JP2002166306A - Cutting tool - Google Patents

Cutting tool

Info

Publication number
JP2002166306A
JP2002166306A JP2000364698A JP2000364698A JP2002166306A JP 2002166306 A JP2002166306 A JP 2002166306A JP 2000364698 A JP2000364698 A JP 2000364698A JP 2000364698 A JP2000364698 A JP 2000364698A JP 2002166306 A JP2002166306 A JP 2002166306A
Authority
JP
Japan
Prior art keywords
cemented carbide
cutting
base material
cutting tool
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000364698A
Other languages
Japanese (ja)
Inventor
Daisuke Shibata
大輔 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000364698A priority Critical patent/JP2002166306A/en
Publication of JP2002166306A publication Critical patent/JP2002166306A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To extend service life of a tool by largely improving abrasion resistance and anti-plastic deformation performance in high speed and high efficiency cutting of hard-to-cut material such as stainless. SOLUTION: This cutting tool comprises a coating layer on the surface of base material of cemented carbide comprising hard phase components of WC and more than one sort of metal carbides, nitrides, and carbon nitrides selected from a group of groups 4a, 5a, and 6a in a periodic table, and coupling phase components of more than one sort of iron group metals. Thermal conductivity of the base material of cemented carbide at 1000 deg.C is 70% or more of that at room temperature. Such cemented carbide is used for high speed and high efficiency cutting of hard-to-cut material such as stainless.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温においても高
い熱伝導率を有し、特に切削温度が上昇する難削材の高
速切削に適する切削工具に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting tool which has a high thermal conductivity even at a high temperature and is particularly suitable for high-speed cutting of difficult-to-cut materials whose cutting temperature rises.

【0002】[0002]

【従来の技術】従来より、金属の切削加工に広く用いら
れている超硬合金は、炭化タングステンを主体とする硬
質相と、コバルト等の鉄族金属の結合相からなるWC−
Co系合金、もしくは上記WC−Co系に周期律表4
a,5a,6a族金属の炭化物、窒化物、炭窒化物等を
添加した系が知られている。後者の場合、WCと周期律
表4a,5a,6a族金属の炭化物、窒化物、炭窒化物
との固溶体粒子が前記硬質相と結合相とに加わることに
なる。
2. Description of the Related Art Conventionally, a cemented carbide widely used for metal cutting is a WC-hard alloy composed of a hard phase mainly composed of tungsten carbide and a binder phase of an iron group metal such as cobalt.
Periodic Table 4 for Co-based alloy or WC-Co-based alloy
There are known systems to which carbides, nitrides, carbonitrides, and the like of metals of groups a, 5a, and 6a are added. In the latter case, solid solution particles of WC and carbides, nitrides, and carbonitrides of metals of Groups 4a, 5a, and 6a of the periodic table are added to the hard phase and the binder phase.

【0003】これらの超硬合金は、切削工具として、主
に鋳鉄や炭素鋼等の切削に適用されているが、最近では
ステンレス鋼の切削への適用も進められている。このス
テンレス鋼は、耐食性、耐酸化性、耐熱性に優れるとい
った特性を有するため、幅広い分野で応用され、加工量
も年々増加している。
[0003] These cemented carbides are mainly used as cutting tools for cutting cast iron, carbon steel and the like, but recently, application to cutting stainless steel has been advanced. Since this stainless steel has characteristics such as excellent corrosion resistance, oxidation resistance and heat resistance, it is applied in a wide range of fields and the amount of processing is increasing year by year.

【0004】しかし、ステンレス鋼は加工硬化の発生、
低熱伝導率、工具材料との親和性が高い、という性質を
持つために難削性の代表として知られている。
However, stainless steel causes work hardening,
It is known as a representative of difficult-to-cut materials due to its low thermal conductivity and high affinity with tool materials.

【0005】切削工具用のWC系超硬合金のうち、ステ
ンレス鋼の切削には、一般に、JIS B 4053
(1996)によって、いわゆるM系列に分類される超
硬合金が使用される。このM系列には、主としてWC−
TiC−Ta(Nb)C−Co系超硬合金が使用されて
おり、靱性を付与するためにTiCおよびTa(Nb)
Cは比較的少量が添加される。
[0005] Among WC cemented carbides for cutting tools, JIS B 4053 is generally used for cutting stainless steel.
According to (1996), a cemented carbide classified into the so-called M series is used. This M series mainly includes WC-
TiC-Ta (Nb) C-Co-based cemented carbide is used, and TiC and Ta (Nb) are used to impart toughness.
C is added in a relatively small amount.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
M系列の超硬合金製切削工具でステンレス鋼を切削した
場合においても、切削工具の摩耗が大きく、短時間で工
具寿命となり、長時間にわたって良好な切削を行うこと
が困難であるという問題があった。
However, even when stainless steel is cut with a conventional M-series cemented carbide cutting tool, the cutting tool wears greatly, shortens the tool life in a short time, and provides good performance for a long time. There is a problem that it is difficult to perform a proper cutting.

【0007】また、ステンレス鋼の切削により加工硬化
した加工面から受ける切削抵抗により一次境界部の損傷
が激しく、このため短時間で工具寿命となっていた。
In addition, the primary boundary is severely damaged by cutting resistance received from a work surface hardened by cutting stainless steel, and the tool life is shortened in a short time.

【0008】本発明の目的は、ステンレス鋼等の難削材
を切削する場合にも、耐摩耗性および耐塑性変形性が改
善された、工具寿命の長い切削工具を提供することであ
る。
It is an object of the present invention to provide a cutting tool having improved wear resistance and plastic deformation resistance and a long tool life even when cutting difficult-to-cut materials such as stainless steel.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記の問題
点について検討を重ねた結果、超硬合金母材の1000
℃における熱伝導率を室温における熱伝導率の70%以
上とすることにより、難削材加工時の急激な温度変化に
よる熱衝撃の影響を緩和することができ、特に工具刃先
温度の著しい変化による機械的特性の低下を抑え、また
高温における機械的強度を保持することで難削材の高速
・高能率加工に対して優れた切削性能を有する切削工具
が得られるという知見を得て、本発明に至った。
The inventor of the present invention has repeatedly studied the above-mentioned problems and found that the base metal of the cemented carbide is 1000
By setting the thermal conductivity at 70 ° C. to 70% or more of the thermal conductivity at room temperature, it is possible to reduce the influence of thermal shock due to a rapid temperature change during machining of difficult-to-cut materials. The present invention is based on the finding that a cutting tool having excellent cutting performance for high-speed and high-efficiency machining of difficult-to-cut materials can be obtained by suppressing the deterioration of the mechanical properties and maintaining the mechanical strength at a high temperature. Reached.

【0010】また、従来の切削工具では、溶着が原因と
考えられる欠損が発生して被削材の加工面状態が悪化す
るが、本発明においては、超硬合金母材の1000℃に
おける熱伝導率が室温における熱伝導率の70%以上と
することにより超硬合金母材自体を強化し、耐欠損性も
向上させることができる。
[0010] Further, in the conventional cutting tool, a defect considered to be caused by welding occurs to deteriorate the machined surface state of the work material. In the present invention, however, the heat conduction of the cemented carbide base material at 1000 ° C. When the rate is 70% or more of the thermal conductivity at room temperature, the cemented carbide base material itself is strengthened, and the fracture resistance can be improved.

【0011】すなわち、本発明の切削工具は、WCと周
期律表4a,5a,6a族からなる群より選ばれた金属
の炭化物、窒化物、炭窒化物の1種以上を硬質相成分と
し、鉄族金属の1種以上を結合相成分とした超硬合金母
材の表面に被覆層を有する切削工具において、上記超硬
合金母材の1000℃における熱伝導率が室温における
熱伝導率の70%以上であること特徴とする。
That is, the cutting tool of the present invention comprises, as a hard phase component, at least one of carbides, nitrides and carbonitrides of metals selected from the group consisting of WC and groups 4a, 5a and 6a of the periodic table; In a cutting tool having a coating layer on a surface of a cemented carbide base material containing at least one of iron group metals as a binder phase component, the thermal conductivity of the cemented carbide base material at 1000 ° C. is 70% at room temperature. % Or more.

【0012】[0012]

【発明の実施の形態】以下、本発明の一実施形態を説明
する。本発明の切削工具は超硬合金母材の表面に被覆層
を有するものである。この超硬合金母材は、硬質相と結
合相で構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below. The cutting tool of the present invention has a coating layer on the surface of a cemented carbide base material. This cemented carbide base material is composed of a hard phase and a binder phase.

【0013】硬質相はWCと周期律表4a,5a,6a
族からなる群より選ばれた金属の炭化物、窒化物、炭窒
化物の1種以上からなる。そして、この硬質相は、WC
と、該WCと周期律表4a,5a,6a族からなる群よ
り選ばれた金属の炭化物、窒化物、炭窒化物の2種以上
の固溶体(複合炭化物固溶体あるいは複合炭窒化物固溶
体)を含むことが好ましい。
The hard phase is composed of WC and periodic table 4a, 5a, 6a.
It is composed of at least one of carbides, nitrides, and carbonitrides of metals selected from the group consisting of group metals. And this hard phase is WC
And two or more solid solutions (composite carbide solid solutions or composite carbonitride solid solutions) of carbides, nitrides, and carbonitrides of metals selected from the group consisting of the WC and groups 4a, 5a, and 6a of the periodic table. Is preferred.

【0014】また結合相は、Co等の鉄族金属を主成分
とするもので、超硬合金中に5〜15重量%の割合で含
有されているのがよい。この範囲よりも結合相の割合が
高いときは、硬さ、圧縮強さが低下し、耐摩耗性が低下
し工具の摩耗量が増加する恐れがある。一方、結合相の
割合が前記範囲よりも低いときは、硬質相相互の結合が
充分でないため、靱性が不足し加工中に工具欠損を引き
起こすおそれがある。
The binder phase is mainly composed of an iron group metal such as Co, and is preferably contained in the cemented carbide at a ratio of 5 to 15% by weight. When the proportion of the binder phase is higher than this range, the hardness and the compressive strength are reduced, the wear resistance is reduced, and the wear of the tool may be increased. On the other hand, when the proportion of the binder phase is lower than the above range, the bonding between the hard phases is not sufficient, so that the toughness is insufficient and there is a possibility that a tool breakage may occur during processing.

【0015】また、本発明の超硬合金では、該超硬合金
母材の1000℃における熱伝導率が室温における熱伝
導率の70%以上であることを特徴とするものである。
上記の範囲に設定したのは1000℃における熱伝導率
が70%を下回ると、難削材加工時の急激な温度変化に
よる熱衝撃の影響により、工具摩耗量や損傷が著しくな
る為である。
The cemented carbide according to the present invention is characterized in that the thermal conductivity of the cemented carbide base material at 1000 ° C. is 70% or more of the thermal conductivity at room temperature.
The reason for setting the above range is that when the thermal conductivity at 1000 ° C. is lower than 70%, the amount of tool wear and damage becomes remarkable due to the influence of thermal shock due to a rapid temperature change during machining of difficult-to-cut materials.

【0016】上記超硬合金母材には2種以上のB1型固
溶体が存在し、前記B1型(立方晶型)固溶体のうち少
なくとも1種がZrの含有量の高いB1型固溶体である
ことが好ましい。これはZrの含有量の高いB1型固溶
体は、高温での靱性及び耐塑性変形性に非常に優れるた
めである。
In the cemented carbide base material, two or more B1 type solid solutions exist, and at least one of the B1 type (cubic type) solid solutions is a B1 type solid solution having a high Zr content. preferable. This is because a B1 type solid solution having a high Zr content is very excellent in toughness and plastic deformation resistance at high temperatures.

【0017】このZrの含有量の高いB1型固溶体は、
エネルギー分散型X線回折において、Zrの示すピーク
強度がWの示すピーク強度に対して50%より大きく、
好ましくは50〜120%のものである。Zrの示すピ
ーク強度がWの示すピーク強度に対して50%以下であ
る場合には、相対的にWの含有量が高くなり、このため
合金の硬度を高めることができず、高い耐摩耗性、耐塑
性変形性を発揮できなくなる。
The B1 type solid solution having a high Zr content is as follows:
In energy dispersive X-ray diffraction, the peak intensity indicated by Zr is greater than 50% of the peak intensity indicated by W,
Preferably it is 50 to 120%. When the peak intensity indicated by Zr is 50% or less of the peak intensity indicated by W, the content of W becomes relatively high, so that the hardness of the alloy cannot be increased, and high wear resistance is obtained. , Plastic deformation resistance cannot be exhibited.

【0018】一方、Zrの含有量が高い固溶体以外の固
溶体とは、Zrを除く他の金属、すなわちTi,V,C
r,Mo,Hf,NbおよびTaの1種または2種以上
とWCとの固溶体および含有率が低いZrとWCとの固
溶体の一方または両方をいう。このようにZrを含有し
ないか、あるいはその含有量が低い固溶体は、エネルギ
ー分散型X線回折においてZrの示すピーク強度がWの
示すピーク強度に対して50%未満のものである。
On the other hand, a solid solution other than a solid solution having a high Zr content is a metal other than Zr, that is, Ti, V, C
One or both of a solid solution of WC with one or more of r, Mo, Hf, Nb and Ta and a solid solution of Zr and WC having a low content. As described above, the solid solution containing no Zr or having a low content thereof has a peak intensity indicated by Zr less than 50% of a peak intensity indicated by W in energy dispersive X-ray diffraction.

【0019】ここで、B1型固溶体のうちZrの含有量
が高いものとそれ以外のものの一時的な確認には以下の
方法を用いることができる。焼結体の任意断面を研削研
磨し、鏡面部を村上試薬にて食刻し、光学顕微鏡の40
0〜1000倍にて観察する。この際、B1型固溶体の
食刻の程度がZrの含有量によって異なるため、容易に
B1型固溶体を確認することができる。
Here, the following method can be used for the temporary confirmation of those having a high Zr content and those other than the B1 type solid solution. An arbitrary cross section of the sintered body is ground and polished, and the mirror surface portion is etched with Murakami reagent.
Observe at 0-1000x. At this time, since the degree of etching of the B1 type solid solution differs depending on the Zr content, the B1 type solid solution can be easily confirmed.

【0020】なお、上記Zrの含有量が高いB1型固溶
体は、合金中に平均粒径が3μm以下の相として存在す
ることが望ましい。これは、平均粒径が3μmを超える
と、B1型固溶体が結合相との濡れが悪いために、合金
全体の強度が低下するためである。最適には平均粒径1
μm程度である。
The B1 type solid solution having a high Zr content desirably exists in the alloy as a phase having an average particle diameter of 3 μm or less. This is because, when the average particle size exceeds 3 μm, the B1-type solid solution has poor wettability with the binder phase, so that the strength of the entire alloy decreases. Optimally an average particle size of 1
It is about μm.

【0021】上記超硬合金母材に被覆される被覆層は、
材質としてTiC、TiN、TiCNをはじめとする周
期律表第4a、5a、6a族金属の炭化物、窒化物、炭
窒化物、およびTiAlN,ZrO2 、Al23 等が
挙げられ、これらは、0.1〜20μmの厚みでCVD
法、あるいはPVD法により形成されることが望まし
い。
The coating layer coated on the cemented carbide base material is
Examples of the material include carbides, nitrides, carbonitrides, and TiAlN, ZrO 2 , and Al 2 O 3 of metals of Groups 4a, 5a, and 6a of the periodic table including TiC, TiN, and TiCN. CVD with thickness of 0.1-20μm
It is desirable to form by the method or the PVD method.

【0022】本発明の超硬合金を製造するに当たって
は、原料粉末としてWC粉末、周期律表第4a、5a、
6a族金属の炭化物、窒化物、炭窒化物から選ばれた2
種以上の粉末、およびCo粉末を前述した秤量後、混合
粉砕し、プレス成形などの公知の成形方法により成形
後、焼成する。
In producing the cemented carbide of the present invention, WC powder, periodic table Nos. 4a, 5a,
2 selected from carbides, nitrides and carbonitrides of group 6a metals
The above powders and Co powders are weighed as described above, mixed and pulverized, molded by a known molding method such as press molding, and then fired.

【0023】焼成は、真空度10〜10-1Paの真空中
で1623〜1823Kの温度範囲で10分〜2時間行
う。なお、本発明の特徴である超硬合金母材組織内の周
期律表4a,5a,6a族からなる群より選ばれた金属
に占めるZrの比率が超硬合金母材内部に比べて高い領
域を超硬合金母材の表面近傍に形成させるには、一次原
料のいわゆるB1型固溶体を構成する全化合物中に占め
るZr化合物の比率を調整し、さらに液相出現温度近傍
から焼結温度までの昇温速度を遅くすること等により得
ることができる。
The firing is performed in a vacuum of 10 to 10 -1 Pa in a temperature range of 1623 to 1823 K for 10 minutes to 2 hours. The region where the ratio of Zr in the metal selected from the group consisting of groups 4a, 5a and 6a in the cemented carbide matrix structure, which is a feature of the present invention, is higher than that in the cemented carbide matrix. Is formed in the vicinity of the surface of the cemented carbide base material by adjusting the ratio of the Zr compound in all the compounds constituting the so-called B1 type solid solution of the primary raw material, and further from the vicinity of the liquid phase appearance temperature to the sintering temperature. It can be obtained by slowing down the rate of temperature rise.

【0024】切削工具形状に加工、洗浄処理後に、その
表面に被覆層を被覆する。原料粉末の各配合割合は、W
C粉末70〜95重量%、前記した周期律表4a,5
a,6a族金属化合物の粉末0.1〜20重量%、鉄族
金属の粉末5〜20重量%であり、より好ましくはWC
粉末85〜95重量%、周期率表4a,5a,6a族金
属化合物の粉末0.5〜5重量%、鉄族金属の粉末5〜
10重量%である。
After processing into the shape of a cutting tool and cleaning, the surface is coated with a coating layer. Each mixing ratio of the raw material powder is W
C powder 70 to 95% by weight, the periodic table 4a, 5
a, 6a metal compound powder is 0.1 to 20% by weight, and iron group metal powder is 5 to 20% by weight, more preferably WC.
85 to 95% by weight of powder, 0.5 to 5% by weight of powder of group 4a, 5a and 6a metal compound, 5 to 5% of powder of iron group metal
10% by weight.

【0025】[0025]

【実施例】以下、本発明を次の例で説明する。表1に示
す組成の原料粉末を混合粉砕後、CNMG432形状に
成形して1Pa以下の真空中で、1773Kで1時間焼
成した。
The present invention will be described below with reference to the following examples. The raw material powder having the composition shown in Table 1 was mixed and pulverized, molded into a CNMG432 shape, and fired at 1773 K for 1 hour in a vacuum of 1 Pa or less.

【0026】このようにして得られた焼結体について、
JIS R1611に準じたレーザーフラッシュ法を用
いて室温(R.T.:25℃)での熱伝導率および高温
(H.T.:1000℃)での熱伝導率を測定した(真
空理工製:TC−7000)。
With respect to the sintered body thus obtained,
The thermal conductivity at room temperature (RT: 25 ° C) and the thermal conductivity at high temperature (HT: 1000 ° C) were measured using a laser flash method according to JIS R1611 (manufactured by Vacuum Riko: TC-7000).

【0027】また、以下の方法を用いて、B1型固溶体
のうちZrの含有量が多いものとそれ以外のものとの一
次的な確認を行った。焼結体の任意断面を研削研磨し、
鏡面部を村上試薬にて食刻し、光学顕微鏡の400〜1
000倍にて観察した。この際、B1型固溶体の食刻の
程度がZrの含有量によって異なるため、容易にB1型
固溶体を確認することができた。
Also, the following method was used to primarily confirm the B1 type solid solutions having a large Zr content and those other than the Zr content. Grind and polish any section of the sintered body,
The mirror surface is etched with Murakami's reagent.
Observed at 000x. At this time, since the degree of etching of the B1 type solid solution was different depending on the Zr content, the B1 type solid solution could be easily confirmed.

【0028】また、Zrの含有量の高いB1型固溶体に
ついては上記工具を平面研削盤等ですくい面側から約
2,000μmほど研削した後、その研削面を鏡面加工
したサンプルをSEM電子顕微鏡(反射電子像)観察に
おける任意領域(20μm×20μm)において確認で
きるB1型固溶体(灰色)と色彩の異なる固溶体の析出
が判別でき、かつZrの含有量についてはX線マイクロ
アナライザー(PV9800)により測定し、Zrの示
すX線ピーク強度がWの示すX線ピーク強度の50%以
上のものを上記Zrの含有量の高い固溶体とした。これ
らの結果を表1に併せて示す。
For the B1 type solid solution having a high Zr content, the above tool was ground by about 2,000 μm from the rake face side with a surface grinder or the like, and then the sample obtained by mirror-polishing the ground face was subjected to SEM electron microscopy. (Backscattered electron image) B1 type solid solution (gray) which can be confirmed in an arbitrary region (20 μm × 20 μm) in observation can be distinguished from solid solution having a different color, and the Zr content is measured by an X-ray microanalyzer (PV9800). And those having an X-ray peak intensity indicated by Zr of 50% or more of the X-ray peak intensity indicated by W were defined as a solid solution having a high Zr content. The results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】得られた焼結体を切削工具形状に加工後、
CVD法により約5μmのチタン系+アルミナ系複合膜
を被覆した。
After processing the obtained sintered body into a cutting tool shape,
A titanium-alumina composite film of about 5 μm was coated by a CVD method.

【0031】試験例 得られた切削工具を用いて、ステンレス鋼の切削を行っ
た。そして、切削工具のフランク摩耗(加工材料が直接
工具の逃げ面を擦って生じる逃げ面摩耗)およびノーズ
変形量を測定した。
Test Example Using the obtained cutting tool, stainless steel was cut. Then, the flank wear of the cutting tool (the flank wear caused by the work material directly rubbing the flank of the tool) and the nose deformation were measured.

【0032】切削条件は以下の通りである。 〔切削条件1〕 被削材 SUS304 工具形状 CNMG120408 速度 200m/min 送り 0.2mm/rev 切込み 2mm 切削液 有(水溶性) 切削時間 1パス当り40秒を15回繰り返し(10
分) また、切削工具の耐塑性変形性と耐欠損性を評価するた
め、変形の有無、損傷の有無を確認した。
The cutting conditions are as follows. [Cutting Condition 1] Work Material SUS304 Tool Shape CNMG120408 Speed 200m / min Feed 0.2mm / rev Depth of Cut 2mm Cutting Fluid Available (Water-soluble) Cutting Time 40 seconds per pass repeated 15 times (10
Minutes) In addition, in order to evaluate the plastic deformation resistance and fracture resistance of the cutting tool, the presence or absence of deformation and the presence or absence of damage were confirmed.

【0033】これらの結果を表2に併せて示す。The results are shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】表2からもわかるように試料No.1,2お
よび3の本発明品は耐摩耗性に優れると同時に耐塑性変
形性能・耐欠損性能にも優れていることがわかる。な
お、上記条件の切削においてフランク摩耗が0.25m
m以下である場合に実用的な耐摩耗性を有していると判
断した。また、刃先の塑性変形量については加工物の寸
法精度に影響するとされており、0.15mm未満であ
る場合に実用的な寸法補正が必要無いものと判断した。
As can be seen from Table 2, the products of the present invention of Sample Nos. 1, 2 and 3 have excellent wear resistance and also excellent plastic deformation resistance and fracture resistance. The flank wear was 0.25 m when cutting under the above conditions.
m or less, it was determined to have practical wear resistance. Further, the amount of plastic deformation of the cutting edge is considered to affect the dimensional accuracy of the workpiece, and it is determined that practical dimensional correction is not required when the amount is less than 0.15 mm.

【0036】ただし、Zr含有量の多いB1型固溶体の
粒径が3.2μmと大きい試料No.2については切削
条件1においては優れた性能を示したものの、切削条件
1に対して切削条件の送りのみを0.3mm/revに
挙げたところチッピングを生じた。
However, the sample No. 1 having a large Zr-containing B1 type solid solution having a large particle size of 3.2 μm was used. With respect to 2, the cutting performance was excellent in the cutting condition 1, but when only the feed of the cutting condition was set to 0.3 mm / rev with respect to the cutting condition 1, chipping occurred.

【0037】一方、比較例品である試料No.4,5お
よび6についてはそれぞれ、耐塑性変形性能・耐欠損性
能および耐摩耗性能のいずれかに問題があった。すなわ
ち試料No.7は摩耗量が0.25mmより大きく耐摩
耗性に問題があった。試料No.4,5,6,7,は変
形量が0.15mm以上であり、耐塑性変形性に問題が
あった。試料No.4,5は耐欠損性に問題があった。
On the other hand, the sample No. For 4, 5, and 6, there was a problem in any of the plastic deformation resistance, fracture resistance, and wear resistance. That is, the sample No. Sample No. 7 had a wear amount larger than 0.25 mm and had a problem in wear resistance. Sample No. 4, 5, 6, and 7 had a deformation amount of 0.15 mm or more, and had a problem in plastic deformation resistance. Sample No. Nos. 4 and 5 had a problem in fracture resistance.

【0038】[0038]

【発明の効果】以上記述したように、本発明の被覆超硬
合金母材は、該超硬合金母材の1000℃における熱伝
導率が室温における熱伝導率の70%以上であることに
より、ステンレス鋼の高速・高能率切削における耐摩耗
性が大幅に改善され、工具寿命を延長することができ
る。
As described above, the coated cemented carbide base material of the present invention has a thermal conductivity at 1000 ° C. of at least 70% of the thermal conductivity at room temperature. Wear resistance in high speed and high efficiency cutting of stainless steel is greatly improved, and tool life can be extended.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 16/30 C23C 16/30 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C23C 16/30 C23C 16/30

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】WCと周期律表4a,5a,6a族からな
る群より選ばれた金属の炭化物、窒化物、炭窒化物の1
種以上を硬質相成分とし、鉄族金属の1種以上を結合相
成分とした超硬合金母材の表面に被覆層を有する切削工
具において、上記超硬合金母材の1000℃における熱
伝導率が室温における熱伝導率の70%以上であること
特徴とする切削工具。
1. A carbide, nitride or carbonitride of a metal selected from the group consisting of WC and groups 4a, 5a and 6a of the periodic table.
In a cutting tool having a coating layer on the surface of a cemented carbide base material having at least one species as a hard phase component and at least one type of iron group metal as a binder phase component, the thermal conductivity of the cemented carbide base material at 1000 ° C. Is 70% or more of the thermal conductivity at room temperature.
【請求項2】上記超硬合金母材中に2種以上のB1型固
溶体が存在し、前記B1型固溶体のうち少なくとも1種
がZrの含有量の高いB1型固溶体であることを特徴と
する請求項1記載の切削工具。
2. A cemented carbide base material comprising two or more B1 type solid solutions, and at least one of the B1 type solid solutions is a B1 type solid solution having a high Zr content. The cutting tool according to claim 1.
【請求項3】超硬合金母材における上記Zr含有量の高
いB1型固溶体相の平均粒径が3μm以下である請求項
2記載の切削工具。
3. The cutting tool according to claim 2, wherein the B1 type solid solution phase having a high Zr content in the cemented carbide base material has an average particle size of 3 μm or less.
JP2000364698A 2000-11-30 2000-11-30 Cutting tool Pending JP2002166306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000364698A JP2002166306A (en) 2000-11-30 2000-11-30 Cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000364698A JP2002166306A (en) 2000-11-30 2000-11-30 Cutting tool

Publications (1)

Publication Number Publication Date
JP2002166306A true JP2002166306A (en) 2002-06-11

Family

ID=18835590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000364698A Pending JP2002166306A (en) 2000-11-30 2000-11-30 Cutting tool

Country Status (1)

Country Link
JP (1) JP2002166306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005529A (en) * 2012-05-29 2014-01-16 Sumitomo Electric Ind Ltd Cemented carbide and surface-coated cutting tool using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005529A (en) * 2012-05-29 2014-01-16 Sumitomo Electric Ind Ltd Cemented carbide and surface-coated cutting tool using the same

Similar Documents

Publication Publication Date Title
JP4377685B2 (en) Fine grain sintered cemented carbide, its production and use
JP5308427B2 (en) Cemented carbide and cutting tools
CN105154744B (en) Cemented carbide and cutting tool using the same
JP2879475B2 (en) Group IVB boride based articles, cutting tools, manufacturing methods, and methods of processing Group IVB based materials
EP2036997A1 (en) Coated cemented carbide cutting tool inserts
JP2010234519A (en) Cermet and coated cermet
KR20090028444A (en) Coated cutting insert for milling applications
JP2002166307A (en) Cutting tool
JP2002356734A (en) Hard metal alloy, and cutting tool using it
JP2001179507A (en) Cutting tool
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP4069749B2 (en) Cutting tool for roughing
JP2002166306A (en) Cutting tool
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JP2003300778A (en) Tungsten carbide based sintered compact
JP2801484B2 (en) Cemented carbide for cutting tools
JP2815533B2 (en) Cutting equipment for milling
JP4284153B2 (en) Cutting method
JP2006137623A (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body and their manufacturing methods
JP7170965B2 (en) Cemented Carbide and Coated Cemented Carbide
JP2835255B2 (en) Cemented carbide
JP3422029B2 (en) Boron nitride coated hard material and method for producing the same
JP3422028B2 (en) Boron nitride coated hard material and method for producing the same
JP2003094207A (en) Cutting tool
JP2001152209A (en) High adhesion surface coated sintered member and its producing method