JP2002161790A - Combustion control device for direct injection/spark ignition type internal combustion engine - Google Patents

Combustion control device for direct injection/spark ignition type internal combustion engine

Info

Publication number
JP2002161790A
JP2002161790A JP2000358710A JP2000358710A JP2002161790A JP 2002161790 A JP2002161790 A JP 2002161790A JP 2000358710 A JP2000358710 A JP 2000358710A JP 2000358710 A JP2000358710 A JP 2000358710A JP 2002161790 A JP2002161790 A JP 2002161790A
Authority
JP
Japan
Prior art keywords
injection
fuel
injections
internal combustion
spark ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000358710A
Other languages
Japanese (ja)
Other versions
JP3692930B2 (en
Inventor
Akihiro Sakakida
明宏 榊田
Akihiro Iiyama
明裕 飯山
Koichi Yamaguchi
浩一 山口
Masaaki Kubo
賢明 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000358710A priority Critical patent/JP3692930B2/en
Publication of JP2002161790A publication Critical patent/JP2002161790A/en
Application granted granted Critical
Publication of JP3692930B2 publication Critical patent/JP3692930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • F02B23/105Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder the fuel is sprayed directly onto or close to the spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/106Tumble flow, i.e. the axis of rotation of the main charge flow motion is horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To carry out layered combustion while preventing the occurrence of soot or hydrocarbons at homogeneous combustion. SOLUTION: A fuel injection valve 8 is installed in nearly horizontal attitude so as to be suitable mainly for layered combustion with a narrow spray angle and to tend toward the lower part of a spark plug 7. In this case, since there is a risk of a fuel mist colliding with a bore wall face opposed to the fuel mist flow when the homogeneous combustion with a large injection amount is performed, a required injection amount is divided into a plurality of times of injection to be injected to form a fuel mist F which is short in distance to be reached and is apt to go with a tumble flow T. Since a fuel gas flow is changed by the rotation speed of an engine and the injection amount is varied by a load, the number of times of division, time interval in each injection and the like are variably controlled according to the engine operation condition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば自動車用ガ
ソリン機関のような4サイクル型の直噴火花点火式内燃
機関に関し、特に、均質燃焼の際の吸気行程から圧縮行
程中の燃料噴射において、複数回の分割噴射を行うこと
で所望の噴霧形態を得るようにした燃焼制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a four-cycle direct injection spark ignition type internal combustion engine such as a gasoline engine for an automobile, and more particularly to a fuel injection from a suction stroke to a compression stroke during homogeneous combustion. The present invention relates to a combustion control device that obtains a desired spray form by performing a plurality of divided injections.

【0002】[0002]

【従来の技術】従来の直噴火花点火式内燃機関の燃焼制
御装置として、特開平9−256936号公報に記載の
ように、機関低速低負荷域での成層燃焼運転時に、少な
くとも2回以上に分割した燃料噴射を行い、最も遅い時
期の燃料噴射より前に噴射された燃料により燃焼室に均
一な混合気を形成し、かつ最も遅い時期に噴射した燃料
が点火プラグ近傍を通過中のタイミングで点火すること
により、成層燃焼の実現を図り、また一方、機関の高速
高負荷時には、噴霧が点火プラグ近傍を通過完了したタ
イミングで点火するようにすることで、燃焼安定性を向
上しつつ燃料と空気の混合不足に起因する未燃炭化水素
(HC)排出量を低減しようとする技術がある。
2. Description of the Related Art As a conventional combustion control apparatus for a direct injection spark ignition type internal combustion engine, as described in Japanese Patent Application Laid-Open No. 9-256936, at least two or more times during stratified combustion operation in an engine low speed and low load range. A divided fuel injection is performed, a uniform mixture is formed in the combustion chamber by the fuel injected before the fuel injection at the latest timing, and the fuel injected at the latest timing is passing near the spark plug. By igniting, stratified combustion is realized.On the other hand, when the engine is running at high speed and high load, the fuel is ignited at the timing when the spray has completed passing near the spark plug, thereby improving combustion stability and fuel. There are techniques for reducing unburned hydrocarbon (HC) emissions due to insufficient mixing of air.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の装置によれば、最も遅い時期の燃料噴射より前に噴
射された燃料は燃焼室全体へ分散し希薄な混合気を形成
することになるため、燃料噴射量の少ない機関低負荷時
においては過度に希薄な混合気が形成され、不完全燃焼
を生ずることによりかえって未燃HC排出量を増大させ
る場合があった。
However, according to the above-described conventional apparatus, the fuel injected before the latest fuel injection is dispersed throughout the combustion chamber to form a lean mixture. When the engine is under low load with a small fuel injection amount, an excessively lean air-fuel mixture is formed, and incomplete combustion may be caused to increase the unburned HC emission.

【0004】また、混合気をタンブル(縦渦)流動によ
り点火プラグ近傍に輸送する形式の直噴火花点火式内燃
機関に、この従来の燃焼制御装置を適用した場合、噴霧
の運動量に対しタンブル流動の運動量の大きさが相対的
に小さくタンブル流動による混合気の点火プラグ方向へ
の輸送がなされ難い機関低回転時、あるいは燃料噴射量
が少なく混合気が希薄となり易い機関低負荷時において
は、点火プラグ近傍での混合気濃度が適正範囲にある期
間、すなわち点火可能期間を拡大することができないた
め、結果として点火可能期間の長さが機関性能上不十分
となる場合があった。
In addition, when this conventional combustion control device is applied to a direct injection spark ignition type internal combustion engine in which the air-fuel mixture is transported to the vicinity of an ignition plug by a tumble (vertical vortex) flow, the tumble flow is affected by the momentum of the spray. When the engine is running at a low engine speed where the amount of momentum of the mixture is relatively small and it is difficult to transport the mixture in the direction of the spark plug by the tumble flow, or at a low engine load where the fuel injection amount is small and the mixture tends to be lean. Since the period during which the mixture concentration in the vicinity of the plug is within the appropriate range, that is, the ignitable period cannot be increased, the length of the ignitable period may be insufficient in engine performance as a result.

【0005】一方、上記公報の技術における成層運転時
の問題点を改善する方法として、点火プラグの近傍に混
合気が集中するように燃料噴射系を構成することが考え
られる。つまり、混合気をタンブル(縦渦)流動により
点火プラグ近傍に輸送する形式の直噴火花点火式内燃機
関において、燃料噴射弁の噴霧角を小さくし、また燃料
噴射弁のシリンダ水平面に対する取付角を小さくするこ
とで、点火プラグへ直接指向する噴霧の割合を増やすこ
とが有効である。しかし、この方法では、噴霧角が小さ
いことによる噴霧貫徹力の増大と噴霧が水平に近い角度
で噴射されることにより、均質運転時に噴霧が対向する
ボア壁面に衝突し、すすの発生とHCの増加が問題とな
る。
On the other hand, as a method of improving the problem in the stratified operation in the above-mentioned publication, it is conceivable to configure the fuel injection system so that the air-fuel mixture is concentrated near the ignition plug. That is, in a direct-injection spark ignition type internal combustion engine in which the air-fuel mixture is transported to the vicinity of the ignition plug by tumble (vertical vortex) flow, the spray angle of the fuel injection valve is reduced, and the mounting angle of the fuel injection valve with respect to the cylinder horizontal plane is reduced. It is effective to increase the ratio of the spray directly directed to the spark plug by reducing the size. However, in this method, since the spray penetration is increased due to the small spray angle and the spray is sprayed at an angle close to the horizontal, the spray collides with the opposed bore wall surface during the homogeneous operation, soot generation and HC generation. Increase is a problem.

【0006】本発明は、このような実状に鑑みてなされ
たものであり、均質運転時に、噴射を複数回に分割して
噴霧の分散を図ることで、燃料が一部に集中すること
や、燃焼室壁面に付着することによるすすの発生を防止
するようにし、これにより、低負荷域での成層運転時に
点火プラグ近傍に適切な混合気を集中できる噴霧形状や
燃料噴射弁の位置等の設定を可能とすることを目的とし
ている。そして、ひいては、成層運転時と均質運転時の
両方において機関燃焼安定性および排気性能を改善する
ことを目的とする。
[0006] The present invention has been made in view of such circumstances, and during homogeneous operation, by dividing the injection into a plurality of injections and dispersing the spray, the fuel can be partially concentrated, Prevents soot from adhering to the combustion chamber wall, thereby setting the spray shape and the position of the fuel injection valve so that the appropriate mixture can be concentrated near the ignition plug during stratified operation in a low load range. It is intended to make it possible. Further, it is an object to improve engine combustion stability and exhaust performance both in the stratified operation and the homogeneous operation.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、請求項1に係る発明は、燃焼室内に直接燃料を噴
射する燃料噴射弁と点火プラグとを備え、かつ、機関運
転条件に応じて、点火プラグ近傍に噴霧を集中させる成
層運転と、燃焼室全体に噴霧を均質に分散させる均質運
転と、が行われる直噴火花点火式内燃機関の燃焼制御装
置において、均質運転時に1サイクル中複数回の燃料噴
射を実行する分割噴射制御手段を備え、この分割噴射制
御手段は、機関回転速度および負荷に応じて各噴射の時
間間隔および噴射量割合を可変とすることを特徴として
いる。
According to a first aspect of the present invention, a fuel injection valve for directly injecting fuel into a combustion chamber and a spark plug are provided. Accordingly, in a combustion control device for a direct-injection spark ignition type internal combustion engine, a stratified operation in which the spray is concentrated near the spark plug and a homogeneous operation in which the spray is uniformly dispersed throughout the combustion chamber are performed, and one cycle is performed during the homogeneous operation. Split injection control means for executing a plurality of medium fuel injections is characterized in that the split injection control means makes the time interval and the injection amount ratio of each injection variable according to the engine speed and the load.

【0008】すなわち、本発明は、噴射量の少ない噴霧
の方が、噴射量の多い噴霧より、噴霧の到達長さが短く
なる性質を利用し、均質運転時の噴霧の対向するボア壁
面への付着を防止する。噴霧の噴射量が少ない方が噴霧
の到達長さが短くなるのは、噴霧の到達長さは、燃料の
持つ運動量により決まるためであり、噴射量が少ないと
運動量が小さいため噴霧到達長さは短くなる。
[0008] That is, the present invention utilizes the property that the spray length of the spray is smaller than that of the spray having a larger injection amount than the spray having a larger injection amount. Prevents adhesion. The reason why the smaller the spray amount of the spray is, the shorter the arrival length of the spray is because the arrival length of the spray is determined by the momentum of the fuel. Be shorter.

【0009】燃料噴射量が比較的多くなる均質運転時
に、噴射回数を複数回に分割することで、1回当たりの
噴射量は小さくなる。これにより、個々の噴霧の到達長
さは短くなり、筒内流動に載り易い噴霧となって、壁面
付着が防止され、筒内への燃料の分散が促進される。
At the time of homogeneous operation in which the fuel injection amount is relatively large, by dividing the number of injections into a plurality of injections, the injection amount per injection becomes small. Thereby, the reaching length of each spray becomes short, and the spray becomes easy to be placed on the in-cylinder flow, thereby preventing the wall surface from adhering and promoting the dispersion of the fuel into the inside of the cylinder.

【0010】そして、このように均質運転時に、燃料を
確実に分散して、HCの低減やすすの発生の防止が図れ
ることから、燃料噴射弁の噴霧角や取付角を、成層燃焼
に適したものとすることが可能となる。つまり、混合気
が点火プラグ近傍へ集中するように、例えば比較的狭い
噴霧角の設定が可能となる。
[0010] In such a homogeneous operation, the fuel can be surely dispersed to prevent HC reduction and soot generation. Therefore, the spray angle and mounting angle of the fuel injection valve are suitable for stratified combustion. It becomes possible. That is, it is possible to set, for example, a relatively narrow spray angle so that the air-fuel mixture is concentrated near the ignition plug.

【0011】さらに、例えばタンブルによる筒内のガス
流動は、機関回転速度に連動して変化するので、複数回
噴射の噴霧の干渉を防止して分散を促進するには、噴射
の時間間隔を制御することが重要である。また、個々の
噴射における燃料噴射量の制御も筒内の燃料の分散を促
進するには重要であり、機関回転速度および負荷に応じ
て最適値に設定する必要がある。
Further, since the gas flow in the cylinder due to, for example, tumble changes in conjunction with the engine rotation speed, the injection time interval is controlled to prevent the interference of the sprays of the multiple injections and promote the dispersion. It is important to. Control of the fuel injection amount in each injection is also important for promoting the dispersion of fuel in the cylinder, and it is necessary to set the fuel injection amount to an optimum value according to the engine speed and the load.

【0012】この請求項1の発明をより具体化した請求
項2の発明では、上記分割噴射制御手段は、噴射1回当
たりの最大噴射パルス時間幅が機関回転速度に対して予
め設定されており、この最大噴射パルス時間幅は高速側
ほど短く設定されていることを特徴としている。つま
り、所定の最大噴射パルス時間幅を超えないように、噴
射回数が設定される。また、筒内のガス流動は、機関回
転速度が高くなると活発となるが、高速側で最大噴射パ
ルス時間幅を短くすることで噴霧の到達距離は短くな
り、対向するボア壁面への衝突が回避される。
According to a second aspect of the present invention, the maximum injection pulse time width per injection is preset with respect to the engine speed. The maximum injection pulse time width is set to be shorter on the higher speed side. That is, the number of injections is set so as not to exceed a predetermined maximum injection pulse time width. In addition, the gas flow in the cylinder becomes active when the engine rotation speed increases, but by shortening the maximum injection pulse time width on the high speed side, the spray reach distance is shortened, and collision with the opposing bore wall surface is avoided. Is done.

【0013】また請求項3の発明では、上記分割噴射制
御手段は、複数回の噴射の間隔を、機関運転条件の変化
に対し概略クランク角一定に保つことを特徴としてい
る。筒内流動は、機関回転速度と概略1:1で連動する
ので、噴射の間隔を概略クランク角一定に保てば、噴霧
の重なりが確実に防止され、噴霧の分散を促進できる。
なお、時間による間隔としては、低回転ほど長くなるこ
とになる。
According to a third aspect of the present invention, the split injection control means keeps an interval of a plurality of injections at a substantially constant crank angle with respect to a change in engine operating conditions. The in-cylinder flow is interlocked with the engine rotation speed at approximately 1: 1. Therefore, if the interval between the injections is maintained at a substantially constant crank angle, the overlap of the sprays is reliably prevented, and the dispersion of the sprays can be promoted.
The time interval becomes longer as the rotation becomes lower.

【0014】さらに、請求項2の発明に従属する請求項
4の発明は、上記分割噴射制御手段は、複数回の噴射の
間隔を、機関運転条件の変化に対し概略クランク角一定
に保つとともに、負荷の増加に伴って1サイクル中の噴
射回数が増加することを特徴としている。1サイクル中
に必要な噴射量は、負荷の上昇に伴って増加するが、機
関回転速度が高くなると噴射パルス幅は上記最大噴射パ
ルス時間幅によって短く制限される。そして、噴射間隔
をクランク角で概略一定に保ったまま負荷に応じて噴射
回数が増加する。
Further, according to a fourth aspect of the present invention, the split injection control means keeps an interval of a plurality of injections approximately constant at a crank angle with respect to a change in engine operating conditions. It is characterized in that the number of injections in one cycle increases as the load increases. The injection amount required during one cycle increases as the load increases. However, as the engine rotation speed increases, the injection pulse width is limited to be shorter by the maximum injection pulse time width. Then, the number of injections increases according to the load while the injection interval is kept substantially constant at the crank angle.

【0015】また請求項3の発明に従属した請求項5の
発明では、上記分割噴射制御手段は、負荷および回転速
度の増加に対し、最終回の噴射の噴射終了時期が所定の
クランク角度位置よりも遅れないように、各噴射の所定
の噴射間隔を短く補正することを特徴としている。つま
り、基本的には各噴射の間隔がクランク角で概略一定に
保たれるが、特に高負荷でかつ高回転速度のときには、
噴射量が多いことと単位時間に対応するクランク角が長
くなることにより、1サイクル中の噴射期間全体が相対
的に長いクランク角度期間に亘って行われることにな
る。この結果、最終回の噴射の噴射終了時期が所定のク
ランク角度位置よりも遅れると、筒内の均質度が妨げら
れる虞がある。そのため、この場合には、最終回の噴射
の噴射終了時期が所定のクランク角度位置よりも遅れな
いように、各噴射の所定の噴射間隔を短く補正する。
According to a fifth aspect of the present invention, the split injection control means sets the injection end timing of the last injection to a predetermined crank angle position with respect to an increase in load and rotation speed. In this case, the predetermined injection interval of each injection is corrected to be short so as not to be delayed. In other words, basically, the interval between each injection is kept substantially constant at the crank angle, but especially at a high load and a high rotation speed,
Since the injection amount is large and the crank angle corresponding to the unit time is long, the entire injection period in one cycle is performed over a relatively long crank angle period. As a result, if the injection end timing of the last injection is later than the predetermined crank angle position, the homogeneity in the cylinder may be hindered. Therefore, in this case, the predetermined injection interval of each injection is corrected to be short so that the injection end timing of the final injection is not delayed from the predetermined crank angle position.

【0016】また、請求項6の発明では、上記分割噴射
制御手段は、負荷および回転速度の増加に対し、噴射休
止期間が所定の休止期間よりも短くならないように、噴
射回数を減らすとともに、各噴射の所定の噴射間隔を長
く補正することを特徴としている。すなわち、負荷およ
び回転速度が増加すると、噴射休止期間が相対的に短く
なるが、これが過度に短くなると、噴射を分割する効果
が低下する。そのため、この場合には、噴射休止期間が
所定の休止期間よりも短くならないように、噴射回数を
減らすとともに、各噴射の所定の噴射間隔を長く補正す
る。
Further, in the invention of claim 6, the split injection control means reduces the number of injections so that the injection suspension period does not become shorter than a predetermined suspension period in response to an increase in load and rotational speed. It is characterized in that a predetermined injection interval of injection is corrected to be long. That is, when the load and the rotation speed increase, the injection suspension period becomes relatively short. However, when this period is excessively short, the effect of dividing the injection decreases. Therefore, in this case, the number of injections is reduced and the predetermined injection interval of each injection is corrected to be longer so that the injection pause period is not shorter than the predetermined pause period.

【0017】さらに請求項7の発明では、上記分割噴射
制御手段は、高回転域および高負荷域において、吸気行
程から圧縮行程までの間に複数回の噴射を行った後、相
対的に大きな休止期間を挟んで、残余の燃料を1回もし
くは複数回で噴射することを特徴としている。すなわ
ち、1サイクル中に必要な燃料量が多く、予め設定され
たクランク角度までに全量を噴射できない場合、残量の
噴射は、筒内で均質に分散させることを狙うよりも、燃
料室内で適切な位置に配置させたほうが、すすの発生の
防止とHCの増加の防止に効果がある。
In the invention of claim 7, the split injection control means performs a relatively large pause after performing a plurality of injections between the intake stroke and the compression stroke in the high rotation range and the high load range. It is characterized in that the remaining fuel is injected once or a plurality of times over a period. In other words, when the amount of fuel required during one cycle is large and the entire amount cannot be injected by the preset crank angle, the injection of the remaining amount is more appropriate in the fuel chamber than in the case where the fuel is uniformly dispersed in the cylinder. Arranging them at appropriate positions is more effective in preventing the generation of soot and preventing an increase in HC.

【0018】[0018]

【発明の効果】請求項1に係る発明によれば、均質運転
時に噴霧を適切な位置に分散させ、かつ壁面付着を防止
することが可能である。従って、例えば混合気をタンブ
ル流動により点火プラグ近傍へ輸送することで成層燃焼
を実現する形式の直噴火花点火式内燃機関に適用するこ
とで、成層運転においては貫徹力の強い狭い噴霧を用い
て、確実な成層燃焼を実現できると同時に、均質燃焼に
おけるすすの発生やHCの増加を防止し、良好な性能を
得ることができる。
According to the first aspect of the present invention, it is possible to disperse the spray to an appropriate position during the homogeneous operation and to prevent the wall from adhering. Therefore, for example, by applying to a direct injection spark ignition type internal combustion engine of a type that realizes stratified combustion by transporting the air-fuel mixture to the vicinity of the ignition plug by tumble flow, in stratified operation, a narrow spray having a strong penetration force is used. In addition, reliable stratified combustion can be realized, and at the same time, soot generation and HC increase in homogeneous combustion can be prevented, and good performance can be obtained.

【0019】請求項2に係る発明によれば、機関回転速
度の増加に伴い最大噴射パルス時間幅を短くすること
で、噴霧の到達長さを短く規制でき、機関回転速度の増
加に伴い増加する筒内流動下でも、噴霧が対向するボア
壁面に衝突することを防止できる。
According to the second aspect of the present invention, by shortening the maximum injection pulse time width with an increase in the engine speed, the arrival length of the spray can be restricted to be short, and increases with an increase in the engine speed. Even under the in-cylinder flow, it is possible to prevent the spray from colliding with the opposed bore wall surface.

【0020】請求項3に係る発明によれば、噴射の間隔
を概略クランク角一定に保つことにより、噴霧の重なり
を確実に防止して、噴霧の分散を促進できる。
According to the third aspect of the present invention, by maintaining the interval between the injections at a substantially constant crank angle, the overlapping of the sprays can be reliably prevented, and the dispersion of the sprays can be promoted.

【0021】請求項4に係る発明によれば、負荷が増加
した条件下でも、噴射間隔を一定に保ったまま噴射回数
を増加させることで、噴霧の分散を促進できる。
According to the fourth aspect of the present invention, even under a condition where the load increases, the dispersion of the spray can be promoted by increasing the number of injections while keeping the injection interval constant.

【0022】請求項5に係る発明によれば、高負荷でか
つ高回転速度のときにも、最終回の噴射の噴射終了時期
が所定のクランク角度位置よりも遅れることがなく、筒
内の均質度の低下を防止できる。
According to the fifth aspect of the invention, even when the load is high and the rotation speed is high, the injection end timing of the final injection is not delayed from the predetermined crank angle position, and the uniform injection in the cylinder is prevented. It is possible to prevent a decrease in degree.

【0023】請求項6に係る発明では、負荷および回転
速度が増加したときに、噴射休止期間が過度に短くなる
ことを防止でき、噴射を分割して行うことによる燃料分
散効果を確実に維持できる。また、燃料噴射弁の作動回
数の過度の増加を防止し、燃料噴射弁の耐久性が向上す
る。
According to the sixth aspect of the invention, when the load and the rotation speed increase, the injection suspension period can be prevented from becoming excessively short, and the fuel dispersing effect by dividing and performing the injection can be reliably maintained. . Further, it is possible to prevent the number of times of operation of the fuel injection valve from excessively increasing, thereby improving the durability of the fuel injection valve.

【0024】請求項7に係る発明によれば、予め設定さ
れたクランク角度までに全量を噴射できない場合に、残
余の燃料を燃焼室内で適切な位置に配置させることがで
き、すすの発生の防止とHCの増加の防止が図れる。
According to the present invention, when the entire amount cannot be injected by a preset crank angle, the remaining fuel can be arranged at an appropriate position in the combustion chamber, and the occurrence of soot can be prevented. And an increase in HC can be prevented.

【0025】[0025]

【発明の実施の形態】以下、本発明を直噴火花点火式内
燃機関である4サイクル型の自動車用ガソリン機関に適
用した一実施例を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a four-cycle type automobile gasoline engine which is a direct injection spark ignition type internal combustion engine will be described below with reference to the drawings.

【0026】図1は、この直噴火花点火式内燃機関の断
面図であり、特に、圧縮行程における燃料噴射中の状態
を示している。図1において、1はシリンダヘッド、2
はシリンダ、3はピストン、4はシリンダ2内にピスト
ン3によって形成された燃焼室、5は吸気ポート、6は
排気ポート、をそれぞれ示している。上記吸気ポート5
および排気ポート6は、各気筒にそれぞれ2本ずつ設け
られている。
FIG. 1 is a sectional view of the direct-injection spark ignition type internal combustion engine, particularly showing a state during fuel injection in a compression stroke. In FIG. 1, 1 is a cylinder head, 2
Represents a cylinder, 3 represents a piston, 4 represents a combustion chamber formed by the piston 3 in the cylinder 2, 5 represents an intake port, and 6 represents an exhaust port. Above intake port 5
Two exhaust ports 6 are provided for each cylinder.

【0027】上記シリンダヘッド1には、上記燃焼室4
の上面側の略中心部に位置するように、点火プラグ7が
取り付けられているとともに、2本の吸気ポート5,5
間の下寄り部分に、燃焼室4内に直接燃料を噴射する燃
料噴射弁8が取り付けられている。この燃料噴射弁8
は、噴霧角が比較的狭いものであって、点火プラグ7の
下方付近を指向して、水平から斜め下向きに燃料を噴射
するような姿勢で取り付けられている。
The cylinder head 1 includes the combustion chamber 4
The ignition plug 7 is attached so as to be located substantially at the center on the upper surface side of the
A fuel injection valve 8 for directly injecting fuel into the combustion chamber 4 is attached to a lower portion between the fuel injection valves. This fuel injection valve 8
Has a relatively narrow spray angle, and is mounted in such a manner that fuel is directed obliquely downward from the horizontal so as to point near the lower part of the spark plug 7.

【0028】ここで、燃焼室4内には、吸気ポート5の
形状の作用あるいは図示せぬ吸気制御弁の利用などによ
って、吸気行程中に矢印Tで示すタンブル(縦渦)流動
が形成されるようになっており、ピストン3頂面には、
このタンブルに対応した凹部が形成されている。成層燃
焼を行わせる場合、燃料噴射弁8は、圧縮行程の比較的
遅い時期に、燃料を燃焼室4内(点火プラグ7下方)に
噴射する。この噴射による燃料噴霧は、筒内のタンブル
流動により点火プラグ7方向に輸送され、点火プラグ7
周囲に可燃混合気を層状に形成することになる。
Here, in the combustion chamber 4, a tumble (vertical vortex) flow indicated by an arrow T is formed during the intake stroke by the action of the shape of the intake port 5 or the use of an intake control valve (not shown). The top of the piston 3
A concave portion corresponding to the tumble is formed. When performing stratified combustion, the fuel injection valve 8 injects fuel into the combustion chamber 4 (below the ignition plug 7) at a relatively late stage of the compression stroke. The fuel spray by this injection is transported toward the spark plug 7 by the tumble flow in the cylinder,
A combustible air-fuel mixture is formed in a layer around.

【0029】次に本発明による混合気形成について更に
詳しく説明する。
Next, the mixture formation according to the present invention will be described in more detail.

【0030】燃料噴射弁8の取付角が小さく、かつ噴霧
角が狭いと、噴霧(図中に符号Fで示す)は、図1に示
すように、成層運転時は、点火プラグ7下方へ直接向か
うことから、該点火プラグ7近傍に可燃混合気を形成す
ることができ、成層運転での燃焼安定性および排気性能
が良好なものとなる。その反面、均質燃焼となる高負荷
時は、図2に示すように、狭い噴霧角によって噴霧到達
長さが大きくなるため、対向するボア壁面への壁面付着
が増加し、HCやすすを増大させる問題がある。
When the mounting angle of the fuel injection valve 8 is small and the spray angle is narrow, the spray (indicated by the symbol F in the drawing) is directly directed downward under the ignition plug 7 during the stratified operation as shown in FIG. As a result, a combustible air-fuel mixture can be formed in the vicinity of the ignition plug 7, so that the combustion stability and the exhaust performance in stratified operation are improved. On the other hand, at the time of high load in which homogeneous combustion is performed, as shown in FIG. 2, the spray length is increased by the narrow spray angle, so that the wall surface adhesion to the opposed bore wall surface increases, and HC and soot increase. There's a problem.

【0031】図3は、噴射量と噴霧到達距離との関係を
示したもので、図示するように、噴射量の少ない噴霧の
方が、噴射量の多い噴霧よりも、噴霧の到達長さが短く
なる。本発明では、このような性質を利用し、燃料噴射
量が増大する均質燃焼時に、燃料噴射を複数回に分割す
ることで個々の噴射の噴霧到達距離を短くし、対向する
ボア壁面への壁面付着を防止して、HCやすすの増大を
防止するようにしたものである。ここで、噴霧の噴射量
が少ない方が噴霧の到達長さが短くなるのは、噴霧の到
達長さは、燃料の持つ運動量により決まるためであり、
噴射量が少ないと運動量が小さいため噴霧到達長さは短
くなる。
FIG. 3 shows the relationship between the spray amount and the spray reaching distance. As shown in the figure, the spray length of the spray having a small spray amount is longer than the spray length of the spray amount. Be shorter. In the present invention, by utilizing such properties, during homogeneous combustion in which the fuel injection amount increases, the fuel injection distance is shortened by dividing the fuel injection into a plurality of times, and the wall surface to the opposed bore wall surface is reduced. This prevents adhesion and prevents an increase in HC and soot. Here, the reason why the smaller the injection amount of the spray is, the shorter the reaching length of the spray is because the reaching length of the spray is determined by the momentum of the fuel,
When the injection amount is small, the momentum is small, so that the spray reaching length becomes short.

【0032】図4は、高負荷時の燃料噴射量が多い状態
において、噴射回数を複数回に分割した場合の噴霧Fの
形成状況を示している。上述したように、複数回の噴射
に分割して1回当たりの噴射量を小さくすることによ
り、各噴射の噴霧到達長さが短くなり、図示するよう
に、筒内のガス流動に載り易い噴霧となる。そのため、
壁面付着を防止でき、筒内への燃料の分散を促進して、
HCを低減できるとともに、すすの発生を防止できる。
FIG. 4 shows a state of formation of the spray F when the number of injections is divided into a plurality of times in a state where the fuel injection amount under a high load is large. As described above, by reducing the injection amount per injection by dividing the injection into a plurality of injections, the spray arrival length of each injection is shortened, and as shown in FIG. Becomes for that reason,
It prevents wall adhesion and promotes the dispersion of fuel in the cylinder,
HC can be reduced and soot generation can be prevented.

【0033】次に本発明による混合気形成のための制御
について説明する。
Next, the control for forming the air-fuel mixture according to the present invention will be described.

【0034】図5は、上記の直噴火花点火式内燃機関に
おける燃料噴射弁8等の制御装置を示すブロック図であ
る。
FIG. 5 is a block diagram showing a control device of the fuel injection valve 8 and the like in the direct injection spark ignition type internal combustion engine.

【0035】上記の燃料噴射弁8および点火プラグ7の
作動は、上記燃料噴射弁8へ高圧燃料を供給するための
燃料ポンプ9とともに、エンジン制御用コントロールユ
ニット(ECU)10により制御される。これらの制御
のために、ECU10には、周知のクランク角センサ1
1、気筒判別センサ12、スロットルセンサ13、空気
量センサ14、燃圧センサ15、空燃比センサ16、水
温センサ17、等からそれぞれ信号が入力されている。
The operation of the fuel injection valve 8 and the spark plug 7 is controlled by an engine control unit (ECU) 10 together with a fuel pump 9 for supplying high-pressure fuel to the fuel injection valve 8. For these controls, the ECU 10 includes a well-known crank angle sensor 1.
1. Signals are input from the cylinder discrimination sensor 12, the throttle sensor 13, the air amount sensor 14, the fuel pressure sensor 15, the air-fuel ratio sensor 16, the water temperature sensor 17, and the like.

【0036】ECU10は、これら各種センサからの信
号に基づき、機関回転速度と負荷に応じて1サイクル中
に必要な燃料噴射量を計算し、かつ燃料ポンプ9の制御
により要求燃圧を発生させ、噴射パルス信号により燃料
噴射弁8を駆動して燃料噴射を行わせ、また、点火信号
により図示しない点火コイルを駆動し、点火プラグ7を
放電させて点火を行うことで機関を制御する。
The ECU 10 calculates the required fuel injection amount in one cycle according to the engine speed and load based on the signals from these various sensors, and generates the required fuel pressure by controlling the fuel pump 9 to inject the fuel. The engine is controlled by driving the fuel injection valve 8 by a pulse signal to perform fuel injection, and by driving an ignition coil (not shown) by the ignition signal to discharge the ignition plug 7 and perform ignition.

【0037】以下、燃料の噴射制御について説明する。Hereinafter, the fuel injection control will be described.

【0038】図6は、本発明の均質燃焼時における燃料
噴射の基本的なパターンを示す。複数回噴射時の噴射パ
ターンは、最初の噴射の噴射開始時期と噴射期間τ1、
次の噴射の噴射開始時期(つまり噴射間隔τ12、τ2
3…)と噴射期間(τ2、τ3…)を設定することで制
御される。これらの噴射開始時期、噴射期間は、機関回
転速度および負荷に応じて可変に設定される。
FIG. 6 shows a basic pattern of fuel injection during homogeneous combustion according to the present invention. The injection pattern at the time of multiple injections includes the injection start timing of the first injection and the injection period τ1,
Injection start timing of the next injection (that is, injection interval τ12, τ2
3) and the injection period (τ2, τ3...) Are controlled. These injection start timing and injection period are variably set according to the engine speed and the load.

【0039】図7は、請求項2の内容に対応するもので
あり、同一の負荷で低速時の場合と高速時の場合とを対
比して示している。機関回転速度の増加に伴い、1回あ
たりの最大噴射パルス時間幅が短く設定されるため、こ
れを越えないように、高速時には、噴射回数が多くなっ
ており、噴射パルス時間幅が短くなっている。
FIG. 7 corresponds to the contents of claim 2 and shows a case where the speed is low and a case where the speed is high with the same load. With the increase of the engine speed, the maximum injection pulse time width per injection is set short, so that at high speed, the number of injections increases and the injection pulse time width decreases at high speed so as not to exceed this. I have.

【0040】図8は、請求項5の内容に対応するもので
あり、負荷および回転の増加に伴い、噴射回数を増加さ
せた場合に、最終回の噴射の噴射終了時期が、(A)の
ように所定のクランク角度位置θ1よりも遅れてしまう
ことがある。このような場合に、均質度の低下を回避す
るために、最終回の噴射の噴射終了時期が、予め設定さ
れたクランク角度位置θ1となるように、予め設定され
た噴射間隔(τ12,τ23)を短く補正する。
FIG. 8 corresponds to the contents of claim 5, wherein when the number of injections is increased with an increase in load and rotation, the injection end timing of the final injection is set to (A). As described above, there may be a case where it is later than the predetermined crank angle position θ1. In such a case, in order to avoid a decrease in the degree of homogeneity, the preset injection interval (τ12, τ23) is set so that the injection end timing of the final injection becomes the preset crank angle position θ1. Is corrected to be shorter.

【0041】図9は、請求項6の内容に対応するもので
あり、負荷及び回転の増加に伴い、噴射休止期間が予め
設定された休止期間よりも短くなってしまう場合(図
(A)参照)に、(B)に示すように、噴射回数を減ら
すとともに、予め設定された噴射間隔(τ12)を長く
補正する。
FIG. 9 corresponds to the contents of claim 6, in which the injection suspension period becomes shorter than the preset suspension period as the load and rotation increase (see FIG. 9A). ), The number of injections is reduced and the preset injection interval (τ12) is corrected to be longer, as shown in FIG.

【0042】図10は、請求項7の内容に対応するもの
であり、高回転時および高負荷時において、吸気行程か
ら圧縮行程までに複数回の噴射を行い、その後、一定期
間の休止の後に、少なくとも1回以上の燃料噴射によっ
て残余の燃料を噴射するようにしている。
FIG. 10 corresponds to the contents of claim 7, in which the fuel injection is performed a plurality of times from the intake stroke to the compression stroke at a high rotation speed and a high load, and thereafter, after a certain period of suspension. The remaining fuel is injected by at least one or more fuel injections.

【0043】次に、図11は、機関回転速度と負荷とに
応じて、噴射回数を切り替える場合の制御マップを示し
ている。図示するように、低速低負荷側の領域で成層燃
焼となり、このときには、1回で全量が噴射される。そ
して、均質燃焼領域では、噴射回数が1回〜4回の範囲
で制御され、概ね、高速高負荷側で噴射回数が多くな
る。
FIG. 11 shows a control map when the number of injections is switched according to the engine speed and the load. As shown in the figure, stratified charge combustion occurs in the low-speed, low-load region, and at this time, the entire amount is injected at one time. In the homogeneous combustion region, the number of injections is controlled in the range of 1 to 4 times, and the number of injections generally increases on the high-speed, high-load side.

【0044】図中のAのラインは、噴射量が同じ場合
に、機関回転速度の増加に伴い噴射回数を増加させるこ
とを示し、図7で示した請求項2の制御を行う領域を示
す。
A line A in the figure indicates that, when the injection amount is the same, the number of injections is increased with an increase in the engine speed, and indicates a region in which the control of claim 2 shown in FIG. 7 is performed.

【0045】図中のBのラインは、機関回転速度および
負荷の増加に伴い噴射回数を増加させるラインを示し、
請求項4の制御を行う領域を示す。
The line B in the figure indicates a line in which the number of injections increases with an increase in the engine speed and load.
9 shows an area where the control of claim 4 is performed.

【0046】図中のCのラインは、機関回転速度および
負荷の増加に伴い噴射間隔を短くするラインを示し、図
8で示した請求項5の制御を行う領域を示す。
A line C in the figure indicates a line in which the injection interval is shortened as the engine speed and the load increase, and indicates a region in which the control of claim 5 shown in FIG. 8 is performed.

【0047】図中のDのラインは、機関回転速度および
負荷の増加に対し、休止期間を確保するために噴射回数
を減らすラインを示し、図9で示した請求項6の制御を
行う領域を示す。
A line D in the figure indicates a line for reducing the number of injections in order to secure an idle period in response to an increase in the engine speed and the load. Show.

【0048】図中のEのラインは、1サイクル当たりの
総噴射量が非常に多い領域であり、複数回の噴射をした
後、一定の休止期間を経てから、残余の燃料を再度噴射
するラインを示し、図10で示した請求項7の制御を行
う領域を示す。
The line E in the figure is a region where the total injection amount per cycle is very large. After a plurality of injections, after a certain pause period, the remaining fuel is injected again. And the region where the control of claim 7 shown in FIG. 10 is performed is shown.

【0049】次に、図12は上述した燃料噴射制御の流
れを示すフローチャートである。このフローチャートに
示す処理によって分割噴射制御手段が実現される。
Next, FIG. 12 is a flowchart showing the flow of the fuel injection control described above. The processing shown in this flowchart implements the split injection control means.

【0050】ステップ1(図にはS1と記す。以下同
様)では、上記各センサからの検出信号に基づいて、機
関回転速度、冷却水温等の運転状態を検出する。
In step 1 (referred to as S1 in the figure, the same applies hereinafter), operating conditions such as engine speed, cooling water temperature and the like are detected based on detection signals from the above-mentioned sensors.

【0051】ステップ2では、検出された運転状態に基
づいて、所定の計算式やマップを用いて、1サイクルに
必要な燃料噴射量を計算する。そしてステップ3では、
この燃料噴射量と燃圧センサ15により検出される燃圧
とから、1サイクル中に必要な噴射パルス幅(全噴射期
間)τを計算する。
In step 2, based on the detected operating state, the fuel injection amount required for one cycle is calculated using a predetermined calculation formula or map. And in step 3,
From the fuel injection amount and the fuel pressure detected by the fuel pressure sensor 15, an injection pulse width (full injection period) τ required in one cycle is calculated.

【0052】ステップ4では、図11に示したようなテ
ーブルを参照し、機関回転速度および負荷から噴射のパ
ターンを決定し、噴射回数、1回で噴射できる最大噴射
量(最大噴射パルス幅)、最初の噴射の噴射開始時期、
噴射間隔、をそれぞれ読み込む。
In step 4, an injection pattern is determined from the engine speed and load with reference to the table shown in FIG. 11, and the number of injections, the maximum injection amount that can be injected once (maximum injection pulse width), Injection start time of the first injection,
The injection interval is read.

【0053】ステップ5では、噴射の各パターンに応じ
て、各噴射のパルス幅を計算する。例えば、N回噴射と
設定された場合、最初の噴射から(N−1)回目の噴射
までの噴射パルス幅を、そのときの1回当たりの最大噴
射パルス幅に設定するとともに、N回目の噴射のパルス
幅を、「全噴射期間−(N−1)*(その回転での1回
で噴射できる最大噴射パルス幅)」として求める。
In step 5, the pulse width of each injection is calculated according to each injection pattern. For example, when N injections are set, the injection pulse width from the first injection to the (N-1) th injection is set to the maximum injection pulse width per injection at that time, and the Nth injection is performed. Is obtained as “all injection periods− (N−1) * (maximum injection pulse width that can be injected by one rotation in the rotation)”.

【0054】ステップ6では、噴射間隔の補正計算を行
い、ステップ7で、最初の噴射開始時期と噴射間隔から
各噴射の開始時期を計算する。そしてステップ8で、点
火時期を計算する。
In step 6, a correction calculation of the injection interval is performed, and in step 7, the start timing of each injection is calculated from the first injection start timing and the injection interval. Then, in step 8, the ignition timing is calculated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る直噴火花点火式内燃機関の成層運
転時の状態を示す断面図。
FIG. 1 is a cross-sectional view showing a state of a direct injection spark ignition type internal combustion engine according to the present invention during a stratified operation.

【図2】均質燃焼時において噴射を分割しなかった場合
の噴霧の状態を示す説明図。
FIG. 2 is an explanatory diagram showing a spray state when injection is not divided during homogeneous combustion.

【図3】噴霧先端到達距離と噴射量との関係を示す特性
図。
FIG. 3 is a characteristic diagram showing a relationship between a spray tip reaching distance and an injection amount.

【図4】均質燃焼時において噴射を分割した場合の噴霧
の状態を示す説明図。
FIG. 4 is an explanatory diagram showing a spray state when injection is divided during homogeneous combustion.

【図5】制御装置のブロック図。FIG. 5 is a block diagram of a control device.

【図6】本発明による基本的な噴射パターンを示す説明
図。
FIG. 6 is an explanatory view showing a basic ejection pattern according to the present invention.

【図7】請求項2の内容に対応する噴射パターンを示す
説明図。
FIG. 7 is an explanatory view showing an injection pattern corresponding to the contents of claim 2;

【図8】請求項5の内容に対応する噴射パターンを示す
説明図。
FIG. 8 is an explanatory view showing an injection pattern corresponding to the contents of claim 5;

【図9】請求項6の内容に対応する噴射パターンを示す
説明図。
FIG. 9 is an explanatory view showing an injection pattern corresponding to the contents of claim 6;

【図10】請求項7の内容に対応する噴射パターンを示
す説明図。
FIG. 10 is an explanatory view showing an injection pattern corresponding to the contents of claim 7;

【図11】噴射パターン設定用のテーブルを示す特性
図。
FIG. 11 is a characteristic diagram showing a table for setting an injection pattern.

【図12】この発明の噴射制御の流れを示すフローチャ
ート。
FIG. 12 is a flowchart showing the flow of injection control according to the present invention.

【符号の説明】[Explanation of symbols]

1…シリンダヘッド 2…シリンダ 3…ピストン 4…燃焼室 5…吸気ポート 6…排気ポート 7…点火プラグ 8…燃料噴射弁 10…エンジン制御用コントロールユニット DESCRIPTION OF SYMBOLS 1 ... Cylinder head 2 ... Cylinder 3 ... Piston 4 ... Combustion chamber 5 ... Intake port 6 ... Exhaust port 7 ... Spark plug 8 ... Fuel injection valve 10 ... Engine control control unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/02 301 F02D 41/02 301A (72)発明者 山口 浩一 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 久保 賢明 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3G301 HA01 HA04 HA16 JA02 JA03 JA21 JA29 KA06 KA08 KA23 KA24 LB04 LB07 MA11 MA18 MA26 NA07 NC04 ND03 NE11 NE12 NE14 NE15 PA01Z PA11Z PB03A PB05A PB08Z PD02Z PE03Z PE05Z PE09A──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 41/02 301 F02D 41/02 301A (72) Inventor Koichi Yamaguchi 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Within the Automobile Co., Ltd. (72) Inventor Kenmei Kubo 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa F-term (reference) 3G301 HA01 HA04 HA16 JA02 JA03 JA21 JA29 KA06 KA08 KA23 KA24 LB04 LB07 MA11 MA18 MA26 NA07 NC04 ND03 NE11 NE12 NE14 NE15 PA01Z PA11Z PB03A PB05A PB08Z PD02Z PE03Z PE05Z PE09A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 燃焼室内に直接燃料を噴射する燃料噴射
弁と点火プラグとを備え、かつ、機関運転条件に応じ
て、点火プラグ近傍に噴霧を集中させる成層運転と、燃
焼室全体に噴霧を均質に分散させる均質運転と、が行わ
れる直噴火花点火式内燃機関の燃焼制御装置において、 均質運転時に1サイクル中複数回の燃料噴射を実行する
分割噴射制御手段を備え、この分割噴射制御手段は、機
関回転速度および負荷に応じて各噴射の時間間隔および
噴射量割合を可変とすることを特徴とする直噴火花点火
式内燃機関の燃焼制御装置。
1. A stratified operation in which a fuel injection valve for directly injecting fuel into a combustion chamber and a spark plug are provided, and spray is concentrated near the spark plug in accordance with engine operating conditions. A combustion control apparatus for a direct injection spark ignition type internal combustion engine in which a homogeneous operation for homogeneously dispersing is performed, comprising: a divided injection control means for executing a plurality of fuel injections in one cycle during the homogeneous operation; Is a combustion control apparatus for a direct injection spark ignition type internal combustion engine, wherein a time interval of each injection and an injection amount ratio are made variable according to an engine rotation speed and a load.
【請求項2】 上記分割噴射制御手段は、噴射1回当た
りの最大噴射パルス時間幅が機関回転速度に対して予め
設定されており、この最大噴射パルス時間幅は高速側ほ
ど短く設定されていることを特徴とする請求項1に記載
の直噴火花点火式内燃機関の燃焼制御装置。
2. The split injection control means according to claim 1, wherein a maximum injection pulse time width per injection is preset with respect to an engine rotation speed, and the maximum injection pulse time width is set shorter on a higher speed side. The combustion control device for a direct injection spark ignition type internal combustion engine according to claim 1, wherein:
【請求項3】 上記分割噴射制御手段は、複数回の噴射
の間隔を、機関運転条件の変化に対し概略クランク角一
定に保つことを特徴とする請求項1または2に記載の直
噴火花点火式内燃機関の燃焼制御装置。
3. The direct-injection spark ignition according to claim 1, wherein the split injection control means keeps an interval of a plurality of injections at a substantially constant crank angle with respect to a change in engine operating conditions. A combustion control device for an internal combustion engine.
【請求項4】 上記分割噴射制御手段は、複数回の噴射
の間隔を、機関運転条件の変化に対し概略クランク角一
定に保つとともに、負荷の増加に伴って1サイクル中の
噴射回数が増加することを特徴とする請求項2に記載の
直噴火花点火式内燃機関の燃焼制御装置。
4. The split injection control means keeps an interval of a plurality of injections substantially constant at a crank angle with respect to a change in engine operation conditions, and increases the number of injections in one cycle with an increase in load. The combustion control device for a direct injection spark ignition type internal combustion engine according to claim 2, characterized in that:
【請求項5】 上記分割噴射制御手段は、負荷および回
転速度の増加に対し、最終回の噴射の噴射終了時期が所
定のクランク角度位置よりも遅れないように、各噴射の
所定の噴射間隔を短く補正することを特徴とする請求項
3に記載の直噴火花点火式内燃機関の燃焼制御装置。
5. The split injection control means sets a predetermined injection interval of each injection so that the injection end timing of the last injection is not delayed from a predetermined crank angle position with respect to an increase in load and rotation speed. 4. The combustion control device for a direct injection spark ignition type internal combustion engine according to claim 3, wherein the correction is made short.
【請求項6】 上記分割噴射制御手段は、負荷および回
転速度の増加に対し、噴射休止期間が所定の休止期間よ
りも短くならないように、噴射回数を減らすとともに、
各噴射の所定の噴射間隔を長く補正することを特徴とす
る請求項3に記載の直噴火花点火式内燃機関の燃焼制御
装置。
6. The split injection control means reduces the number of injections so that the injection suspension period is not shorter than a predetermined suspension period in response to an increase in load and rotation speed.
The combustion control device for a direct injection spark ignition type internal combustion engine according to claim 3, wherein a predetermined injection interval of each injection is corrected to be long.
【請求項7】 上記分割噴射制御手段は、高回転域およ
び高負荷域において、吸気行程から圧縮行程までの間に
複数回の噴射を行った後、相対的に大きな休止期間を挟
んで、残余の燃料を1回もしくは複数回で噴射すること
を特徴とする請求項1に記載の直噴火花点火式内燃機関
の燃焼制御装置。
7. The divided injection control means performs a plurality of injections between an intake stroke and a compression stroke in a high rotation range and a high load range, and then, after a relatively long rest period, The combustion control device for a direct injection spark ignition type internal combustion engine according to claim 1, wherein the fuel is injected once or plural times.
JP2000358710A 2000-11-27 2000-11-27 Combustion control device for direct-injection spark-ignition internal combustion engine Expired - Lifetime JP3692930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000358710A JP3692930B2 (en) 2000-11-27 2000-11-27 Combustion control device for direct-injection spark-ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000358710A JP3692930B2 (en) 2000-11-27 2000-11-27 Combustion control device for direct-injection spark-ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002161790A true JP2002161790A (en) 2002-06-07
JP3692930B2 JP3692930B2 (en) 2005-09-07

Family

ID=18830565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000358710A Expired - Lifetime JP3692930B2 (en) 2000-11-27 2000-11-27 Combustion control device for direct-injection spark-ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP3692930B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099598A1 (en) * 2003-05-09 2004-11-18 Daimlerchrysler Ag Method for operating an externally ignited internal combustion engine
US6920861B2 (en) 2003-06-30 2005-07-26 Aisan Kogyo Kabushiki Kaisha Fuel injection control devices for internal combustion engines
JP2006226120A (en) * 2005-02-15 2006-08-31 Nissan Motor Co Ltd Direct cylinder injection type internal combustion engine
JP2007016694A (en) * 2005-07-07 2007-01-25 Toyota Motor Corp Control device for spark ignition type cylinder injection internal combustion engine
JP2008069695A (en) * 2006-09-13 2008-03-27 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
WO2008102910A1 (en) * 2007-02-21 2008-08-28 Toyota Jidosha Kabushiki Kaisha Fuel injection control device for in-cylinder injection internal combustion engine
JP2009013819A (en) * 2007-07-02 2009-01-22 Toyota Motor Corp Control device for cylinder injection type internal combustion engine
WO2009093130A1 (en) * 2008-01-25 2009-07-30 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2009299496A (en) * 2008-06-10 2009-12-24 Toyota Motor Corp Controller of internal combustion engine
US7730871B2 (en) 2006-07-28 2010-06-08 Toyota Jidosha Kabushiki Kaisha Fuel injection control method for a direct injection spark ignition internal combustion engine
US7938098B2 (en) 2006-07-27 2011-05-10 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method of in-cylinder injection type spark ignition internal combustion engine
JP2011106350A (en) * 2009-11-18 2011-06-02 Denso Corp Fuel injection control device
EP2395220A1 (en) 2010-06-11 2011-12-14 Hitachi Automotive Systems, Ltd. Control device for in-cylinder fuel injection type internal combustion engine
AT508578A3 (en) * 2010-10-07 2012-03-15 Avl List Gmbh METHOD FOR OPERATING A FOUR-STROKE INTERNAL COMBUSTION ENGINE WITH SPARK IGNITION
JP2012229691A (en) * 2011-04-15 2012-11-22 Nippon Soken Inc Fuel injection control system
JP2014020211A (en) * 2012-07-12 2014-02-03 Hitachi Automotive Systems Ltd Fuel injection control device of direct-injection gasoline engine
JP2014062493A (en) * 2012-09-21 2014-04-10 Hitachi Automotive Systems Ltd Control device of internal combustion engine
US20140123956A1 (en) * 2011-06-30 2014-05-08 Hitachi Automotive Systems, Ltd. Control device for direct injection engine
JP2015175319A (en) * 2014-03-17 2015-10-05 株式会社デンソー Internal combustion engine pm detector
US9181912B2 (en) 2011-05-23 2015-11-10 Hitachi Automotive Systems, Ltd. Control device for in-cylinder injection type internal combustion engine
EP2944796A1 (en) * 2014-05-09 2015-11-18 Magneti Marelli S.p.A. Method to determine the injection pattern in the intake stroke of the combustion cycle of the cylinders of a direct-injection internal combustion engine
JP2016075165A (en) * 2014-10-02 2016-05-12 Jfeエンジニアリング株式会社 Gas valve operation control method of gas engine, and gas engine
WO2016140150A1 (en) * 2015-03-05 2016-09-09 日立オートモティブシステムズ株式会社 Fuel injection valve, control device for fuel injection valve, and control method
CN111852680A (en) * 2020-07-31 2020-10-30 重庆长安汽车股份有限公司 Oil injection method
FR3106858A1 (en) * 2020-02-05 2021-08-06 Vitesco Technologies Method of cutting a fuel injection
RU2756704C1 (en) * 2020-07-31 2021-10-04 Чунцин Чаньгань Аутомобайл Ко., Лтд Fuel injection method
JP2021161974A (en) * 2020-03-31 2021-10-11 本田技研工業株式会社 Fuel injection control device
JP2021161970A (en) * 2020-03-31 2021-10-11 本田技研工業株式会社 Controller of internal combustion engine
CN115263590A (en) * 2022-07-29 2022-11-01 东风汽车集团股份有限公司 Control method for fuel injection of engine

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7404390B2 (en) 2003-05-09 2008-07-29 Daimler Ag Method for operating an externally ignited internal combustion engine
WO2004099598A1 (en) * 2003-05-09 2004-11-18 Daimlerchrysler Ag Method for operating an externally ignited internal combustion engine
US6920861B2 (en) 2003-06-30 2005-07-26 Aisan Kogyo Kabushiki Kaisha Fuel injection control devices for internal combustion engines
JP2006226120A (en) * 2005-02-15 2006-08-31 Nissan Motor Co Ltd Direct cylinder injection type internal combustion engine
JP4622569B2 (en) * 2005-02-15 2011-02-02 日産自動車株式会社 In-cylinder direct injection internal combustion engine
JP2007016694A (en) * 2005-07-07 2007-01-25 Toyota Motor Corp Control device for spark ignition type cylinder injection internal combustion engine
US7938098B2 (en) 2006-07-27 2011-05-10 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method of in-cylinder injection type spark ignition internal combustion engine
US7730871B2 (en) 2006-07-28 2010-06-08 Toyota Jidosha Kabushiki Kaisha Fuel injection control method for a direct injection spark ignition internal combustion engine
JP2008069695A (en) * 2006-09-13 2008-03-27 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP4715687B2 (en) * 2006-09-13 2011-07-06 トヨタ自動車株式会社 In-cylinder injection spark ignition internal combustion engine
JP2008202534A (en) * 2007-02-21 2008-09-04 Toyota Motor Corp Fuel injection control device for cylinder injection type internal combustion engine
JP4513817B2 (en) * 2007-02-21 2010-07-28 トヨタ自動車株式会社 Fuel injection control device for in-cylinder internal combustion engine
WO2008102910A1 (en) * 2007-02-21 2008-08-28 Toyota Jidosha Kabushiki Kaisha Fuel injection control device for in-cylinder injection internal combustion engine
JP2009013819A (en) * 2007-07-02 2009-01-22 Toyota Motor Corp Control device for cylinder injection type internal combustion engine
US8479705B2 (en) 2008-01-25 2013-07-09 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
CN101925729A (en) * 2008-01-25 2010-12-22 丰田自动车株式会社 Internal combustion engine
WO2009093130A1 (en) * 2008-01-25 2009-07-30 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2009299496A (en) * 2008-06-10 2009-12-24 Toyota Motor Corp Controller of internal combustion engine
JP2011106350A (en) * 2009-11-18 2011-06-02 Denso Corp Fuel injection control device
US8775057B2 (en) 2010-06-11 2014-07-08 Hitachi Automotive Systems, Ltd. Control device for in-cylinder fuel injection type internal combustion engine
EP2395220A1 (en) 2010-06-11 2011-12-14 Hitachi Automotive Systems, Ltd. Control device for in-cylinder fuel injection type internal combustion engine
AT508578A3 (en) * 2010-10-07 2012-03-15 Avl List Gmbh METHOD FOR OPERATING A FOUR-STROKE INTERNAL COMBUSTION ENGINE WITH SPARK IGNITION
AT508578B1 (en) * 2010-10-07 2012-08-15 Avl List Gmbh METHOD FOR OPERATING A FOUR-STROKE INTERNAL COMBUSTION ENGINE WITH SPARK IGNITION
JP2012229691A (en) * 2011-04-15 2012-11-22 Nippon Soken Inc Fuel injection control system
DE112012002218B4 (en) 2011-05-23 2018-10-18 Hitachi Automotive Systems, Ltd. Control device for a direct injection type internal combustion engine
US9181912B2 (en) 2011-05-23 2015-11-10 Hitachi Automotive Systems, Ltd. Control device for in-cylinder injection type internal combustion engine
US20140123956A1 (en) * 2011-06-30 2014-05-08 Hitachi Automotive Systems, Ltd. Control device for direct injection engine
DE112012002686B4 (en) 2011-06-30 2022-08-18 Hitachi Astemo, Ltd. Direct injection engine control device
JP2014020211A (en) * 2012-07-12 2014-02-03 Hitachi Automotive Systems Ltd Fuel injection control device of direct-injection gasoline engine
JP2014062493A (en) * 2012-09-21 2014-04-10 Hitachi Automotive Systems Ltd Control device of internal combustion engine
JP2015175319A (en) * 2014-03-17 2015-10-05 株式会社デンソー Internal combustion engine pm detector
CN105089894A (en) * 2014-05-09 2015-11-25 马涅蒂-马瑞利公司 Method to determine the injection pattern in the intake stroke of the combustion cycle of the cylinders of a direct-injection internal combustion engine
US9909488B2 (en) 2014-05-09 2018-03-06 MAGNETI MARELLI S.p.A. Method to determine the injection pattern in the intake stroke of the combustion cycle of the cylinders of a direct-injection internal combustion engine
EP2944796A1 (en) * 2014-05-09 2015-11-18 Magneti Marelli S.p.A. Method to determine the injection pattern in the intake stroke of the combustion cycle of the cylinders of a direct-injection internal combustion engine
JP2016075165A (en) * 2014-10-02 2016-05-12 Jfeエンジニアリング株式会社 Gas valve operation control method of gas engine, and gas engine
WO2016140150A1 (en) * 2015-03-05 2016-09-09 日立オートモティブシステムズ株式会社 Fuel injection valve, control device for fuel injection valve, and control method
JPWO2016140150A1 (en) * 2015-03-05 2017-11-24 日立オートモティブシステムズ株式会社 Fuel injection valve, control device for fuel injection valve, and control method
WO2021156237A1 (en) * 2020-02-05 2021-08-12 Vitesco Technologies GmbH Method for dividing a fuel injection
FR3106858A1 (en) * 2020-02-05 2021-08-06 Vitesco Technologies Method of cutting a fuel injection
US11852095B2 (en) 2020-02-05 2023-12-26 Vitesco Technologies GmbH Method for dividing a fuel injection
JP2021161974A (en) * 2020-03-31 2021-10-11 本田技研工業株式会社 Fuel injection control device
JP2021161970A (en) * 2020-03-31 2021-10-11 本田技研工業株式会社 Controller of internal combustion engine
JP7119019B2 (en) 2020-03-31 2022-08-16 本田技研工業株式会社 Control device for internal combustion engine
RU2756704C1 (en) * 2020-07-31 2021-10-04 Чунцин Чаньгань Аутомобайл Ко., Лтд Fuel injection method
WO2022021717A1 (en) * 2020-07-31 2022-02-03 重庆长安汽车股份有限公司 Fuel injection method
CN111852680B (en) * 2020-07-31 2022-03-11 重庆长安汽车股份有限公司 Oil injection method
CN111852680A (en) * 2020-07-31 2020-10-30 重庆长安汽车股份有限公司 Oil injection method
CN115263590A (en) * 2022-07-29 2022-11-01 东风汽车集团股份有限公司 Control method for fuel injection of engine

Also Published As

Publication number Publication date
JP3692930B2 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
JP3692930B2 (en) Combustion control device for direct-injection spark-ignition internal combustion engine
EP1291512B1 (en) Control apparatus for a direct-injection spark-ignition engine, direct-injection spark-ignition engine, engine control method therefor, computer-readable storage and computer program
JP6784214B2 (en) Internal combustion engine control device
US7104249B2 (en) Direct fuel injection/spark ignition engine control device
US7730871B2 (en) Fuel injection control method for a direct injection spark ignition internal combustion engine
US10436134B2 (en) Control device for internal combustion engine
US20100147261A1 (en) Gasoline engine
US20120085316A1 (en) Direct-injection internal combustion engine with injection nozzle
JP3580099B2 (en) Control unit for diesel engine
JP3852277B2 (en) Combustion control device for internal combustion engine
JPH11173180A (en) Cylinder injection type spark ignition engine
JP2006274945A (en) Spark ignition type direct injection engine
JP4055292B2 (en) Direct injection spark ignition internal combustion engine fuel injection control device
JP2006336502A (en) Cylinder injection internal combustion engine
US10378464B2 (en) Control device for internal combustion engine
JP4046055B2 (en) In-cylinder internal combustion engine
WO2017110358A1 (en) Injection control device
JP4407442B2 (en) Fuel pressure control device for in-cylinder injection engine
JP2018178891A (en) Control device of internal combustion engine
JP6750321B2 (en) Control device for internal combustion engine
JP2004316568A (en) Cylinder direct injection type internal combustion engine
JP2010285904A (en) Control device of internal combustion engine
JP2018003753A (en) Control device of internal combustion engine
JP2006037793A (en) Cylinder direct injection spark ignition internal combustion engine
JPH06117269A (en) Engine fuel control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3692930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 9

EXPY Cancellation because of completion of term