JP2002167298A - Single crystal wafer - Google Patents

Single crystal wafer

Info

Publication number
JP2002167298A
JP2002167298A JP2000364016A JP2000364016A JP2002167298A JP 2002167298 A JP2002167298 A JP 2002167298A JP 2000364016 A JP2000364016 A JP 2000364016A JP 2000364016 A JP2000364016 A JP 2000364016A JP 2002167298 A JP2002167298 A JP 2002167298A
Authority
JP
Japan
Prior art keywords
wafer
single crystal
cleavage
chamfered
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000364016A
Other languages
Japanese (ja)
Inventor
Shinji Inoue
真司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000364016A priority Critical patent/JP2002167298A/en
Publication of JP2002167298A publication Critical patent/JP2002167298A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an LT wafer whose mechanical strength is improved in cracking and chipping and a yield during a mechanical process and a device process is enhanced, and its edging method. SOLUTION: A side 1c of an wafer 1 consisting of a lithium tantalate single crystal is so edged that its cleavage face of >=20% is contained, especially arithmetic mean-surface roughness (Ra) is <=1 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、タンタル酸リチウ
ム単結晶から成る単結晶ウエハに関する。
The present invention relates to a single crystal wafer made of a lithium tantalate single crystal.

【0002】[0002]

【従来の技術】タンタル酸リチウム単結晶(以下、LT
という)は、電子部品や光機能素子の基板材料として広
く用いられ、近年では特に、携帯電話等に代表される通
信機器や情報機器に使用される弾性表面波素子の基板に
好適に用いられている。
2. Description of the Related Art Lithium tantalate single crystal (hereinafter referred to as LT)
Is widely used as a substrate material for electronic components and optical functional devices, and in recent years, has been particularly suitably used as a substrate for surface acoustic wave devices used in communication equipment and information equipment typified by mobile phones and the like. I have.

【0003】タンタル酸リチウム単結晶から成るウエハ
(wafer)は、シリコン単結晶から成るウエハの作
製工程とほぼ同様の方法で作製される。すなわち、回転
引上げ法によって結晶を育成した後、結晶の外径を丸め
加工し、ウエハに必要な結晶方位が得られるように切断
され、粗研磨、面取り加工、及び鏡面研磨の工程を順次
経て作製される(例えば、昭和53年発行東芝レビュー
33巻9号761〜763頁を参照)。
A wafer made of a single crystal of lithium tantalate is manufactured by a method substantially similar to the manufacturing process of a wafer made of a single crystal of silicon. In other words, after growing a crystal by the rotation pulling method, the outer diameter of the crystal is rounded, the wafer is cut so as to obtain the required crystal orientation, and the wafer is sequentially processed through rough polishing, chamfering, and mirror polishing. (For example, see Toshiba Review, Vol. 33, No. 9, pp. 761 to 763, published in 1978).

【0004】一方、LTウエハはデバイスの低価格化に
よりコストダウン要求が強く、製造歩留りの向上や大口
径化・薄型化によって、その要求を満足させる工程の開
発が必要とされる。さらに、微細構造を形成するデバイ
スの製造工程に必要とされるウエハの面精度や製造工程
中のワレを無くすことなど、ウエハに要求される仕様は
大口径化やコストダウンに相反し益々厳しくなってい
る。
[0004] On the other hand, LT wafers have a strong demand for cost reduction due to the reduction in the cost of devices, and the development of a process that satisfies the demands has been required due to the improvement in manufacturing yield and the increase in diameter and thickness. Furthermore, the specifications required for wafers, such as eliminating the surface accuracy of the wafers required in the manufacturing process of devices that form microstructures and cracking during the manufacturing process, are becoming increasingly severe as opposed to larger diameters and cost reductions. ing.

【0005】[0005]

【発明が解決しようとする課題】前述したように、LT
ウエハの大口径化と薄型化により、ウエハ加工時のワレ
やカケの頻度が高くなるため、このようなワレやカケを
防止するにはウエハ端面の面取り加工が効果的であるこ
とが、半導体ウエハやLTウエハでも知られている(例
えば、特開昭52−144269号公報、特開昭61−
146799号公報を参照)。
SUMMARY OF THE INVENTION As described above, LT
As the diameter and thickness of the wafer become larger and thinner, the frequency of cracking and chipping during wafer processing increases, so chamfering of the wafer end surface is effective in preventing such cracking and chipping. And LT wafers (for example, see JP-A-52-144269, JP-A-61-164269).
146799).

【0006】しかしながら、近年の携帯電話端末などに
広く用いられている、弾性表面波フィルタの基板である
33°〜46°回転Yカット方位のLTウエハは、結晶
対称性が低く、反り易くワレやカケを発生し易い問題が
あった。ウエハのワレやカケを防止する方法として面取
り加工によりエッジを除去して機械的な応力を緩和させ
るため効果的ではあるが、このようなへきかい面を避け
た形状や加工方法ではワレやカケに対して高い効果が得
られていなかった。
However, an LT wafer having a 33 ° to 46 ° rotational Y-cut orientation, which is a substrate of a surface acoustic wave filter, which is widely used in recent mobile phone terminals and the like, has low crystal symmetry, and is easily warped and cracked. There was a problem that chipping easily occurred. As a method to prevent cracking and chipping of the wafer, it is effective to remove edges by chamfering and relieve mechanical stress.However, such a shape and processing method that avoids a cracked surface is effective for cracking and chipping. And high effect was not obtained.

【0007】そこで本発明は、前述の諸問題に鑑み提案
されたものであり、ウエハ加工工程やデバイスプロセス
におけるワレやカケの発生し難い機械強度に優れた単結
晶ウエハを提供することを目的とする。
Accordingly, the present invention has been proposed in view of the above-mentioned problems, and has as its object to provide a single-crystal wafer excellent in mechanical strength which is less likely to cause cracks or chips in a wafer processing step or a device process. I do.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の単結晶ウエハは、タンタル酸リチウム単結
晶から成るウエハの側面に、へきかい面が20%以上含
まれる面取り加工面を有することを特徴とする。
In order to solve the above-mentioned problems, a single crystal wafer according to the present invention has a chamfered surface containing 20% or more of a cleavage surface on a side surface of a wafer made of a lithium tantalate single crystal. It is characterized by the following.

【0009】また特に、前記面取り加工面の算術平均粗
さ(Ra)が1μm以下であることを特徴とする。ま
た、前記ウエハの主面方位は、右手系オイラー角表示
(φ,θ,ψ)の各パラメータが、(1)−60°≦φ
≦60°、(2)123°≦θ≦136°、(3)ψは
任意を満足する。さらに、前記面取り加工面と前記ウエ
ハの主面との成す角αが、45°≦α≦51°であるこ
とを特徴とする。
[0009] In particular, the arithmetic average roughness (Ra) of the chamfered surface is 1 μm or less. The main surface direction of the wafer can be calculated by the following equation: (1) −60 ° ≦ φ
≦ 60 °, (2) 123 ° ≦ θ ≦ 136 °, (3) ψ satisfies any condition. Further, an angle α formed between the chamfered surface and the main surface of the wafer is 45 ° ≦ α ≦ 51 °.

【0010】[0010]

【発明の実施の形態】以下に、例えば携帯電話の弾性表
面波フィルタの圧電基板として好適に使用されるタンタ
ル酸リチウム単結晶ウエハとその面取り加工方法につい
て、模式的に図示した図面に基づき詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a lithium tantalate single crystal wafer suitably used as a piezoelectric substrate of a surface acoustic wave filter of a cellular phone and a chamfering method thereof will be described in detail with reference to the drawings schematically shown. explain.

【0011】本発明の単結晶ウエハは、図1に示す右手
系オイラー角表示(φ,θ,ψ)のパラメータが所定値
(−60°〜60°,123°〜136°,任意(−1
80°〜180°))のタンタル酸リチウム単結晶から
成るウエハを用意し、例えば金属や樹脂にダイヤモンド
などを分散した砥石により、ウエハの側面に対し、図2
(a)、(b)に示すような面取り加工を施したもので
ある。
In the single crystal wafer of the present invention, the parameters of the right-handed Euler angle display (φ, θ, ψ) shown in FIG. 1 are predetermined values (−60 ° to 60 °, 123 ° to 136 °, arbitrary (−1)).
80 ° -180 °)), a wafer made of a single crystal of lithium tantalate is prepared.
It has been chamfered as shown in (a) and (b).

【0012】図2において、主面1a,1bは、ウエハ
1の表面で少なくとも一方がデバイスを作製する面であ
り、デバイス作製面はポリッシュ研磨により鏡面加工さ
れ、デバイスが作製されない面は例えば表面平均粗さ
(算術平均粗さ(Ra))が0.2μm〜1μm程度に
ラップ研磨させる。側面1c,1d,1eは、面取り加
工装置により、例えば金属や樹脂にダイヤモンドなどを
分散した砥石を用いて端面加工され、ワレやカケの起点
となるエッジを除去し、その発生率を極力低下させてい
る。
In FIG. 2, at least one of the principal surfaces 1a and 1b is a surface on which a device is formed on the surface of the wafer 1. The device forming surface is mirror-polished by polishing, and the surface on which no device is formed is, for example, a surface average. Lapping is performed so that the roughness (arithmetic mean roughness (Ra)) is about 0.2 μm to 1 μm. The side surfaces 1c, 1d, and 1e are edge-processed by a chamfering device using, for example, a grindstone in which diamond or the like is dispersed in a metal or a resin, to remove an edge serving as a starting point of cracks and chips, and to reduce the occurrence rate as much as possible. ing.

【0013】この面取り加工された側面(面取り加工
面)において、面積で20%以上がへきかい面である。
なお、右手系オイラー角表示(φ,θ,ψ)とは、X−
Y−Zの結晶軸を、Z軸を中心にしてX軸をY軸方向へ
角度φだけ回転させた軸をθ回転軸とし、さらに、θ回
転軸を中心にZ面をθ回転させた面をカット面とし、こ
のカット面上における弾性表面波の伝搬方向がθ回転軸
から反時計方向にψ回転させた方向であることを示す。
In the chamfered side surface (chamfered surface), more than 20% of the area is the cleavage surface.
The right-handed Euler angle display (φ, θ, ψ) means X-
An axis obtained by rotating the X-axis by an angle φ in the Y-axis direction about the Z-axis in the Y-Z crystal axis as a θ-rotation axis, and further rotating the Z-plane by θ about the θ-rotation axis Is a cut plane, and the propagation direction of the surface acoustic wave on this cut plane is a direction rotated ψ counterclockwise from the θ rotation axis.

【0014】ここで、ウエハの側面にへきかい面を有し
ない場合、研磨加工工程やデバイスプロセスにおいてウ
エハのワレやカケをなくすことができないので望ましく
ない。また、オイラー角表示(φ,θ,ψ)で、−60
°≦φ≦60°、123°≦θ≦136°、ψは任意の
角度としたのは、ワレやカケの発生しやすい結晶対称性
の低いウエハ面で効果があり、さらに弾性表面波装置用
基板方位として有用であるからである。
Here, it is not desirable that the side surface of the wafer does not have a cleavage surface because cracking and chipping of the wafer cannot be eliminated in a polishing step or a device process. In addition, -60 in Euler angle display (φ, θ, 、)
° ≦ φ ≦ 60 °, 123 ° ≦ θ ≦ 136 °, and ψ are arbitrary angles, which is effective on a wafer surface with low crystal symmetry where cracks and chips are likely to occur, and for surface acoustic wave devices. This is because it is useful as a substrate orientation.

【0015】また、へきかい面を有する面取り加工面は
金属や樹脂にダイヤモンドなどを分散した砥石等により
面取り加工し、その算術平均粗さ(Ra)は1.5μm
以下が応力に対する機械的強度向上の点で望ましいが、
上限は1μm以下とする。この理由は、Raが1μmよ
り大きくなると、へきかい面を構成しにくく、また、1
μmをこえる粗さが欠陥の起点となり、カケが生じやす
くなるからである。
The chamfered surface having a cleavage surface is chamfered with a grindstone or the like in which diamond or the like is dispersed in metal or resin, and has an arithmetic average roughness (Ra) of 1.5 μm.
The following are desirable in terms of improving mechanical strength against stress,
The upper limit is 1 μm or less. The reason is that when Ra is larger than 1 μm, it is difficult to form a cleavage plane,
This is because roughness exceeding μm serves as a starting point of a defect, and chipping easily occurs.

【0016】また、図2(b)において、へきかい面を
有する面取り加工面(側面1c)とウエハ主面1aとの
成す角αは、後記する理由により45°≦α≦51°と
している。
In FIG. 2B, the angle α between the chamfered surface (side surface 1c) having the cleavage surface and the wafer main surface 1a is set to 45 ° ≦ α ≦ 51 ° for the reason described later.

【0017】次に、本発明の単結晶ウエハの作製方法に
ついて説明する。例えば、オイラー角表示(−60°〜
60°,123°〜136°,ψ=任意の角度)にほぼ
垂直な方位に切り出した種結晶を、イリジウムなどの高
融点金属製のルツボに充填し、融点以上で融解されたL
Tの原料融液に接触させ、温度を下げながら種結晶の回
転と引上げを行なう回転引上げ法(チョクラルスキー
法)で外径約110mmの単結晶の育成を行う。
Next, a method for manufacturing a single crystal wafer of the present invention will be described. For example, Euler angle display (−60 ° to
A seed crystal cut in a direction substantially perpendicular to 60 °, 123 ° to 136 °, 種 = arbitrary angle) is filled in a crucible made of a high melting point metal such as iridium, and L melted at a melting point or higher.
A single crystal having an outer diameter of about 110 mm is grown by a rotation pulling method (Czochralski method) in which the seed crystal is brought into contact with the raw material melt of T and the temperature is lowered and the seed crystal is rotated and pulled.

【0018】育成した単結晶の頭部と底部を、例えば内
周刃ダイヤモンド切断機とX線回折装置を用いて、オイ
ラー角表示で(−60°〜60°,123°〜136
°,ψ)面が主面となるように切断する。
The head and the bottom of the grown single crystal are expressed in Euler angles (−60 ° to 60 °, 123 ° to 136) using, for example, an inner peripheral diamond cutting machine and an X-ray diffractometer.
°, ψ) Cut so that the surface becomes the main surface.

【0019】次に、結晶の上下部に銀ペーストを塗布し
て電極とし、キュリー温度以上(例えば650℃)で、
電極間に1.5〜5V/cmの電圧を5時間程度印加し
てポーリング処理を行なう。
Next, silver paste is applied to the upper and lower portions of the crystal to form electrodes, and the electrode is heated at a Curie temperature or higher (for example, 650 ° C.).
A poling process is performed by applying a voltage of 1.5 to 5 V / cm between the electrodes for about 5 hours.

【0020】次に、ポーリング処理後の結晶インゴット
を円筒研削装置にセットして、外径が101mmとなる
ように円筒研削加工し、さらに、オリエンテーションフ
ラットを形成するべく研削加工する。
Next, the crystal ingot after the poling treatment is set in a cylindrical grinding device, and is subjected to cylindrical grinding so as to have an outer diameter of 101 mm, and further, is subjected to grinding to form an orientation flat.

【0021】このようにして円筒加工した後に、結晶イ
ンゴットを例えばマルチワイヤーソーを用いて0.5m
m厚程度に切断し、0.38mm厚になるまで1000
番のGC砥粒を用いて両面をラップ研磨する。
After cylindrical processing in this manner, the crystal ingot is placed in a 0.5 m
Cut to a thickness of about m
Lapping both sides using No. GC abrasive grains.

【0022】次に、ラップ研磨後のウエハを自動面取り
装置にセットし面取り加工を施す。この時、図2に示す
ようなウエハの主面1aと側面の面取り面1cとの成す
角αをへきかい面のひとつに一致させる。ここで、側面
1dは断面において主面1aとほぼ直角の線分かまたは
円弧状、上側面1bと下側面1eの成す角もひとつのへ
きかい面である90°−α°とする。
Next, the wafer after lap polishing is set in an automatic chamfering device and chamfering is performed. At this time, the angle α between the main surface 1a of the wafer and the chamfered surface 1c of the side as shown in FIG. 2 is made to coincide with one of the cleavage surfaces. Here, the side surface 1d is a line segment or an arc that is substantially perpendicular to the main surface 1a in cross section, and the angle formed by the upper side surface 1b and the lower side surface 1e is 90 ° -α ° which is one cleavage surface.

【0023】面取り加工面は、図3(a)、(b)にS
EMによる電子顕微鏡像で確認したように、優先的にへ
きかい面で構成された形状(研削面の凹凸にへきかい面
の平らな面を多く含んだ形状:図3(b)の○印内)を
成す。なお、図3(a)は1000倍の電子顕微鏡像で
へきかい面が広く分布している様子を示したものであ
り、図3(b)は3000倍の電子顕微鏡像でへきかい
面をわかりやすく拡大したものである。なお、面取り研
削部は平面状(断面が直線状)に限定されず、曲面状
(断面が円弧状)でもよい。面取り加工したウエハは、
主面をコロイダルシリカ研磨剤を用いたメカノケミカル
研磨により、鏡面ポリッシュ研磨してウエハが作製され
る。
The chamfered surface is shown by S in FIGS. 3 (a) and 3 (b).
As confirmed by the electron microscope image by EM, the shape composed preferentially of the cleavage surface (the shape including many flat surfaces of the grinding surface in the unevenness of the ground surface: within the circle in FIG. 3B) Make. FIG. 3A shows that the cleavage planes are widely distributed in a 1000 × electron microscope image, and FIG. 3B is an enlarged view of the cleavage planes in a 3000 × electron microscope image. It was done. Note that the chamfered grinding portion is not limited to a flat shape (a cross section is a straight line), but may be a curved surface (a cross section is an arc shape). The chamfered wafer is
The main surface is mirror-polished by mechanochemical polishing using a colloidal silica abrasive to produce a wafer.

【0024】[0024]

【表1】 [Table 1]

【0025】このような工程で作製されたLTウエハ
は、表1に示すように、例えば、(0°,132°,ψ
=任意)のウエハカット面に、αが47.7°で面取り
加工した場合(本発明)と、面取り加工をしなかった場
合(比較例)、及び、αを約30°で面取り加工した場
合(比較例)について、研磨歩留り(投入数nに対しワ
レずに研磨できた数の割合)、デバイスプロセス中のワ
レ歩留り(投入数nに対しワレずにデバイスプロセスで
きた数の割合)、及びワレの熱衝撃閾値(オーブンで加
熱したウエハを23°の水中へ投入したときのワレの発
生した温度差の平均値)を比較した結果、本発明による
効果は明白であった。
As shown in Table 1, the LT wafer manufactured in such a process is, for example, (0 °, 132 °, ψ
= Optional) when the chamfering process was performed at α = 47.7 ° (the present invention), when no chamfering process was performed (comparative example), and when α was chamfered at approximately 30 °. Regarding (Comparative Example), the polishing yield (the ratio of the number that could be polished without cracking to the number of inputs n), the cracking yield during the device process (the ratio of the number that could be device processed without cracking to the number of inputs n), and As a result of comparing the thermal shock threshold of cracks (the average value of the temperature difference at which cracks occurred when a wafer heated in an oven was put into water at 23 °), the effect of the present invention was clear.

【0026】比較例による面取り加工研磨歩留り低下
は、ウエハ端部からのワレによるもので、押圧研磨と研
磨抵抗による機械的応力で生じ、デバイスプロセス中の
ワレはプロセス中の加熱冷却工程の熱応力によって生じ
ることから、本発明による歩留り向上は機械的、熱的応
力の耐性が向上したものと考えられる。この理由は、結
晶はへきかい面に平行にはワレやすいが、一度へきかい
面を構成すると、原子密度の高い面であるので、その面
がワレにくくなると考えられる。また、LTはへきかい
面に近い面で研削加工した場合は、その加工面はへきか
い面で構成される確率が高く、へきかい面から±1.5
°以内の加工では、へきかい面が現れやすいため、例え
ば47.7°のへきかい面に近い50°で研削加工した
場合でも、へきかい面が優先的に現れることが判明し
た。なお、例えば(0°,132°,ψ=任意)面のウ
エハには、{012}面のへきかい面は47.7°以外
に、αが9.0°、75.0°、87.0°を成すへき
かい面が存在し、断面円弧状の面取りでは円弧の接線に
相当するそれぞれのへきかい面が現れるため、側面1d
を断面円弧状に作製すると、さらに有効である。
The decrease in the polishing yield in the chamfering process according to the comparative example is caused by cracking from the wafer edge, and is caused by mechanical stress due to pressure polishing and polishing resistance. Cracking in the device process is caused by thermal stress in the heating and cooling process in the process. Therefore, it is considered that the improvement of the yield according to the present invention has improved the resistance to mechanical and thermal stress. The reason is that the crystal is easily cracked in parallel with the cleavage plane, but once the cleavage plane is formed, it is considered that the plane has a high atomic density, so that the plane is unlikely to crack. Also, when the LT is ground on a surface close to the cleavage surface, the processed surface is likely to be composed of the cleavage surface, and ± 1.5% from the cleavage surface.
It is found that the cleavage surface is likely to appear in the machining within °, so that, for example, even when grinding is performed at 50 ° which is close to the cleavage surface of 47.7 °, the cleavage surface appears preferentially. For example, in the case of a wafer having a (0 °, 132 °, ψ = arbitrary) plane, the cleavage plane of the {012} plane is 47.7 ° and α is 9.0 °, 75.0 °, 87.0. ° is present, and in the case of a chamfer having an arc-shaped cross-section, each of the chamfers corresponding to the tangent of the arc appears.
Is more effective if it is formed in an arcuate cross section.

【0027】また、弾性表面波素子としての特性が特に
良好なLT(−3〜3°,123°〜136°,ψ=任
意)カットのウエハでは、図4に示すように、へきかい
面の現れる面取りの角度αは、45°≦α≦51°であ
ることが判明した。図中、L1はα=0.075θ2
2.2θ+202.3,L2はα=0.075θ2
2.2θ+199.3であらわすことができ、L1とL
2で囲まれた範囲内で斜線で示す領域が45°≦α≦5
1°の範囲である。
In addition, in the case of an LT (-3 to 3 °, 123 ° to 136 °, ψ = arbitrary) cut wafer having particularly good characteristics as a surface acoustic wave element, a cleavage surface appears as shown in FIG. The chamfering angle α was found to be 45 ° ≦ α ≦ 51 °. In the figure, L1 is α = 0.075θ 2
2.2θ + 202.3, L2 is α = 0.075θ 2
2.2θ + 199.3, and L1 and L
The area indicated by oblique lines in the range surrounded by 2 is 45 ° ≦ α ≦ 5
The range is 1 °.

【0028】また、図5に示すように、面取り加工部に
おけるへきかい面が20%以上であると、表1における
歩留りや熱衝撃による効果が顕著であり、その場合の平
均表面粗さ(算術平均粗さ(Ra))は0.25〜1.
0μmであることが判明した。なお、へきかい面の面積
の割合は電子顕微鏡像から計測した値である。
Further, as shown in FIG. 5, when the cut surface in the chamfered portion is 20% or more, the effects of yield and thermal shock in Table 1 are remarkable, and the average surface roughness (arithmetic mean) in that case is obtained. The roughness (Ra) is 0.25 to 1.
It was found to be 0 μm. The ratio of the area of the cleavage plane is a value measured from an electron microscope image.

【0029】さらに、右手系オイラー角表示(φ,θ,
ψ)におけるパラメータφが±3°の範囲であれば、高
い機械的強度とデバイス特性から同様の効果が得られる
ことが判明した。そして、これらのウエハカット方位と
面取り角度において、従来、機械的強度に問題のあった
ウエハを改善することができた。
Further, a right-handed Euler angle display (φ, θ,
It was found that when the parameter φ in ±) was in the range of ± 3 °, similar effects could be obtained from high mechanical strength and device characteristics. Then, with respect to the wafer cutting direction and the chamfer angle, it was possible to improve a wafer which had conventionally had a problem in mechanical strength.

【0030】以上の結果より、ウエハのワレやカケの起
点となる端面にへきかい面を有する面取り加工を施すこ
とにより、物理的な応力に対して耐久性を向上すること
ができる。これにより、ウエハ加工時の歩留りの向上に
よりウエハコストを低下させることが可能になるほか、
デバイスプロセス(成膜、エッチング、ダイシング、パ
ッケージ詰め)時のワレやカケの発生を低下させること
ができ、また、微細プロセスにおけるカケによる異物の
発生も抑制できたのでデバイス歩留りが格段に向上し
た。これにより弾性表面波素子の製造コストを低減させ
ることができる。
From the above results, it is possible to improve the durability against the physical stress by performing the chamfering process having the cleavage surface on the end surface serving as the starting point of cracking and chipping of the wafer. This makes it possible to reduce the wafer cost by improving the yield during wafer processing,
The generation of cracks and chips during the device process (film formation, etching, dicing, package packing) can be reduced, and the generation of foreign particles due to chips in the fine process can be suppressed, so that the device yield has been significantly improved. Thereby, the manufacturing cost of the surface acoustic wave device can be reduced.

【0031】[0031]

【実施例】 次に、本発明のより具体的な実施例につい
て説明する。 〔例1〕右手系オイラー角表示で(0°,132°,
ψ)ウエハの作製方法について説明する。LT単結晶か
ら(0°,132°,ψ)カットに垂直な方位に10m
m角で長さ50mmの種結晶を切り出し、高周波誘導加
熱したイリジウム製のルツボにLT原料を融解させ、そ
こに種結晶を接触させた。
EXAMPLES Next, more specific examples of the present invention will be described. [Example 1] In the right-handed Euler angle display (0 °, 132 °,
ii) A method for manufacturing a wafer will be described. 10m from the LT single crystal in the direction perpendicular to the (0 °, 132 °, ψ) cut
A seed crystal having a length of 50 mm and a length of m square was cut out, the LT raw material was melted in an iridium crucible heated by high-frequency induction heating, and the seed crystal was brought into contact therewith.

【0032】そして、高周波誘導の出力を操作して原料
融液の温度を下げながら、回転する種結晶を引上げて外
径110mmのLT単結晶を育成した。育成した結晶の
頭部と底部は、内周刃ダイヤモンド切断機とX線回折装
置を用いて(0°,132°,ψ)面を位置決め切断
し、この結晶の上下部に銀ペーストを塗布して、キュリ
ー温度以上の650℃で電極間に1.5〜5V/cmの
電圧を5時間印加しポーリング処理を行なった。
Then, while rotating the output of the high frequency induction to lower the temperature of the raw material melt, the rotating seed crystal was pulled up to grow an LT single crystal having an outer diameter of 110 mm. The head and bottom of the grown crystal are positioned and cut at the (0 °, 132 °, ψ) plane using an inner peripheral diamond cutting machine and an X-ray diffractometer, and silver paste is applied to the upper and lower parts of the crystal. Then, a poling treatment was performed by applying a voltage of 1.5 to 5 V / cm between the electrodes at 650 ° C. above the Curie temperature for 5 hours.

【0033】ポーリング後の結晶インゴットは、円筒研
削装置(上田技研製RS−h40NAH)を用いて、外
径101mmの円筒とX面のオリエンテーションフラッ
トを研削加工した。円筒加工後の結晶インゴットは、マ
ルチワイヤーソーで0.5mm厚に切断し、0.4mm
まで1000番のGC砥粒を用いて両面をラップ研磨し
た。
The crystal ingot after poling was ground using a cylindrical grinding device (RS-h40NAH manufactured by Ueda Giken Co., Ltd.) to a cylinder having an outer diameter of 101 mm and an orientation flat on the X plane. The crystal ingot after cylindrical processing is cut to 0.5 mm thickness with a multi-wire saw, and 0.4 mm
Both sides were lapped and polished using # 1000 GC abrasives.

【0034】ラップ研磨加工後のウエハは、自動面取り
装置を用いて外径100mmで面取り加工の断面が、図
1に示す面取り面2がへきかい面に一致するα=47.
7°で面取り加工した。
The wafer after the lap polishing process has an outer diameter of 100 mm using an automatic chamfering device, and the cross-section of the chamfering process is such that the chamfered surface 2 shown in FIG.
Chamfering was performed at 7 °.

【0035】なお、面取りの砥石は例えば#600のメ
タルボンドを用いた。このとき、面取り加工1cや1e
には、図3に示す電子顕微鏡像のようにへきかい面が優
先的に現れた。面取り加工したウエハは、主面によるメ
カノケミカル研磨により鏡面ポリッシュ研磨することで
ウエハを作製した。
The chamfering grindstone used was, for example, a metal bond of # 600. At this time, chamfering processing 1c or 1e
In FIG. 3, a cleavage plane preferentially appeared as in the electron microscope image shown in FIG. The chamfered wafer was mirror-polished by mechanochemical polishing on the main surface to produce a wafer.

【0036】発明の効果を確認するため、表1に示すよ
うに面取り面αを47.7°で加工した場合と30°で
加工した場合、さらに面取り加工をしなかった場合とに
ついて次工程の研磨中のワレ歩留りとデバイスプロセス
中のワレ歩留り、オーブンで加熱した後に23℃の水に
投下したときのワレの熱衝撃閾値を比較した。
In order to confirm the effect of the present invention, as shown in Table 1, the following steps were performed for the case where the chamfered surface α was machined at 47.7 °, the case where the chamfered surface α was machined at 30 °, and the case where no chamfering was performed. The cracking yield during polishing was compared with the cracking yield during device processing, and the thermal shock threshold value of the crack when dropped in water at 23 ° C. after heating in an oven was compared.

【0037】その結果、本発明で説明するへきかい面を
有する面取りを施したLTウエハはへきかい面を含まな
い面取りを施したLTウエハと比較して歩留りが向上し
その効果が確認できた。これは、本発明の面取りを施し
たLTウエハが物理的な強度が向上したことが要因と考
えられる。なお、加工面はへきかい面と±1.5°の範
囲であれば、必ずしも丁度へきかい面に一致して研削し
なくともへきかい面が現れるため同様の効果が得られ
る。また、面取り加工の形状にはへきかい面である(0
12)面と等価な、例えばαが9.0°、75.0°、
87.0°のへきかい面が現れる形状であれば同様の効
果が得られることも判明した。
As a result, the yield of the LT wafer having a chamfer having a cleavage surface described in the present invention was improved as compared with the LT wafer having a chamfer having no cleavage surface, and the effect was confirmed. This is probably due to the fact that the chamfered LT wafer of the present invention has improved physical strength. If the processed surface is within a range of ± 1.5 ° with respect to the cleavage surface, the same effect can be obtained because the cleavage surface does not necessarily coincide with the cleavage surface but appears even without grinding. Also, the chamfered shape is a difficult surface (0
12) Equivalent to the plane, for example, α is 9.0 °, 75.0 °,
It has also been found that a similar effect can be obtained if the shape shows a cleavage plane of 87.0 °.

【0038】さらに、右手系オイラー角表示(φ,θ,
ψ)のφが±3°の場合でも、高い機械的強度と良好な
デバイス特性が得られることがわかり、このウエハカッ
ト方位と面取り角度において従来、機械的強度に問題の
あったウエハを改善することができた。
Further, a right-handed Euler angle display (φ, θ,
It can be seen that high mechanical strength and good device characteristics can be obtained even when φ of ψ) is ± 3 °, and the wafer which has conventionally had a problem in mechanical strength in this wafer cut orientation and chamfer angle is improved. I was able to.

【0039】[0039]

【発明の効果】本発明の単結晶ウエハによれば、ウエハ
のワレやカケの起点となる側面にへきかい面を有する面
取り加工を施すことにより、物理的な応力に対して耐久
性を向上することができる。
According to the single crystal wafer of the present invention, durability against physical stress can be improved by performing chamfering on the side surface serving as a starting point of cracking and chipping of the wafer. Can be.

【0040】これにより、ウエハ加工時の歩留りの向上
により信頼性の高い単結晶ウエハを供給することがで
き、ひいては信頼性及び特性の優れた弾性表面波素子も
提供できる。
As a result, a highly reliable single crystal wafer can be supplied by improving the yield at the time of processing the wafer, and a surface acoustic wave device having excellent reliability and characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】右手系オイラー角表示を説明する座標図であ
る。
FIG. 1 is a coordinate diagram illustrating a right-handed Euler angle display.

【図2】本発明に係るウエハ端部のの面取り形状を模式
的に説明する図であり、(a)は一部切断斜視図、
(b)は(a)の拡大断面図である。
FIG. 2 is a diagram schematically illustrating a chamfered shape of a wafer edge portion according to the present invention, where (a) is a partially cutaway perspective view,
(B) is an enlarged sectional view of (a).

【図3】本発明に係るへきかい面を含む面取り加工面の
電子顕微鏡写真であり、(a)は倍率1000倍のSE
M像、(b)は倍率3000倍のSEM像である。
FIGS. 3A and 3B are electron micrographs of a chamfered surface including a cleavage surface according to the present invention, wherein FIG.
An M image and (b) are SEM images at a magnification of 3000 times.

【図4】ウエハ面(0°,θ,ψ)と最適な面取り角度
αとの関係を示すグラフ(縦軸α、横軸θ)である。
FIG. 4 is a graph (vertical axis α, horizontal axis θ) showing a relationship between a wafer surface (0 °, θ, ψ) and an optimum chamfer angle α.

【図5】へきかい面を含む面取り加工面における砥石番
手とへきかい面の割合及び平均表面粗さとの関係を示す
グラフである。
FIG. 5 is a graph showing the relationship between the grinding wheel count on the chamfered processing surface including the cleavage surface, the ratio of the cleavage surface, and the average surface roughness.

【符号の説明】[Explanation of symbols]

1:ウエハ 1a、1b:主面 1c、1d、1e:側面 1: Wafer 1a, 1b: Main surface 1c, 1d, 1e: Side surface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 タンタル酸リチウム単結晶から成るウエ
ハの側面に、へきかい面が20%以上含まれる面取り加
工面を有することを特徴とする単結晶ウエハ。
1. A single crystal wafer having a chamfered surface containing 20% or more of a cleavage surface on a side surface of a wafer made of a lithium tantalate single crystal.
【請求項2】 前記面取り加工面の算術平均粗さ(R
a)が1μm以下であることを特徴とする請求項1に記
載の単結晶ウエハ。
2. The arithmetic average roughness (R) of the chamfered surface.
2. The single crystal wafer according to claim 1, wherein a) is 1 μm or less.
【請求項3】 前記ウエハの主面方位は、右手系オイラ
ー角表示(φ,θ,ψ)の各パラメータが下記条件
(1)〜(3)を満足することを特徴とする請求項1に
記載の単結晶ウエハ。 (1)−60°≦φ≦60° (2)123°≦θ≦136° (3)ψは任意
3. The principal plane orientation of the wafer, wherein each parameter of a right-handed Euler angle display (φ, θ, ψ) satisfies the following conditions (1) to (3). The single crystal wafer according to the above. (1) -60 ° ≦ φ ≦ 60 ° (2) 123 ° ≦ θ ≦ 136 ° (3) ψ is optional
【請求項4】 前記面取り加工面と前記ウエハの主面と
の成す角αが、45°≦α≦51°であることを特徴と
する請求項3に記載の単結晶ウエハ。
4. The single crystal wafer according to claim 3, wherein an angle α between the chamfered surface and a main surface of the wafer satisfies 45 ° ≦ α ≦ 51 °.
JP2000364016A 2000-11-30 2000-11-30 Single crystal wafer Pending JP2002167298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000364016A JP2002167298A (en) 2000-11-30 2000-11-30 Single crystal wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000364016A JP2002167298A (en) 2000-11-30 2000-11-30 Single crystal wafer

Publications (1)

Publication Number Publication Date
JP2002167298A true JP2002167298A (en) 2002-06-11

Family

ID=18835032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000364016A Pending JP2002167298A (en) 2000-11-30 2000-11-30 Single crystal wafer

Country Status (1)

Country Link
JP (1) JP2002167298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040203A1 (en) * 2018-08-21 2020-02-27 京セラ株式会社 Substrate for surface acoustic wave element, and method for manufacturing said substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040203A1 (en) * 2018-08-21 2020-02-27 京セラ株式会社 Substrate for surface acoustic wave element, and method for manufacturing said substrate
KR20210028672A (en) 2018-08-21 2021-03-12 교세라 가부시키가이샤 Substrate for surface acoustic wave device and method for manufacturing the same
JPWO2020040203A1 (en) * 2018-08-21 2021-09-02 京セラ株式会社 Substrate for surface acoustic wave element and its manufacturing method
JP7019052B2 (en) 2018-08-21 2022-02-14 京セラ株式会社 Substrate for surface acoustic wave element and its manufacturing method

Similar Documents

Publication Publication Date Title
SG187057A1 (en) Grinding tool for trapezoid grinding of a wafer
JPH11171693A (en) Etching of silicon wafer and etching liquid for silicon wafer
TWI291724B (en) Semiconductor wafer and method of manufacturing the same
SG187058A1 (en) Semiconductor and solar wafers and method for processing same
JP4492293B2 (en) Manufacturing method of semiconductor substrate
JP2002167298A (en) Single crystal wafer
WO2016002707A1 (en) Gallium oxide substrate and production method therefor
KR102508006B1 (en) Substrate for surface acoustic wave device and manufacturing method thereof
JP5068511B2 (en) Manufacturing method of surface acoustic wave device
JP2010040549A (en) Semiconductor wafer and manufacturing method thereof
US8310031B2 (en) Semiconductor and solar wafers
JP3866887B2 (en) Piezoelectric single crystal wafer
JP2002111420A (en) Wafer for elastic surface wave device and its manufacturing method
JP4539053B2 (en) Single crystal substrate and manufacturing method thereof
JP7131378B2 (en) Single crystal wafer manufacturing method
JP7396199B2 (en) Method for manufacturing piezoelectric single crystal substrate
JP2002226298A (en) Single crystal wafer and surface acoustic wave apparatus using the same
JP2000082931A (en) Piezoelectric single crystal wafer, its manufacture and surface acoustic wave device
JP2022068748A (en) Oxide single-crystal wafer, wafer for composite substrate, composite substrate, method for processing oxide single-crystal wafer, method for producing oxide single-crystal wafer, method for producing wafer for composite substrate, and method for producing composite substrate
JP3384546B2 (en) Piezoelectric single crystal wafer for pseudo-surface acoustic wave device and method of manufacturing the same
JP2023124031A (en) Method of manufacturing single crystal substrate
JP4736622B2 (en) Single crystal growth substrate
JP2003110390A (en) Substrate for surface acoustic wave device
JP2022150692A (en) Method of manufacturing piezoelectric oxide single crystal substrate
JP2016007690A (en) Manufacturing method of sapphire substrate