド5上のチップ搭載範
囲に、熱硬化性絶縁性樹脂材料8の内部にSnまたはS
n合金粒子9を均一分散させたフィルム形態(または液
状形態)の封止材3を供給する。
(1) In the encapsulant supply step (step S1), Sn or S in the thermosetting insulating resin material 8 is provided in the chip mounting area on the connection metal pad 5 on the substrate 1.
The film-form (or liquid-form) sealing material 3 in which the n-alloy particles 9 are uniformly dispersed is supplied.

【0026】(2)チップ搭載工程(ステップS2)に
おいて、基板1上に供給された封止材3の上から、金属
バンプ7が設けられたチップ2を接続金属パッド5上に
フェイスダウンで搭載する。
(2) In the chip mounting step (step S2), the chip 2 provided with the metal bumps 7 is mounted face down on the connection metal pads 5 from above the sealing material 3 supplied onto the substrate 1. I do.

【0027】(3)封止材硬化工程(ステップS3)に
おいて、チップ2の金属バンプ7と基板1の接続金属パ
ッド5との間に封止材3のSnまたはSn合金粒子9を
挟んだ状態で、チップ2の裏面からSnまたはSn合金
粒子9の融点以下の温度で加熱加圧し、このSnまたは
Sn合金粒子9を薄く平らに変形させるとともに、封止
材3の熱硬化性絶縁性樹脂材料8を硬化させる。
(3) A state in which Sn or Sn alloy particles 9 of the sealing material 3 are sandwiched between the metal bumps 7 of the chip 2 and the connection metal pads 5 of the substrate 1 in the sealing material curing step (step S3). Then, heat and pressure are applied from the back surface of the chip 2 at a temperature equal to or lower than the melting point of the Sn or Sn alloy particles 9 to deform the Sn or Sn alloy particles 9 thinly and flatly, and the thermosetting insulating resin material of the sealing material 3 8 is cured.

【0028】(4)溶融接合工程(ステップS4)にお
いて、チップ2上の金属バンプ7と基板1上の接続金属
パッド5に、SnまたはSn合金粒子9の融点温度まで
チップ2の裏面から加熱加圧して、挟まれ薄く平らに変
形したSnまたはSn合金粒子9を溶融して均一なAu
−Sn合金による合金層10を形成し、チップ2上の金
属バンプ7と基板1上の接続金属パッド5を接合させ
る。
(4) In the fusion bonding step (step S4), the metal bumps 7 on the chip 2 and the connection metal pads 5 on the substrate 1 are heated from the back surface of the chip 2 to the melting point of the Sn or Sn alloy particles 9. Is pressed to melt the thin or flat Sn or Sn alloy particles 9 that are sandwiched and melted to form a uniform Au.
An alloy layer 10 made of a -Sn alloy is formed, and the metal bumps 7 on the chip 2 and the connection metal pads 5 on the substrate 1 are joined.

【0029】(5)バンプ付け工程(ステップS5)に
おいて、チップ2上の金属バンプ7と基板1上の接続金
属パッド5を導通させた後、基板1の裏面の接続金属ラ
ンド6上に外部端子4となる半田ボールを付ける。
(5) In the bumping step (step S5), after the metal bumps 7 on the chip 2 and the connection metal pads 5 on the substrate 1 are made conductive, external terminals are placed on the connection metal lands 6 on the back surface of the substrate 1. Attach the solder ball No. 4.

【0030】これにより、シングルチップパッケージの
半導体装置が完成する。この半導体装置は、チップ2の
内部の集積回路の各端子から表面上の金属バンプ7を通
じ、さらに基板1の表面上の接続金属パッド5、各層間
のスルーホール、各層の金属配線パターン、裏面上の接
続金属ランド6を通じ、外部端子4まで電気的に導通さ
れる。
Thus, a single-chip package semiconductor device is completed. In this semiconductor device, the terminals of the integrated circuit inside the chip 2 are passed through the metal bumps 7 on the surface, the connection metal pads 5 on the surface of the substrate 1, the through holes between the layers, the metal wiring patterns of the layers, Are electrically conducted to the external terminals 4 through the connection metal lands 6.

【0031】次に、図7〜図9により、本実施の形態の
半導体装置の製造方法を適用して製造したマルチチップ
モジュールの半導体装置の一例を説明する。
Next, an example of a semiconductor device of a multi-chip module manufactured by applying the method of manufacturing a semiconductor device according to the present embodiment will be described with reference to FIGS.

【0032】本実施の形態のマルチチップモジュールの
半導体装置は、前記図1〜図3のような構造に対して複
数のチップを実装する点が異なり、寸法が大きな多層配
線層構造の基板1aと、この基板1aに実装される、マ
イクロコンピュータのチップ2a、SDRAMの複数
(ここでは4個)のチップ2bと、基板1aと複数のチ
ップ2a,2bとの接合部分を封止する封止材3aと、
外部端子4aなどから構成されている。さらに、放熱性
を考慮してチップ2a,2bの裏面に放熱板11を接着
することも可能であり、またSRAMなどの他のメモリ
のチップやASICなどのチップを実装する場合などに
ついても適用可能である。
The semiconductor device of the multi-chip module according to the present embodiment is different from the structure shown in FIGS. 1 to 3 in that a plurality of chips are mounted on the semiconductor device. A microcomputer chip 2a mounted on the substrate 1a, a plurality of (here, four) chips 2b of an SDRAM, and a sealing material 3a for sealing a joint portion between the substrate 1a and the plurality of chips 2a, 2b. When,
It is composed of an external terminal 4a and the like. Further, it is possible to adhere the heat radiating plate 11 to the back surface of the chips 2a and 2b in consideration of the heat radiating property, and it is also applicable to a case where a chip of another memory such as an SRAM or a chip such as an ASIC is mounted. It is.

【0033】基板1a、マイクロコンピュータのチップ
2a、SDRAMのチップ2b、封止材3a、外部端子
4aは、前記シングルチップパッケージと同様の構造と
なっている。また、外部端子4aは、たとえばアレイ状
に配列されている。
The substrate 1a, the microcomputer chip 2a, the SDRAM chip 2b, the sealing material 3a, and the external terminals 4a have the same structure as that of the single chip package. The external terminals 4a are arranged, for example, in an array.

【0034】マイクロコンピュータのチップ2aは、た
とえばマルチチップモジュールに対する入出力データの
入出力動作を制御したり、SDRAMのチップ2bに対
するデータの書き込み/読み出し動作を制御するなど、
マルチチップモジュール全体の制御・処理を司るための
ものである。
The microcomputer chip 2a controls the input / output operation of input / output data to / from a multichip module, and controls the data write / read operation to / from the SDRAM chip 2b.
This is for controlling and processing the entire multichip module.

【0035】SDRAMのチップ2bは、たとえば複数
のメモリセルを格子状に配列したメモリマトリックスを
有し、マイクロコンピュータのチップ2aの制御に基づ
いて、各メモリセルに対するデータの書き込み/読み出
しを可能とするものである。
The SDRAM chip 2b has, for example, a memory matrix in which a plurality of memory cells are arranged in a lattice, and enables data writing / reading for each memory cell under the control of the microcomputer chip 2a. Things.

【0036】このマルチチップモジュールの半導体装置
においても、前記図5および図6に示すような各製造工
程に従い、基板1a上のチップ搭載範囲に封止材3aを
供給する封止材供給工程、基板1a上の封止材3aの上
からチップ2a,2bを搭載するチップ搭載工程、チッ
プ2a,2bの裏面から加熱加圧して封止材3aの熱硬
化性絶縁性樹脂材料8aを硬化させる封止材硬化工程、
チップ2a,2bの裏面から加熱加圧して金属バンプ7
と接続金属パッド5をSnまたはSn合金粒子9aの溶
融による合金層10aを形成して接合させる溶融接合工
程、基板1aの裏面の接続金属ランド6上に外部端子4
aとなる半田ボールを付けるバンプ付け工程を行うこと
により、マルチチップモジュールの半導体装置が完成す
る。
Also in the semiconductor device of this multi-chip module, a sealing material supply step of supplying the sealing material 3a to the chip mounting area on the substrate 1a in accordance with the respective manufacturing steps as shown in FIGS. A chip mounting step of mounting the chips 2a and 2b from above the sealing material 3a on 1a, and encapsulation for curing the thermosetting insulating resin material 8a of the sealing material 3a by applying heat and pressure from the back surface of the chips 2a and 2b. Material curing process,
Heat and pressure are applied from the back surfaces of the chips 2a and 2b to the metal bumps 7
Bonding step of forming an alloy layer 10a by melting Sn or Sn alloy particles 9a and bonding the connection metal pad 5 to the external metal terminal 5 on the connection metal land 6 on the back surface of the substrate 1a.
The semiconductor device of the multi-chip module is completed by performing a bumping step of attaching a solder ball as “a”.

【0037】従って、本実施の形態の半導体装置によれ
ば、チップ2(2a,2b)上の金属バンプ7(7a)
と基板1(1a)上の接続金属パッド5(5a)との接
合界面にAu−Sn合金による合金層10(10a)が
生成されるため、接触による導通と異なり、接合による
導通となるので、高温環境での導通不良を生じ難くな
る。また、接続抵抗についても安定させることができ
る。すなわち、接合界面に金属合金が生成されるため、
強い接合強度を得ることができる。また、加圧された部
分のみSnまたはSn合金粒子9(9a)が捕捉されて
平らに変形され、さらにSnまたはSn合金粒子9(9
a)の融点以上に加熱することにより、導通が必要な部
分にのみ接合のための合金層10(10a)が形成され
るため、狭ピッチの場合でも金属バンプ7間の絶縁を確
保することができる。
Therefore, according to the semiconductor device of the present embodiment, the metal bump 7 (7a) on the chip 2 (2a, 2b)
Since an alloy layer 10 (10a) made of an Au-Sn alloy is generated at the joint interface between the substrate and the connection metal pad 5 (5a) on the substrate 1 (1a), the conduction is different from the contact, and the conduction is due to the junction. Insufficient conduction in a high-temperature environment is unlikely to occur. Further, the connection resistance can be stabilized. That is, since a metal alloy is generated at the bonding interface,
Strong bonding strength can be obtained. In addition, only the pressurized portion captures the Sn or Sn alloy particles 9 (9a) and deforms it flat, and further, the Sn or Sn alloy particles 9 (9a) are trapped.
By heating to a temperature equal to or higher than the melting point of a), the alloy layer 10 (10a) for bonding is formed only in a portion where conduction is required, so that insulation between the metal bumps 7 can be ensured even in the case of a narrow pitch. it can.

【0038】また、接合前に封止材3(3a)を基板1
(1a)に供給することで、接合後に封止材3(3a)
を供給する際の問題となるボイド発生を抑制することが
できる。
Before joining, the sealing material 3 (3a) is
By supplying to (1a), after joining, the sealing material 3 (3a)
The generation of voids, which is a problem when supplying the gas, can be suppressed.

【0039】さらに、SnまたはSn合金粒子9(9
a)を溶融前に薄く平らに変形することにより、長期接
合性が向上する。すなわち、溶融前にSnまたはSn合
金粒子9(9a)を加圧により薄く平らにすることによ
り、余分なSnは排出され、接合面に供給されるSnの
量を制御し、かつ均一にできるため、溶融時に均一な合
金層10(10a)を形成でき、また高温環境において
も接合界面強度を劣化させる要因となる金属間化合物の
成長を抑制できるため、長期接合性を向上させることが
できる。
Further, Sn or Sn alloy particles 9 (9
By deforming a) thinly and flat before melting, long-term bondability is improved. That is, since the Sn or Sn alloy particles 9 (9a) are thinned and flattened by pressing before melting, excess Sn is discharged, and the amount of Sn supplied to the joint surface can be controlled and uniformized. In addition, a uniform alloy layer 10 (10a) can be formed at the time of melting, and the growth of an intermetallic compound that causes deterioration of the bonding interface strength can be suppressed even in a high-temperature environment, so that long-term bonding can be improved.

【0040】この結果、シングルチップパッケージ、マ
ルチチップモジュールの半導体装置における狭ピッチ、
多ピン対応のフリップチップ接続において、従来の工法
と比較し、高温環境においても安定した接合信頼性を確
保することができる。
As a result, a narrow pitch in a semiconductor device of a single chip package and a multi chip module,
In flip-chip connection for multiple pins, stable bonding reliability can be ensured even in a high-temperature environment as compared with the conventional method.

【0041】また、本実施の形態の半導体装置におい
て、封止材3(3a)を、たとえば図10(a)に示す
ように、熱硬化性絶縁性樹脂材料8(8a)の内部に分
散されるSnまたはSn合金粒子9(9a)を絶縁性樹
脂材料12でコートすることも可能である。たとえば、
SnまたはSn合金粒子9(9a)の分散に偏りが生じ
た時には、図10(b)のようにSnまたはSn合金粒
子9(9a)をコートする材料がないと接触によりサイ
ズが大きくなり、ショート要因となることが考えられる
が、図10(a)のようにコートすることで、Snまた
はSn合金粒子9(9a)の分散に偏りが生じた時にも
粒子同士が直接接触しないので、粒子同士の接触による
粒子サイズの拡大を防止することができる。
In the semiconductor device of the present embodiment, the sealing material 3 (3a) is dispersed inside the thermosetting insulating resin material 8 (8a), for example, as shown in FIG. It is also possible to coat the Sn or Sn alloy particles 9 (9a) with the insulating resin material 12. For example,
When the distribution of the Sn or Sn alloy particles 9 (9a) is biased, if there is no material for coating the Sn or Sn alloy particles 9 (9a) as shown in FIG. Although it can be considered as a factor, by coating as shown in FIG. 10A, the particles do not directly contact each other even when the dispersion of the Sn or Sn alloy particles 9 (9a) is biased. Can prevent the particle size from increasing due to contact with the particles.

【0042】以上、本発明者によってなされた発明をそ
の実施の形態に基づき具体的に説明したが、本発明は前
記実施の形態に限定されるものではなく、その要旨を逸
脱しない範囲で種々変更可能であることはいうまでもな
い。
Although the invention made by the inventor has been specifically described based on the embodiment, the invention is not limited to the embodiment, and various modifications may be made without departing from the gist of the invention. It goes without saying that it is possible.

【0043】たとえば、前記実施の形態においては、マ
イクロコンピュータやメモリなどのシングルチップパッ
ケージ、マイクロコンピュータとSDRAMを混載した
マルチチップモジュールに適用した場合について説明し
たが、これに限らず、狭ピッチ、多ピンによるフリップ
チップ接合が必須技術となり、接続信頼性も高いものが
要求されている製品全般に広く適用可能であり、さらに
購入チップをフリップチップ接合したい製品(購入チッ
プの場合、WPP(Wafer Process Pa
ckage)が不可能であるため、金属バンプを用いて
の高信頼性接合が必須であるため)に良好に適用でき、
さらに高速動作が要求されるメモリパッケージ(低接合
抵抗が広い温度範囲で実現できる)などにも応用するこ
とができる。
For example, in the above-described embodiment, a case has been described in which the present invention is applied to a single chip package such as a microcomputer or a memory, or to a multichip module in which a microcomputer and an SDRAM are mixedly mounted. Flip chip bonding with pins has become an indispensable technology, and it can be widely applied to all products that require high connection reliability. In addition, products to be flip-chip bonded to purchased chips (in the case of purchased chips, WPP (Wafer Process Pa
Cage) is not possible, and high reliability bonding using metal bumps is essential.
Further, the present invention can be applied to a memory package requiring high-speed operation (a low junction resistance can be realized in a wide temperature range).

【0044】また、基板の接続金属パッドは、Cu
(銅)あるいはNi(ニッケル)でもよい。
The connection metal pad of the substrate is made of Cu
(Copper) or Ni (nickel).

【0045】[0045]

【発明の効果】本願において開示される発明のうち、代
表的なものによって得られる効果を簡単に説明すれば、
以下のとおりである。
Advantageous effects obtained by typical ones of the inventions disclosed in the present application will be briefly described.
It is as follows.

【0046】(1)チップの裏面からの加熱加圧によ
り、チップ上の金属バンプと基板上の接続金属パッドと
を封止材の低融点金属の微細粒子を介して接合させるこ
とで、接合界面に金属合金が生成されるため、接触によ
る導通と異なり、接合による導通となるので強い接合強
度を得ることができ、また加熱加圧によって導通が必要
な部分にのみ接合のための合金層が形成されるため、狭
ピッチの場合でも金属バンプ間の絶縁を確保することが
でき、高温環境での導通不良を生じ難くすることが可能
となる。また、接続抵抗についも安定させることが可能
となる。
(1) By joining the metal bumps on the chip and the connection metal pads on the substrate via the fine particles of the low-melting-point metal of the sealing material by applying heat and pressure from the back surface of the chip, Since a metal alloy is formed, unlike the conduction by contact, the conduction is by bonding, so that a strong bonding strength can be obtained, and an alloy layer for bonding is formed only in the areas where conduction is required by heating and pressing. Therefore, insulation between the metal bumps can be ensured even in the case of a narrow pitch, and it is possible to make it difficult to cause poor conduction in a high-temperature environment. Further, the connection resistance can be stabilized.

【0047】(2)チップ上の金属バンプと基板上の接
続金属パッドとの接合前に封止材を基板上に供給するこ
とで、接合後に封止材を供給する際に問題となるボイド
の発生を抑制することが可能となる。
(2) By supplying the sealing material onto the substrate before joining the metal bumps on the chip and the connection metal pads on the substrate, voids that may cause problems when supplying the sealing material after joining are provided. Generation can be suppressed.

【0048】(3)封止材の低融点金属の微細粒子を溶
融前に薄く平らに変形することで、余分な低融点金属は
排出され、接合面に供給される低融点金属の量を制御
し、かつ均一にできるため、溶融時に均一な合金層を形
成でき、また高温環境においても接合界面強度を劣化さ
せる要因となる金属間化合物の成長を抑制できるため、
長期接合性を向上させることが可能となる。
(3) The fine particles of the low-melting-point metal of the sealing material are thinly and flatly deformed before melting, so that excess low-melting-point metal is discharged and the amount of the low-melting-point metal supplied to the joint surface is controlled. In addition, since it can be uniform, a uniform alloy layer can be formed at the time of melting, and even in a high-temperature environment, the growth of an intermetallic compound that causes deterioration of the bonding interface strength can be suppressed,
It is possible to improve long-term bonding.

【0049】(4)封止材の低融点金属の微細粒子を絶
縁性樹脂材料でコートすることで、低融点金属の微細粒
子の分散に偏りが生じた時にも粒子同士が直接接触しな
いので、粒子同士の接触による粒子サイズの拡大を防止
することが可能となる。
(4) By coating the fine particles of the low-melting-point metal of the sealing material with an insulating resin material, the particles do not directly contact each other even when the dispersion of the fine particles of the low-melting-point metal is uneven. It is possible to prevent the particle size from increasing due to the contact between the particles.

【0050】(5)前記(1)〜(4)により、シング
ルチップパッケージやマルチチップモジュールなどの半
導体装置に適用し、接触による導通ではなく接合による
導通を可能にして、特に狭ピッチ、多ピン対応のフリッ
プチップ接続において、高温環境においても安定した接
合信頼性を確保することが可能となる。
(5) According to the above (1) to (4), the present invention is applied to a semiconductor device such as a single-chip package or a multi-chip module, and can conduct not by contact but by bonding. In the corresponding flip-chip connection, stable bonding reliability can be ensured even in a high-temperature environment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の半導体装置(シングル
チップパッケージ)を示す断面図である。
FIG. 1 is a cross-sectional view illustrating a semiconductor device (single-chip package) according to an embodiment of the present invention.

【図2】本発明の一実施の形態の半導体装置(シングル
チップパッケージ)を示す平面図である。
FIG. 2 is a plan view showing a semiconductor device (single chip package) according to one embodiment of the present invention;

【図3】本発明の一実施の形態の半導体装置(シングル
チップパッケージ)を示す底面図である。
FIG. 3 is a bottom view showing the semiconductor device (single chip package) according to one embodiment of the present invention;

【図4】(a),(b)は本発明の一実施の形態の半導
体装置(シングルチップパッケージ)において、封止材
を示す断面図である。
FIGS. 4A and 4B are cross-sectional views showing a sealing material in the semiconductor device (single-chip package) according to one embodiment of the present invention;

【図5】本発明の一実施の形態の半導体装置(シングル
チップパッケージ)の製造方法を示すフロー図である。
FIG. 5 is a flowchart showing a method for manufacturing a semiconductor device (single chip package) according to one embodiment of the present invention;

【図6】本発明の一実施の形態の半導体装置(シングル
チップパッケージ)の製造方法(図5に続く)を示すフ
ロー図である。
FIG. 6 is a flowchart showing a method of manufacturing the semiconductor device (single chip package) according to the embodiment of the present invention (following FIG. 5).

【図7】本発明の一実施の形態の他の半導体装置(マル
チチップモジュール)を示す断面図である。
FIG. 7 is a sectional view showing another semiconductor device (multi-chip module) according to one embodiment of the present invention;

【図8】本発明の一実施の形態の他の半導体装置(マル
チチップモジュール)を示す平面図である。
FIG. 8 is a plan view showing another semiconductor device (multi-chip module) according to one embodiment of the present invention;

【図9】本発明の一実施の形態の他の半導体装置(マル
チチップモジュール)を示す底面図である。
FIG. 9 is a bottom view showing another semiconductor device (multi-chip module) according to one embodiment of the present invention;

【図10】(a),(b)は本発明の一実施の形態の半
導体装置において、封止材の変形例を示す断面図であ
る。
FIGS. 10A and 10B are cross-sectional views showing a modification of the sealing material in the semiconductor device according to the embodiment of the present invention;

【符号の説明】[Explanation of symbols]

1,1a 基板 2,2a,2b チップ 3,3a 封止材 4,4a 外部端子 5,5a 接続金属パッド 6,6a 接続金属ランド 7,7a 金属バンプ 8,8a 熱硬化性絶縁性樹脂材料 9,9a SnまたはSn合金粒子 10,10a 合金層 11 放熱板 12 絶縁性樹脂材料 1, 1a substrate 2, 2a, 2b chip 3, 3a sealing material 4, 4a external terminal 5, 5a connecting metal pad 6, 6a connecting metal land 7, 7a metal bump 8, 8a thermosetting insulating resin material 9, 9a Sn or Sn alloy particles 10, 10a alloy layer 11 radiator plate 12 insulating resin material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒木 誠 東京都青梅市藤橋3丁目3番地2 日立東 京エレクトロニクス株式会社内 Fターム(参考) 5F044 LL01 LL04 LL09 RR17 RR19 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Makoto Araki 3-3-2 Fujibashi, Ome-shi, Tokyo F-term in Hitachi Tokyo Electronics Co., Ltd. 5F044 LL01 LL04 LL09 RR17 RR19 RR19

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 接続金属パッドが表面上に設けられた基
板の表面上に、熱硬化性絶縁性樹脂材料の内部に低融点
金属の微細粒子を分散させた封止材を供給する工程と、 前記基板上に供給された前記封止材の上から、金属バン
プが表面上に設けられたチップをフェイスダウンで搭載
する工程と、 前記チップの裏面から加熱加圧して前記チップ上の金属
バンプと前記基板上の接続金属パッドとを前記封止材の
低融点金属の微細粒子を介して接合させ、前記チップと
前記基板との導通を取る工程とを有することを特徴とす
る半導体装置の製造方法。
A step of supplying a sealing material in which fine particles of a low-melting metal are dispersed inside a thermosetting insulating resin material, on a surface of a substrate provided with connection metal pads on the surface; From the top of the sealing material supplied on the substrate, a step of mounting a chip having metal bumps provided on the front face down, and applying heat and pressure from the back surface of the chip to the metal bumps on the chip. Bonding the connecting metal pad on the substrate to the chip via the fine particles of the low-melting-point metal of the encapsulant to establish conduction between the chip and the substrate. .
【請求項2】 請求項1記載の半導体装置の製造方法で
あって、 前記チップの裏面から加熱加圧する際、前記低融点金属
の微細粒子の融点以下の温度により前記封止材を硬化す
る工程と、前記低融点金属の微細粒子の融点以上の温度
により前記低融点金属の微細粒子を溶融させて前記金属
バンプと前記接続金属パッドとを接合する工程とを有す
ることを特徴とする半導体装置の製造方法。
2. The method for manufacturing a semiconductor device according to claim 1, wherein the step of curing the sealing material at a temperature equal to or lower than the melting point of the fine particles of the low melting point metal when heating and pressing from the back surface of the chip. And melting the low-melting-point metal fine particles at a temperature equal to or higher than the melting point of the low-melting-point metal fine particles to join the metal bumps and the connection metal pads. Production method.
【請求項3】 請求項2記載の半導体装置の製造方法で
あって、 前記封止材を硬化する際、前記チップの裏面より荷重を
かけて前記金属バンプと前記接続金属パッドとの間に挟
んだ前記低融点金属の微細粒子を薄く平らに変形させる
工程を有し、 前記金属バンプと前記接続金属パッドとを接合する際、
前記薄く平らに変形された低融点金属の微細粒子を溶融
させて薄く均一な合金層を生成させる工程を有すること
を特徴とする半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 2, wherein, when the sealing material is cured, a load is applied from a back surface of the chip to be sandwiched between the metal bump and the connection metal pad. The step of deforming the fine particles of the low melting point metal thin and flat, when joining the metal bump and the connection metal pad,
A method for producing a thin and uniform alloy layer by melting the fine particles of the low-melting-point metal deformed thinly and flatly.
【請求項4】 請求項1記載の半導体装置の製造方法で
あって、 前記基板上の前記封止材の上から前記チップを搭載する
際、同一の基板上に複数のチップをフェイスダウンで搭
載する工程を有することを特徴とする半導体装置の製造
方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein when mounting the chip from above the sealing material on the substrate, a plurality of chips are mounted face down on the same substrate. A method for manufacturing a semiconductor device, comprising:
【請求項5】 接続金属パッドが表面上に設けられた基
板と、 前記基板の表面上にフェイスダウンで搭載され、金属バ
ンプが表面上に設けられた1つまたは複数のチップと、 前記1つまたは複数のチップ上の金属バンプと前記基板
上の接続金属パッドとを接合させるSnまたはSn合金
の微細粒子を熱硬化性絶縁性樹脂材料の内部に均一分散
させた封止材とを有することを特徴とする半導体装置。
5. A substrate having connection metal pads provided on a surface thereof; one or more chips mounted face-down on the surface of the substrate and having metal bumps provided on the surface; Or a sealing material in which fine particles of Sn or Sn alloy for bonding metal bumps on a plurality of chips and connection metal pads on the substrate are uniformly dispersed in a thermosetting insulating resin material. Characteristic semiconductor device.
JP2000366873A 2000-12-01 2000-12-01 Manufacturing method of semiconductor device and semiconductor device Pending JP2002170847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000366873A JP2002170847A (en) 2000-12-01 2000-12-01 Manufacturing method of semiconductor device and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000366873A JP2002170847A (en) 2000-12-01 2000-12-01 Manufacturing method of semiconductor device and semiconductor device

Publications (1)

Publication Number Publication Date
JP2002170847A true JP2002170847A (en) 2002-06-14

Family

ID=18837414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000366873A Pending JP2002170847A (en) 2000-12-01 2000-12-01 Manufacturing method of semiconductor device and semiconductor device

Country Status (1)

Country Link
JP (1) JP2002170847A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844052B2 (en) * 2002-06-24 2005-01-18 Micron Technology, Inc. Method for underfilling semiconductor components
JP2006108523A (en) * 2004-10-08 2006-04-20 Hitachi Chem Co Ltd Method of connecting electrical component using anisotropic conductive film
JP2011233550A (en) * 2010-04-23 2011-11-17 Hitachi Chem Co Ltd Reflow film, method of forming solder bump using the same, and method of bonding electrodes to each other
KR101156183B1 (en) 2010-11-02 2012-06-18 한국생산기술연구원 Direct Bonding Method of Bump and Semiconductor Package Using the Same
WO2014046089A1 (en) * 2012-09-24 2014-03-27 デクセリアルズ株式会社 Method for producing connection structure and anisotropic conductive adhesive
KR20190087365A (en) 2010-07-28 2019-07-24 데쿠세리아루즈 가부시키가이샤 Manufacturing method of mounting device, connecting method and anisotropic conductive film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844052B2 (en) * 2002-06-24 2005-01-18 Micron Technology, Inc. Method for underfilling semiconductor components
US6933221B1 (en) * 2002-06-24 2005-08-23 Micron Technology, Inc. Method for underfilling semiconductor components using no flow underfill
JP2006108523A (en) * 2004-10-08 2006-04-20 Hitachi Chem Co Ltd Method of connecting electrical component using anisotropic conductive film
JP2011233550A (en) * 2010-04-23 2011-11-17 Hitachi Chem Co Ltd Reflow film, method of forming solder bump using the same, and method of bonding electrodes to each other
KR20190087365A (en) 2010-07-28 2019-07-24 데쿠세리아루즈 가부시키가이샤 Manufacturing method of mounting device, connecting method and anisotropic conductive film
KR101156183B1 (en) 2010-11-02 2012-06-18 한국생산기술연구원 Direct Bonding Method of Bump and Semiconductor Package Using the Same
WO2014046089A1 (en) * 2012-09-24 2014-03-27 デクセリアルズ株式会社 Method for producing connection structure and anisotropic conductive adhesive

Similar Documents

Publication Publication Date Title
US6555917B1 (en) Semiconductor package having stacked semiconductor chips and method of making the same
US6960827B2 (en) Semiconductor device and manufacturing method thereof
US9263426B2 (en) PoP structure with electrically insulating material between packages
US6214642B1 (en) Area array stud bump flip chip device and assembly process
US6388336B1 (en) Multichip semiconductor assembly
JP3297254B2 (en) Semiconductor package and manufacturing method thereof
KR100856609B1 (en) A semiconductor device and a method of manufacturing the same
US6316822B1 (en) Multichip assembly semiconductor
EP1306900A2 (en) Chip-scale packages stacked on folded interconnector for vertical assembly on substrates
US7598121B2 (en) Method of manufacturing a semiconductor device
US20020030261A1 (en) Multi-flip-chip semiconductor assembly
US7026188B2 (en) Electronic device and method for manufacturing the same
US20040241907A1 (en) Method of manufacturing a semiconductor device
KR20040023608A (en) Semiconductor device and manufacturing method thereof
JPH1032279A (en) Bump forming method of bump chip scale semiconductor package, semiconductor package, and bump
US20110140256A1 (en) Semiconductor device, substrate and semiconductor device manufacturing method
JP2002170847A (en) Manufacturing method of semiconductor device and semiconductor device
US20070246818A1 (en) Semiconductor module featuring solder balls having lower melting point than that of solder electrode terminals of electronic device containing additional metal powder component
JP3332555B2 (en) Semiconductor device and manufacturing method thereof
JP2004186629A (en) Semiconductor device and its manufacturing method
JP4243077B2 (en) Semiconductor device and manufacturing method thereof
US8703533B2 (en) Semiconductor package and method for manufacturing the same
JPH11204573A (en) Manufacture of semiconductor device and the semiconductor device
CN101800181A (en) Manufacture method of flip chip encapsulation structure
JP2000150697A (en) Semiconductor device and manufacture thereof