JP2002167240A - Method of washing crystallized glass substrate - Google Patents

Method of washing crystallized glass substrate

Info

Publication number
JP2002167240A
JP2002167240A JP2000362209A JP2000362209A JP2002167240A JP 2002167240 A JP2002167240 A JP 2002167240A JP 2000362209 A JP2000362209 A JP 2000362209A JP 2000362209 A JP2000362209 A JP 2000362209A JP 2002167240 A JP2002167240 A JP 2002167240A
Authority
JP
Japan
Prior art keywords
cleaning
glass substrate
crystallized glass
washing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000362209A
Other languages
Japanese (ja)
Inventor
Takaaki Suematsu
孝章 末松
Terutaka Sawara
輝隆 佐原
Yoshimitsu Kitada
由光 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2000362209A priority Critical patent/JP2002167240A/en
Publication of JP2002167240A publication Critical patent/JP2002167240A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Liquid Crystal (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Surface Treatment Of Glass (AREA)
  • Detergent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of washing a crystallized glass substrate removing remained abrasive particles effectively without generating tiny depressions on the surface of the substrate. SOLUTION: This method of washing to remove abrasive particles from a crystallized glass substrate having abrasive particles remained on the surface comprises dipping the crystallized glass substrate 14 into a washing liquid 12 in a washing tank 10 and washing with ultrasonic wave having frequency of 600 kHz or higher emitted from an ultrasonic wave generator 11 equipped at the bottom of the washing tank 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は結晶化ガラス基板の
洗浄方法に係り、特にハードディスクなどに用いられる
磁気ディスク用結晶化ガラス基板の洗浄方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning a crystallized glass substrate, and more particularly to a method for cleaning a crystallized glass substrate for a magnetic disk used for a hard disk or the like.

【0002】[0002]

【従来の技術】コンピュータのハードディスクなどに用
いられる磁気ディスク用基板としては、アルミニウム合
金基板が広く用いられてきた。また、近年は記憶容量の
高密度化が要求されるにつれて、変形が少なく、表面の
平滑性に優れているガラス基板が実用化されている。磁
気ディスク用ガラス基板としてはソーダライムガラスや
アルミノシリケートガラスなどのアモルファス(非晶
質)ガラス基板と結晶化ガラス基板が知られている。
2. Description of the Related Art Aluminum alloy substrates have been widely used as magnetic disk substrates used for hard disks of computers. In recent years, with the demand for higher storage capacity, glass substrates with less deformation and excellent surface smoothness have been put to practical use. As a glass substrate for a magnetic disk, an amorphous (amorphous) glass substrate such as soda lime glass and aluminosilicate glass and a crystallized glass substrate are known.

【0003】アモルファスガラス基板は表面の平滑性に
優れているが、含有しているアルカリ金属イオンが溶出
し易く、磁性膜を腐蝕させることがあるという問題点が
指摘されている。一方、結晶化ガラス基板はアルカリ金
属イオンのほとんどが結晶相中に取り込まれており、ア
ルカリ金属イオンが溶出せず、磁性膜を腐蝕させること
がない。このため、サイズの小型化と記憶容量の高密度
化がより一層要求されつつある磁気ディスク用基板とし
て結晶化ガラス基板は特に有望視されている。この種の
ガラス基板の製造においては、一般に所定のサイズにデ
ィスク加工した基板の表面を砥粒で研磨した後、ガラス
表面に付着残存した研磨粒子を除去するために洗浄を行
う。洗浄の方法は、研磨後のガラス基板を予備洗浄した
後、ふっ化アンモニウム溶液などの洗浄液に浸漬しつ
つ、超音波洗浄することによって行う。
An amorphous glass substrate has excellent surface smoothness, but it has been pointed out that alkali metal ions contained therein are easily eluted and may corrode a magnetic film. On the other hand, in the crystallized glass substrate, most of the alkali metal ions are taken into the crystal phase, the alkali metal ions do not elute, and the magnetic film does not corrode. For this reason, a crystallized glass substrate is particularly promising as a substrate for a magnetic disk, which is increasingly required to have a smaller size and a higher storage capacity. In the production of this type of glass substrate, generally, after polishing the surface of the substrate, which has been disc-processed to a predetermined size, with abrasive grains, cleaning is performed to remove polishing particles remaining on the glass surface. The cleaning method is performed by pre-cleaning the polished glass substrate, and then performing ultrasonic cleaning while immersing the glass substrate in a cleaning solution such as an ammonium fluoride solution.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、本発明
者が行った洗浄実験によれば、アモルファスガラス基板
では平坦度を保ちながら付着粒子を除去することが可能
であるが、結晶化ガラス基板では洗浄後の基板表面に微
少な窪みが多数発生することが判明した。この理由は、
結晶化ガラス基板では結晶相と非晶質相とが混在してお
り、洗浄の過程で微細な結晶が基板表面から脱落するこ
とによる。このような基板表面の微少な窪みは磁気ディ
スクとしての機能を阻害する。
However, according to the cleaning experiment conducted by the present inventor, it is possible to remove the adhered particles while maintaining the flatness in the amorphous glass substrate, but it is possible to remove the adhered particles in the crystallized glass substrate. It turned out that many fine dents are generated on the substrate surface later. The reason for this is
In a crystallized glass substrate, a crystal phase and an amorphous phase are mixed, and fine crystals fall off from the substrate surface during the cleaning process. Such minute depressions on the substrate surface hinder the function as a magnetic disk.

【0005】本発明は、このような事情に鑑みてなされ
たものであり、結晶化ガラス基板の表面に微少な窪みを
発生させることなく、付着残存した研磨粒子を効果的に
除去することができる洗浄方法を提供することを目的と
する。
[0005] The present invention has been made in view of such circumstances, and it is possible to effectively remove abrasive particles remaining and attached without generating minute depressions on the surface of a crystallized glass substrate. It is an object to provide a cleaning method.

【0006】[0006]

【課題を解決するための手段】本発明は、表面に研磨粒
子が付着した結晶化ガラス基板から前記研磨粒子を除去
する結晶化ガラス基板の洗浄方法であって、前記結晶化
ガラス基板を洗浄液に浸漬しつつ、600kHz以上の
周波数で超音波洗浄することを特徴とする。
SUMMARY OF THE INVENTION The present invention relates to a method for cleaning a crystallized glass substrate, wherein the polishing particles are removed from the crystallized glass substrate having abrasive particles adhered to the surface thereof. It is characterized by performing ultrasonic cleaning at a frequency of 600 kHz or more while immersing.

【0007】前記洗浄液としては、ふっ化アンモニウム
の濃度が0.5〜1.0%のふっ化アンモニウム水溶液が
好ましく用いられる。
As the cleaning solution, an ammonium fluoride aqueous solution having a concentration of ammonium fluoride of 0.5 to 1.0% is preferably used.

【0008】[0008]

【作用】本発明によれば、結晶化ガラス基板を洗浄液に
浸漬しつつ、600kHz以上の周波数で超音波洗浄す
ることにより、洗浄液によるエッチング作用と超音波洗
浄による洗浄液の微振動作用が相乗して、結晶化ガラス
基板の表面に微少な窪みを発生させることなく、付着残
存した研磨粒子を効果的に除去することができる。特に
超音波の周波数を600kHz以上にすると、低周波の
超音波を用いた場合に発生するキャビテーションを防止
することができる。このため、エッチング作用のある洗
浄液を用いても局所的なエッチングを防ぐことができ、
洗浄の過程で微細な結晶が基板表面から脱落することも
ない。
According to the present invention, while the crystallized glass substrate is immersed in the cleaning liquid and ultrasonically cleaned at a frequency of 600 kHz or more, the etching action by the cleaning liquid and the micro-vibration action of the cleaning liquid by the ultrasonic cleaning are synergistic. In addition, it is possible to effectively remove the polishing particles remaining and attached without generating minute depressions on the surface of the crystallized glass substrate. In particular, when the frequency of the ultrasonic waves is set to 600 kHz or more, cavitation that occurs when low-frequency ultrasonic waves are used can be prevented. For this reason, even if a cleaning liquid having an etching action is used, local etching can be prevented,
Fine crystals do not fall off the substrate surface during the cleaning process.

【0009】洗浄液としては、前記したようにふっ化ア
ンモニウムの濃度が0.5〜1.0%のふっ化アンモニウ
ム水溶液が好ましく用いられる。洗浄液の濃度が上記の
値よりも低い時は、エッチング作用が弱いために洗浄効
果が低下する。また、濃度が上記の値よりも高い時は、
エッチング作用が強すぎるために基板表面に洗浄むらが
生じ易く、結晶が基板表面から脱落する傾向が大きくな
る。
As described above, an aqueous solution of ammonium fluoride having a concentration of ammonium fluoride of 0.5 to 1.0% is preferably used as described above. When the concentration of the cleaning liquid is lower than the above value, the cleaning effect is reduced because the etching action is weak. When the concentration is higher than the above value,
Since the etching action is too strong, uneven cleaning is likely to occur on the substrate surface, and the tendency of crystals to fall off the substrate surface is increased.

【0010】[0010]

【発明の実施の形態】図1は本発明を実施するための装
置構成の一例を示す系統図である。洗浄槽10には所定
濃度の洗浄液12が張り込まれており、被処理物である
結晶化ガラス基板14が基板搬送機16によってこの洗
浄液12に浸漬される。洗浄槽10の底部には周波数が
600kHz以上の超音波を槽内の洗浄液12に向けて
照射する超音波発生装置11が取り付けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system diagram showing an example of a device configuration for implementing the present invention. A cleaning solution 12 having a predetermined concentration is applied to the cleaning tank 10, and a crystallized glass substrate 14, which is an object to be processed, is immersed in the cleaning solution 12 by a substrate transfer device 16. An ultrasonic generator 11 for irradiating ultrasonic waves having a frequency of 600 kHz or more toward the cleaning liquid 12 in the tank is attached to the bottom of the cleaning tank 10.

【0011】洗浄槽10の上部には洗浄液12をオーバ
ーフローさせる樋18が設けられており、この樋18か
ら排出された洗浄液12は管路20から調整槽22に送
られる。調整槽22には薬液を補充するための薬液タン
ク24が、制御弁26を有する管路28を介して接続さ
れ、また、調整槽22の液面を一定に維持するために、
純水を補給する管路30が接続している。
A gutter 18 for overflowing the cleaning liquid 12 is provided at an upper portion of the cleaning tank 10. The cleaning liquid 12 discharged from the gutter 18 is sent from a pipe 20 to an adjustment tank 22. A chemical solution tank 24 for replenishing the chemical solution is connected to the adjustment tank 22 via a pipe 28 having a control valve 26. In addition, in order to maintain the liquid level of the adjustment tank 22 constant,
A conduit 30 for supplying pure water is connected.

【0012】調整槽22の底部には管路32が接続し、
調整槽22内の洗浄液12は管路32に設けた循環ポン
プ34によって前記洗浄槽10に循環される。なお、循
環ポンプ34の吐出側の管路36にはフィルタ38と薬
液の濃度を検出する濃度計40が設けられている。濃度
計40の検出値は調節計42に送られ、調節計42は、
この検出値が所定値となるように前記制御弁26の開度
を制御する。また、管路36には洗浄液を装置外に排出
するための管路44が分岐しており、この管路44から
洗浄液を間欠的又は連続的に排出することによって洗浄
液の更新を図ることができる。
A pipe 32 is connected to the bottom of the adjusting tank 22.
The cleaning liquid 12 in the adjustment tank 22 is circulated to the cleaning tank 10 by a circulation pump 34 provided in a pipe 32. In addition, a filter 38 and a concentration meter 40 for detecting the concentration of the chemical solution are provided in the pipeline 36 on the discharge side of the circulation pump 34. The detected value of the concentration meter 40 is sent to the controller 42, and the controller 42
The opening of the control valve 26 is controlled so that the detected value becomes a predetermined value. In addition, a conduit 44 for discharging the cleaning liquid out of the apparatus is branched from the conduit 36, and the cleaning liquid can be renewed by intermittently or continuously discharging the cleaning liquid from the conduit 44. .

【0013】上記の構成において、研磨粒子が付着した
結晶化ガラス基板14を基板搬送機16に搭載し、洗浄
槽10内の洗浄液12に3分間程度浸漬する。結晶化ガ
ラス基板14は濃度が適正な範囲内に調整された洗浄液
12によるエッチング作用と周波数が600kHz以上
の超音波洗浄による洗浄液の微振動作用を受け、結晶化
ガラス基板14の表面に微少な窪みが発生することな
く、付着残存した研磨粒子が効果的に除去される。
In the above configuration, the crystallized glass substrate 14 to which the abrasive particles have adhered is mounted on the substrate carrier 16 and immersed in the cleaning liquid 12 in the cleaning tank 10 for about 3 minutes. The crystallized glass substrate 14 is subjected to an etching action by the cleaning liquid 12 whose concentration is adjusted within an appropriate range and a micro-vibration action of the cleaning liquid by ultrasonic cleaning at a frequency of 600 kHz or more, so that a slight depression is formed on the surface of the crystallized glass substrate 14. The polishing particles remaining and adhered are effectively removed without generation of the particles.

【0014】洗浄液として、ふっは化アンモニウムの濃
度が0.5〜1.0%のふっ化アンモニウム水溶液を用い
た場合には、薬液の濃度が低いのでいわゆる基板に対し
て優しいソフトエッチングが進行する。また、この濃度
範囲の洗浄液はpHが6〜7の中性のため、ガラス表面
と研磨粒子のゼータ電位がともに負に帯電し電気的に反
発し合う。このため、洗浄が終了した結晶化ガラス基板
14を洗浄液12から引き上げる際にも、一旦剥離した
研磨粒子が基板表面に再付着することが抑制される。
When an aqueous solution of ammonium fluoride having a concentration of 0.5 to 1.0% of ammonium fluoride is used as the cleaning solution, the so-called soft etching proceeds to the so-called substrate because the concentration of the chemical solution is low. . Further, since the pH of the cleaning solution in this concentration range is 6 to 7, the zeta potential of the glass surface and the zeta potential of the abrasive particles are both negatively charged and repel each other. For this reason, even when the crystallized glass substrate 14 after the cleaning is pulled up from the cleaning liquid 12, it is possible to suppress the abrasive particles that have been peeled off from re-adhering to the substrate surface.

【0015】[0015]

【実験例1】2.5インチの磁気ディスク用の結晶化ガ
ラス基板を用い、超音波洗浄における周波数を変化さ
せ、周波数が基板の表面粗さに及ぼす影響を調べた。供
試材である結晶化ガラス基板は所定の研磨よって十分に
平坦度が確保されており、その算術平均粗さRaが0.
22nmのものを用いた。実験の条件は、洗浄液として
ふっ化アンモニウムの濃度が0.5%の水溶液を用い、
液温23℃の洗浄液に結晶化ガラス基板を浸漬し、各種
の周波数の超音波を3分間照射した。この時の超音波の
強度は各実験とも約0.5W/cm2であった。
Experimental Example 1 Using a crystallized glass substrate for a 2.5-inch magnetic disk, the frequency in ultrasonic cleaning was changed, and the effect of the frequency on the surface roughness of the substrate was examined. The crystallized glass substrate as a test material has a sufficiently flat surface secured by a predetermined polishing, and has an arithmetic average roughness Ra of 0.1.
The thing of 22 nm was used. The experimental conditions were as follows: an aqueous solution having a concentration of ammonium fluoride of 0.5% was used as a washing solution;
The crystallized glass substrate was immersed in a cleaning liquid at a liquid temperature of 23 ° C., and irradiated with ultrasonic waves of various frequencies for 3 minutes. The intensity of the ultrasonic wave at this time was about 0.5 W / cm 2 in each experiment.

【0016】洗浄後の各供試材の表面粗さを原子間力顕
微鏡で測定し、算術平均粗さRaを求めた。その結果を
図2に示す。図2から明らかなように、同一の洗浄液を
用いても、超音波の周波数によって洗浄後の基板の算術
平均粗さRaが変化し、100kHz以下では算術平均
粗さRaが洗浄前に比べて1.5倍以上となり、超音波
洗浄によってエッチングむらが生じることが判る。一
方、600kHz以上では算術平均粗さRaは洗浄前に
比べて1.1倍以下であり、エッチングむらを最小限に
抑えることができる。なお、原子間力顕微鏡での映像に
よる観察結果でも、100kHz以下では基板の表面に
微少な窪み(深さが5nm程度の窪み)が10〜30個
/μm2で観察されたが、600kHz以上では微少な
窪みは10個/μm2以下であった。
The surface roughness of each test material after washing was measured with an atomic force microscope, and the arithmetic average roughness Ra was determined. The result is shown in FIG. As is clear from FIG. 2, even when the same cleaning liquid is used, the arithmetic average roughness Ra of the substrate after the cleaning changes depending on the frequency of the ultrasonic wave. At 100 kHz or less, the arithmetic average roughness Ra is 1 compared with that before the cleaning. It is more than .5 times, and it can be seen that unevenness of etching is caused by ultrasonic cleaning. On the other hand, at 600 kHz or more, the arithmetic average roughness Ra is 1.1 times or less as compared with that before cleaning, and the etching unevenness can be minimized. In addition, in the observation result by an image with an atomic force microscope, at 100 kHz or less, minute dents (dents having a depth of about 5 nm) were observed at 10 to 30 / μm 2 at the surface of the substrate, but at 600 kHz or more, The number of minute depressions was 10 / μm 2 or less.

【0017】[0017]

【実験例2】2.5インチの磁気ディスク用の結晶化ガ
ラス基板を研磨液で研磨し、その表面に研磨粒子が付着
したものを供試材とした。この時の研磨条件は、研磨材
として粒径0.4〜0.8μmの酸化セリウムを用い、こ
の酸化セリウムを純水に10重量%で懸濁させたものを
研磨液とした。研磨装置により研磨圧力50kgf/c
2、テーブル回転数40rpmの条件で20分間研磨
した。研磨後の供試材を純水、洗浄液の順で超音波洗浄
した場合の超音波の周波数が粒子除去に及ぼす影響を調
べた。その結果、超音波の周波数を45kHz〜1,0
00kHzの範囲で変化させても基板に残留している
0.1μm以上の粒子の個数は大差なく、周波数が高い
方がやや粒子除去性能が優れていることが判明した。
EXPERIMENTAL EXAMPLE 2 A 2.5-inch crystallized glass substrate for a magnetic disk was polished with a polishing solution, and the surface to which abrasive particles were attached was used as a test material. The polishing conditions at this time were such that cerium oxide having a particle size of 0.4 to 0.8 μm was used as a polishing material, and cerium oxide suspended in pure water at 10% by weight was used as a polishing liquid. Polishing pressure 50kgf / c by polishing machine
Polishing was performed for 20 minutes under the conditions of m 2 and a table rotation speed of 40 rpm. The effect of ultrasonic frequency on particle removal when the polished test material was subjected to ultrasonic cleaning in the order of pure water and a cleaning solution was examined. As a result, the frequency of the ultrasonic wave is changed from 45 kHz to 1.0.
Even when the frequency was changed in the range of 00 kHz, the number of particles of 0.1 μm or more remaining on the substrate was not much different, and it was found that the higher the frequency, the better the particle removal performance.

【0018】[0018]

【実験例3】実験例2で用いた同一の供試材を純水に浸
漬して超音波洗浄(周波数750kHz、洗浄時間3分
間)し、次いで、ふっ酸濃度が50mg/Lの1次洗浄
液に浸漬して超音波洗浄(周波数750kHz、洗浄時
間3分間)したものを試験サンプルとした。この試験サ
ンプルについて、2次洗浄液による超音波洗浄を実施し
た。2次洗浄液としては、ふっ化アンモニウム水溶液を
用い、それぞれの濃度を変化させて、2次洗浄液の濃度
が洗浄に及ぼす影響を調べた。その他の洗浄条件は各試
験とも統一し、照射した超音波の周波数は750kH
z、洗浄時間は3分間とした。
EXPERIMENTAL EXAMPLE 3 The same test material used in EXPERIMENTAL EXAMPLE 2 was immersed in pure water and subjected to ultrasonic cleaning (frequency 750 kHz, cleaning time 3 minutes), and then a primary cleaning solution having a hydrofluoric acid concentration of 50 mg / L. And subjected to ultrasonic cleaning (frequency 750 kHz, cleaning time 3 minutes) as a test sample. This test sample was subjected to ultrasonic cleaning with a secondary cleaning solution. An aqueous solution of ammonium fluoride was used as the secondary cleaning solution, and the concentration of each solution was changed to examine the effect of the concentration of the secondary cleaning solution on the cleaning. Other cleaning conditions were unified for each test, and the frequency of the irradiated ultrasonic wave was 750 kHz.
z, the washing time was 3 minutes.

【0019】洗浄後の各試験サンプルを原子間力顕微鏡
で測定し、それぞれの算術平均粗さRaを求めた。ま
た、洗浄後の各試験サンプルの表面に残留している0.
1μm以上の粒子の個数Nを目視で計数した。実験結果
を表1に示す。
Each test sample after washing was measured with an atomic force microscope, and the arithmetic average roughness Ra was determined. In addition, 0. 0 remaining on the surface of each test sample after washing.
The number N of particles having a size of 1 μm or more was visually counted. Table 1 shows the experimental results.

【0020】[0020]

【表1】 [Table 1]

【0021】表1から明らかなように、洗浄後の算術平
均粗さRaが小さく、残留粒子個数Nが少ない2次洗浄
液の好ましい濃度は、ふっ化アンモニウムの濃度が0.
5〜1.0%の範囲である。これ以外の濃度範囲では洗
浄後の算術平均粗さRa又は残留粒子個数Nのいずれか
一方が悪化する。なお、算術平均粗さRaが大きい試験
No.4では原子間力顕微鏡での映像による観察結果で
も、基板の表面に多数の微少な窪み(深さが5nm程度
の窪み)が観察された。
As is clear from Table 1, the preferred concentration of the secondary cleaning solution having a small arithmetic average roughness Ra after cleaning and a small number N of residual particles is such that the concentration of ammonium fluoride is 0.1%.
It is in the range of 5 to 1.0%. In the other concentration ranges, one of the arithmetic average roughness Ra after washing and the number N of remaining particles is deteriorated. In addition, the test No. with a large arithmetic average roughness Ra. In No. 4, a large number of minute dents (dents having a depth of about 5 nm) were observed on the surface of the substrate also in the observation result by the image with the atomic force microscope.

【0022】[0022]

【発明の効果】本発明に係る洗浄方法によれば、結晶化
ガラス基板の表面に微少な窪みを発生させることなく、
付着残存した研磨粒子を効果的に除去することができ
る。
According to the cleaning method of the present invention, fine dents do not occur on the surface of the crystallized glass substrate.
The remaining abrasive particles can be effectively removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための装置構成の一例を示す
系統図である。
FIG. 1 is a system diagram showing an example of a device configuration for implementing the present invention.

【図2】実験例1の実験結果を示すグラフである。FIG. 2 is a graph showing experimental results of Experimental Example 1.

【符号の説明】[Explanation of symbols]

10……洗浄槽 11……超音波発生装置 12……洗浄液 14……結晶化ガラス基板 10 cleaning tank 11 ultrasonic generator 12 cleaning liquid 14 crystallized glass substrate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G11B 5/84 G11B 5/84 Z Fターム(参考) 2H088 FA21 HA01 MA18 MA20 3B201 AA02 AB01 BB04 BB05 BB85 BB92 BB93 CB01 CC21 4G059 AA08 AC03 BB04 BB16 4H003 BA12 DA05 DA15 DC04 EA05 FA15 FA21 5D112 GA08 GA14 GA27 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G11B 5/84 G11B 5/84 Z F-term (Reference) 2H088 FA21 HA01 MA18 MA20 3B201 AA02 AB01 BB04 BB05 BB85 BB92 BB93 CB01 CC21 4G059 AA08 AC03 BB04 BB16 4H003 BA12 DA05 DA15 DC04 EA05 FA15 FA21 5D112 GA08 GA14 GA27

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】表面に研磨粒子が付着した結晶化ガラス基
板から前記研磨粒子を除去する結晶化ガラス基板の洗浄
方法であって、前記結晶化ガラス基板を洗浄液に浸漬し
つつ、600kHz以上の周波数で超音波洗浄すること
を特徴とする結晶化ガラス基板の洗浄方法。
1. A method for cleaning a crystallized glass substrate, comprising removing the abrasive particles from a crystallized glass substrate having abrasive particles adhered to a surface thereof, wherein the crystallized glass substrate is immersed in a cleaning solution while a frequency of 600 kHz or more is applied. A method for cleaning a crystallized glass substrate, comprising: performing ultrasonic cleaning on the substrate.
【請求項2】前記洗浄液は、ふっ化アンモニウムの濃度
が0.5〜1.0%のふっ化アンモニウム水溶液であるこ
とを特徴とする請求項1に記載の結晶化ガラス基板の洗
浄方法。
2. The method for cleaning a crystallized glass substrate according to claim 1, wherein said cleaning solution is an aqueous solution of ammonium fluoride having a concentration of ammonium fluoride of 0.5 to 1.0%.
JP2000362209A 2000-11-29 2000-11-29 Method of washing crystallized glass substrate Pending JP2002167240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000362209A JP2002167240A (en) 2000-11-29 2000-11-29 Method of washing crystallized glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000362209A JP2002167240A (en) 2000-11-29 2000-11-29 Method of washing crystallized glass substrate

Publications (1)

Publication Number Publication Date
JP2002167240A true JP2002167240A (en) 2002-06-11

Family

ID=18833525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000362209A Pending JP2002167240A (en) 2000-11-29 2000-11-29 Method of washing crystallized glass substrate

Country Status (1)

Country Link
JP (1) JP2002167240A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006053965A (en) * 2004-08-10 2006-02-23 Fuji Electric Device Technology Co Ltd Manufacturing method of substrate for magnetic recording medium, and both-surface polisher and carrier for substrate polishing used in the method
JP2010266728A (en) * 2009-05-15 2010-11-25 Tosoh Corp Method and apparatus for cleaning photomask substrate
WO2012133374A1 (en) * 2011-03-30 2012-10-04 コニカミノルタアドバンストレイヤー株式会社 Method for producing magnetic-disk glass substrate
WO2013047286A1 (en) * 2011-09-30 2013-04-04 コニカミノルタアドバンストレイヤー株式会社 Production method for glass substrate for information recording medium
WO2013047287A1 (en) * 2011-09-30 2013-04-04 コニカミノルタアドバンストレイヤー株式会社 Production method for glass substrate for information recording medium
JP2014188420A (en) * 2013-03-26 2014-10-06 Avanstrate Inc Method of manufacturing glass substrate, method of manufacturing glass substrate for display, and method of cleaning end surface of the glass substrate for display
JP2016179913A (en) * 2015-03-23 2016-10-13 三和フロスト工業株式会社 Etching method of glass substrate and device therefor
WO2018003878A1 (en) * 2016-06-29 2018-01-04 花王株式会社 Method for producing magnetic disk substrate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006053965A (en) * 2004-08-10 2006-02-23 Fuji Electric Device Technology Co Ltd Manufacturing method of substrate for magnetic recording medium, and both-surface polisher and carrier for substrate polishing used in the method
JP2010266728A (en) * 2009-05-15 2010-11-25 Tosoh Corp Method and apparatus for cleaning photomask substrate
WO2012133374A1 (en) * 2011-03-30 2012-10-04 コニカミノルタアドバンストレイヤー株式会社 Method for producing magnetic-disk glass substrate
WO2013047286A1 (en) * 2011-09-30 2013-04-04 コニカミノルタアドバンストレイヤー株式会社 Production method for glass substrate for information recording medium
WO2013047287A1 (en) * 2011-09-30 2013-04-04 コニカミノルタアドバンストレイヤー株式会社 Production method for glass substrate for information recording medium
JP2014188420A (en) * 2013-03-26 2014-10-06 Avanstrate Inc Method of manufacturing glass substrate, method of manufacturing glass substrate for display, and method of cleaning end surface of the glass substrate for display
JP2016179913A (en) * 2015-03-23 2016-10-13 三和フロスト工業株式会社 Etching method of glass substrate and device therefor
WO2018003878A1 (en) * 2016-06-29 2018-01-04 花王株式会社 Method for producing magnetic disk substrate
GB2566876A (en) * 2016-06-29 2019-03-27 Kao Corp Method for producing magnetic disk substrate
JPWO2018003878A1 (en) * 2016-06-29 2019-04-18 花王株式会社 Method of manufacturing magnetic disk substrate
TWI731113B (en) * 2016-06-29 2021-06-21 花王股份有限公司 Manufacturing method of magnetic disk substrate
JP6997083B2 (en) 2016-06-29 2022-01-17 花王株式会社 Manufacturing method of magnetic disk board

Similar Documents

Publication Publication Date Title
TW419399B (en) Post-lapping cleaning process for silicon wafers
EP1286928B1 (en) Lanthanide oxide dissolution from glass surface
JP3867328B2 (en) Sputtering target and manufacturing method thereof
US5531861A (en) Chemical-mechanical-polishing pad cleaning process for use during the fabrication of semiconductor devices
JPH09270400A (en) Method of manufacturing semiconductor wafer
JP2002167240A (en) Method of washing crystallized glass substrate
JP2001276759A (en) Cleaning-fluid for glass substrate and method for cleaning glass substrate
JP2000140778A (en) Washing solution and washing of glass substrate
JP3575349B2 (en) Cleaning solution and cleaning method for aluminosilicate glass substrate
CN110303385A (en) Monocrystalline silicon nondestructive polishing method based on liquid phase polishing environment regulation and control
US6481449B1 (en) Ultrasonic metal finishing
JPH07201795A (en) Cleaning method
JP2005044488A (en) Substrate for magnetic recording medium, method for manufacturing magnetic recording medium, and substrate cleaning device
JP2001345301A (en) Method of cleaning electronic material
JP2001046991A (en) Method for washing glass substrate
JP2003141717A (en) Method of manufacturing glass substrate for information recording medium
JP4007742B2 (en) Ultrasonic cleaning method
JP2836888B2 (en) Cleaning method for plate
JPH11288903A (en) Edge mirror-polishing method for silicon wafer
JPH10219300A (en) Detergent composition for abrasive liquid
JPS61121859A (en) Method of processing substrate for use in diamond synthesis by vapor phase method
JP2005251266A (en) Substrate for magnetic recording medium and its manufacturing method
JPS62208869A (en) Polishing method for magnetic disc substrate
JPS6091648A (en) Treatment of semiconductor wafer
US20030079759A1 (en) Apparatus for cleaning glass substrate for use in information recording medium