JP2014062493A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2014062493A
JP2014062493A JP2012207919A JP2012207919A JP2014062493A JP 2014062493 A JP2014062493 A JP 2014062493A JP 2012207919 A JP2012207919 A JP 2012207919A JP 2012207919 A JP2012207919 A JP 2012207919A JP 2014062493 A JP2014062493 A JP 2014062493A
Authority
JP
Japan
Prior art keywords
fuel
injection
spray
penetration force
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012207919A
Other languages
Japanese (ja)
Other versions
JP6067295B2 (en
Inventor
Kosuke Kanda
高輔 神田
Masayuki Saruwatari
匡行 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012207919A priority Critical patent/JP6067295B2/en
Publication of JP2014062493A publication Critical patent/JP2014062493A/en
Application granted granted Critical
Publication of JP6067295B2 publication Critical patent/JP6067295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve high combustion performance by suppressing deviation of an orientation direction of fuel spray by being affected by a gas flow velocity in an intake port.SOLUTION: An area ratio AR indicating a deviation degree of fuel spray to an intake valve is determined on the basis of a gas flow velocity (S101) and an injection pulse width (S102). In a case when conditions that the area ratio AR is lower than a set value SL, and the fuel spray is introduced into a combustion chamber through the intake valve while being deviated, a requested penetrating force is set to make the area ratio AR to become the set value SL or more (S103→S104). Here, when it is necessary to decrease the penetrating force to satisfy the requested penetrating force, the penetrating force of the fuel spray is decreased by split injection, lowering of fuel pressure, switching to a fuel injection valve of lower penetrating force, and the like (S105→S106). On the other hand, when it is necessary to increase the penetrating force of the fuel spray, the penetrating force of the fuel spray is increased by increasing the fuel pressure, switching to a fuel injection valve of higher penetrating force, and the like (S105→S107).

Description

本発明は、吸気行程において吸気ポート内に燃料を噴射する燃料噴射弁を備えた内燃機関に適用される制御装置に関する。   The present invention relates to a control device applied to an internal combustion engine that includes a fuel injection valve that injects fuel into an intake port during an intake stroke.

特許文献1には、吸気ポート内を仕切る整流板を備えた内燃機関において、燃料噴射弁から吸気ポート内に噴射される燃料噴霧の形状が、整流板で吸気管内が仕切られる方向に長い形状に設定され、かつ、燃料噴霧がその長手方向において吸気バルブの傘部及び吸気ポートの内壁にそれぞれ直撃するようにすることで、吸気ポート内における燃料の気化性能を向上させるようにした、燃料噴射装置が開示されている。   In Patent Document 1, in an internal combustion engine provided with a rectifying plate that partitions the inside of an intake port, the shape of fuel spray injected from the fuel injection valve into the intake port has a shape that is long in the direction in which the inside of the intake pipe is partitioned by the rectifying plate. The fuel injection device is configured to improve the fuel vaporization performance in the intake port by setting the fuel spray to directly hit the umbrella portion of the intake valve and the inner wall of the intake port in the longitudinal direction. Is disclosed.

特開2007−120491号公報JP 2007-120491 A

ところで、燃料噴射弁から噴射される燃料噴霧が吸気バルブや吸気ポートなどの所定の部位を直撃するように、燃料噴射弁の噴霧特性を設定しても、吸気行程中の燃料噴射では、吸気ポート内におけるガス流速が機関運転条件に応じて変化することで、燃料噴霧の指向方向が偏向して燃料噴霧が燃焼室内に偏って導入され、これによって燃焼性が低下する可能性があった。   By the way, even if the spray characteristics of the fuel injection valve are set so that the fuel spray injected from the fuel injection valve directly hits a predetermined part such as the intake valve or the intake port, the intake port is not used in the fuel injection during the intake stroke. As the gas flow rate in the inside changes according to the engine operating conditions, the direction of fuel spray is deflected and the fuel spray is biased into the combustion chamber, which may reduce the combustibility.

本発明は上記問題点に鑑みなされたものであり、吸気ポート内におけるガス流速の変化に燃料噴霧が影響されて、燃焼性がばらつくことを抑制できる、内燃機関の制御装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a control device for an internal combustion engine that can suppress variation in combustibility due to fuel spray being affected by a change in gas flow velocity in an intake port. And

そのため、本願発明では、吸気ポート内におけるガス流速の増減に対して、燃料噴射弁から噴射される燃料噴霧の吸気ポート内での偏向を抑制する方向に、燃料噴霧の貫徹力を変化させるようにした。   Therefore, in the present invention, the penetration force of the fuel spray is changed in a direction to suppress the deflection of the fuel spray injected from the fuel injection valve in the intake port with respect to the increase or decrease of the gas flow velocity in the intake port. did.

上記発明によると、機関運転条件の変化に伴って吸気ポート内におけるガス流速が変化しても、燃料噴霧の吸気ポート内での偏向を抑制できるので、燃料噴霧の燃焼室内に偏って導入されることを抑制し、高い燃焼性を安定的に維持することが可能となる。   According to the above invention, even if the gas flow velocity in the intake port changes with changes in the engine operating conditions, the deflection of the fuel spray in the intake port can be suppressed, so the fuel spray is introduced in a biased manner in the combustion chamber. This can be suppressed and high combustibility can be stably maintained.

本願発明の実施形態における内燃機関を示すシステム図である。1 is a system diagram showing an internal combustion engine in an embodiment of the present invention. 本願発明の実施形態における貫徹力制御の流れを示すフローチャートである。It is a flowchart which shows the flow of penetration force control in embodiment of this invention. 本願発明の実施形態における面積割合と混合気の均質度との相関を示す図である。It is a figure which shows the correlation with the area ratio and the homogeneity of air-fuel | gaseous mixture in embodiment of this invention. 本願発明の実施形態における噴射パルス幅と噴霧速度との相関を示す図である。It is a figure which shows the correlation with the injection pulse width and spraying speed in embodiment of this invention. 本願発明の実施形態における分割噴射での噴射パルス幅のパターンを示す図である。It is a figure which shows the pattern of the injection pulse width in the division | segmentation injection in embodiment of this invention. 本願発明の実施形態における燃料圧力と噴霧速度との相関を示す図である。It is a figure which shows the correlation of the fuel pressure and spraying speed in embodiment of this invention. 本願発明の実施形態における内燃機関を示すシステム図である。1 is a system diagram showing an internal combustion engine in an embodiment of the present invention.

以下に本発明の実施の形態を説明する。
図1は、本発明に係る制御装置を適用する、車両用内燃機関のシステム構成図である。
図1において、内燃機関(エンジン)1は、吸気バルブ4よりも上流側の吸気ポート(吸気管)2に燃料噴射弁3を備える。燃料噴射弁3は、吸気ポート2内に燃料を噴射する。
Embodiments of the present invention will be described below.
FIG. 1 is a system configuration diagram of a vehicle internal combustion engine to which a control device according to the present invention is applied.
In FIG. 1, an internal combustion engine (engine) 1 includes a fuel injection valve 3 in an intake port (intake pipe) 2 upstream of the intake valve 4. The fuel injection valve 3 injects fuel into the intake port 2.

燃料噴射弁3が噴射した燃料は、空気と共に吸気バルブ4を介して燃焼室5内に吸引されて混合気を形成する。燃焼室5内の混合気は、点火プラグ6による火花点火によって着火燃焼する。燃焼室5内の燃焼ガスは、排気バルブ7を介して排気管8に排出される。
電子制御スロットル10は、スロットルモータ9によって開度が変更されることで、内燃機関1の吸入空気量を調整する手段である。電子制御スロットル10は、吸気ポート2の燃料噴射弁3を配設した部分よりも上流側に設けられる。
The fuel injected by the fuel injection valve 3 is sucked into the combustion chamber 5 together with air through the intake valve 4 to form an air-fuel mixture. The air-fuel mixture in the combustion chamber 5 is ignited and burned by spark ignition by the spark plug 6. The combustion gas in the combustion chamber 5 is discharged to the exhaust pipe 8 through the exhaust valve 7.
The electronic control throttle 10 is a means for adjusting the intake air amount of the internal combustion engine 1 by changing the opening degree by the throttle motor 9. The electronic control throttle 10 is provided upstream of the portion of the intake port 2 where the fuel injection valve 3 is disposed.

燃料供給装置13は、燃料タンク11内の燃料を燃料ポンプ12によって燃料噴射弁3に圧送する装置である。
燃料供給装置13は、燃料タンク11、燃料ポンプ12、圧力調整弁(プレッシャレギュレータ)14、オリフィス15、燃料ギャラリー配管16、燃料供給配管17、燃料戻し配管18、ジェットポンプ19、燃料移送管20を備えている。
燃料ポンプ12は、電動式ポンプであって燃料タンク11内に設けられる。
The fuel supply device 13 is a device that pumps the fuel in the fuel tank 11 to the fuel injection valve 3 by the fuel pump 12.
The fuel supply device 13 includes a fuel tank 11, a fuel pump 12, a pressure regulating valve (pressure regulator) 14, an orifice 15, a fuel gallery pipe 16, a fuel supply pipe 17, a fuel return pipe 18, a jet pump 19, and a fuel transfer pipe 20. I have.
The fuel pump 12 is an electric pump and is provided in the fuel tank 11.

燃料供給配管17は、燃料ポンプ12と燃料ギャラリー配管16とを接続する配管であり、燃料ポンプ12の吐出口に燃料供給配管17の一端が接続され、燃料供給配管17の他端に燃料ギャラリー配管16に接続される。
更に、燃料噴射弁3の燃料供給口は燃料ギャラリー配管16に接続され、燃料ギャラリー配管16を介して各燃料噴射弁3に燃料が分配される。
燃料戻し配管18は、燃料タンク11内で燃料供給配管17から分岐し、燃料戻し配管18の端部は、燃料タンク11内に開放する。
燃料戻し配管18には、上流側から順に、圧力調整弁14、オリフィス15、ジェットポンプ19を設けてある。
The fuel supply pipe 17 is a pipe connecting the fuel pump 12 and the fuel gallery pipe 16, one end of the fuel supply pipe 17 is connected to the discharge port of the fuel pump 12, and the fuel gallery pipe is connected to the other end of the fuel supply pipe 17. 16 is connected.
Further, the fuel supply port of the fuel injection valve 3 is connected to the fuel gallery pipe 16, and fuel is distributed to each fuel injection valve 3 through the fuel gallery pipe 16.
The fuel return pipe 18 branches from the fuel supply pipe 17 in the fuel tank 11, and the end of the fuel return pipe 18 opens into the fuel tank 11.
The fuel return pipe 18 is provided with a pressure regulating valve 14, an orifice 15, and a jet pump 19 in order from the upstream side.

圧力調整弁14は、燃料戻し配管18を開閉する弁体14aと、該弁体14aを燃料戻し配管18上流側の弁座に向けて押圧するコイルスプリングなどの弾性部材14bとから概略構成される。そして、圧力調整弁14は、燃料噴射弁3に供給される燃料圧力が設定圧力(開弁圧力)FPMINを超えたときに開弁し、燃料圧力が設定圧力FPMIN以下であるときに閉弁する。
圧力調整弁14は、燃料噴射弁3に供給される燃料圧力が設定圧力FPMINよりも高くなると開弁するが、圧力調整弁14の下流側に設けたオリフィス15によって、燃料戻し配管18を介して燃料タンク11内に戻される燃料流量は絞られる。このため、燃料ポンプ12からの燃料の吐出量を増やすことで、設定圧力FPMINを超える圧力にまで燃料圧力を昇圧できる。
尚、オリフィス15を設けずに、例えば、圧力調整弁14が戻し流量を絞る機能を備えることができる。
The pressure regulating valve 14 is generally configured by a valve body 14a that opens and closes the fuel return pipe 18 and an elastic member 14b such as a coil spring that presses the valve body 14a toward the valve seat upstream of the fuel return pipe 18. . The pressure regulating valve 14 opens when the fuel pressure supplied to the fuel injection valve 3 exceeds a set pressure (valve opening pressure) FPMIN, and closes when the fuel pressure is equal to or lower than the set pressure FPMIN. .
The pressure adjustment valve 14 is opened when the fuel pressure supplied to the fuel injection valve 3 becomes higher than the set pressure FPMIN. However, the orifice 15 provided on the downstream side of the pressure adjustment valve 14 passes through the fuel return pipe 18. The fuel flow rate returned to the fuel tank 11 is reduced. For this reason, the fuel pressure can be increased to a pressure exceeding the set pressure FPMIN by increasing the amount of fuel discharged from the fuel pump 12.
In addition, without providing the orifice 15, for example, the pressure regulating valve 14 can have a function of restricting the return flow rate.

ジェットポンプ19は、圧力調整弁14、オリフィス15を介して燃料タンク11内に戻される燃料の流れによって、燃料移送管20を介して燃料を移送させるものである。
燃料タンク11は、底面の一部が盛り上がって底部空間を2つの領域11a,11bに隔てている所謂鞍型の燃料タンクである。燃料ポンプ12の吸い込み口は領域11a内に開口するため、領域11b内の燃料を領域11a側に移送させないと、領域11b内の燃料が残存することになってしまう。
The jet pump 19 transfers fuel through the fuel transfer pipe 20 by the flow of fuel returned into the fuel tank 11 through the pressure regulating valve 14 and the orifice 15.
The fuel tank 11 is a so-called vertical fuel tank in which a part of the bottom surface is raised and the bottom space is divided into two regions 11a and 11b. Since the suction port of the fuel pump 12 opens into the region 11a, the fuel in the region 11b remains unless the fuel in the region 11b is transferred to the region 11a side.

そこで、ジェットポンプ19は、圧力調整弁14及びオリフィス15を介して燃料タンク11の領域11a内に戻される燃料の流れによって、燃料移送管20内に負圧を作用させ、燃料移送管20が開口する領域11b内の燃料を、燃料移送管20を介してジェットポンプ19まで導き、戻し燃料と共に領域11a内に排出させる。
本実施形態では、上記のように、ジェットポンプ19を備えるが、燃料タンク11が所謂鞍型でない場合、即ち、燃料タンク11の底部空間が隔成されずに、燃料ポンプ12の吸い込み口から燃料タンク11内の燃料を残量なく吸引できる場合には、ジェットポンプ19及び燃料移送管20を省略することができる。また、燃料タンク11が所謂鞍型でなく、かつ、燃料戻し配管18、圧力調整弁14、オリフィス15、ジェットポンプ19及び燃料移送管20を備えない燃料供給装置13とすることができる。
Therefore, the jet pump 19 applies a negative pressure to the fuel transfer pipe 20 by the flow of fuel returned into the region 11a of the fuel tank 11 via the pressure regulating valve 14 and the orifice 15, and the fuel transfer pipe 20 is opened. The fuel in the region 11b to be conducted is guided to the jet pump 19 through the fuel transfer pipe 20, and is discharged into the region 11a together with the return fuel.
In the present embodiment, the jet pump 19 is provided as described above. However, when the fuel tank 11 is not a so-called saddle type, that is, the bottom space of the fuel tank 11 is not separated, the fuel is supplied from the suction port of the fuel pump 12. When the fuel in the tank 11 can be sucked without remaining, the jet pump 19 and the fuel transfer pipe 20 can be omitted. Further, the fuel tank 11 is not a so-called saddle type, and the fuel supply device 13 can be provided without the fuel return pipe 18, the pressure adjustment valve 14, the orifice 15, the jet pump 19, and the fuel transfer pipe 20.

マイクロコンピュータを備えるECM(エンジン・コントロール・モジュール)31は、内燃機関1を制御する制御装置であり、燃料噴射弁3の開弁期間を制御する噴射パルス信号を出力する機能と共に、点火プラグ6による点火時期、電子制御スロットル10の開度などを制御する機能を有している。
また、マイクロコンピュータを備えるFPCM(フューエル・ポンプ・コントロール・モジュール)30は、燃料ポンプ12の駆動信号を出力して燃料ポンプ12を制御する。
An ECM (engine control module) 31 having a microcomputer is a control device for controlling the internal combustion engine 1, and has a function of outputting an injection pulse signal for controlling a valve opening period of the fuel injection valve 3 and a spark plug 6. It has a function of controlling the ignition timing, the opening degree of the electronic control throttle 10, and the like.
An FPCM (fuel pump control module) 30 including a microcomputer outputs a drive signal for the fuel pump 12 to control the fuel pump 12.

ECM31とFPCM30とは相互に通信可能であり、ECM31は、燃料ポンプ12の駆動デューティ比(操作量)などを指示する信号PINSをFPCM30に向けて送信する。
燃料ポンプ12の駆動デューティ比(%)は、燃料ポンプ12を回転駆動するモータの印加電圧を制御する操作量であって、1周期当たりの通電時間割合(オン時間割合)を示し、駆動デューティ比が増大することで、モータの平均印加電圧が増加し、燃料ポンプ12の吐出圧(吐出流量)が増大する。
また、FPCM30は、自己診断の結果を示す信号DIAGなどをECM31に向けて送信する。
The ECM 31 and the FPCM 30 can communicate with each other, and the ECM 31 transmits a signal PINS for instructing a drive duty ratio (operation amount) of the fuel pump 12 to the FPCM 30.
The drive duty ratio (%) of the fuel pump 12 is an operation amount for controlling the applied voltage of the motor that rotationally drives the fuel pump 12, and indicates the energization time ratio (on-time ratio) per cycle. Increases, the average applied voltage of the motor increases, and the discharge pressure (discharge flow rate) of the fuel pump 12 increases.
Further, the FPCM 30 transmits a signal DIAG or the like indicating the result of the self-diagnosis to the ECM 31.

ECM31は、燃料噴射弁3に供給される燃料の圧力を示す、燃料ギャラリー配管16内の燃圧FUPRを検出する燃圧センサ(圧力検出手段)33、図外のアクセルペダルの踏み込み量(アクセル開度)ACCを検出するアクセル開度センサ34、内燃機関1の吸入空気流量QAを検出するエアフローセンサ35、内燃機関1の回転速度NEを検出する回転センサ36、内燃機関1の冷却水温度TW(機関温度)を検出する水温センサ37、排気の酸素濃度に応じて内燃機関1の空燃比A/Fを検出する空燃比センサ38などからの検出信号を入力する。   The ECM 31 is a fuel pressure sensor (pressure detecting means) 33 for detecting the fuel pressure FUPR in the fuel gallery pipe 16 that indicates the pressure of the fuel supplied to the fuel injection valve 3, and an accelerator pedal depression amount (accelerator opening) that is not shown. An accelerator opening sensor 34 for detecting ACC, an air flow sensor 35 for detecting the intake air flow rate QA of the internal combustion engine 1, a rotation sensor 36 for detecting the rotational speed NE of the internal combustion engine 1, a cooling water temperature TW (engine temperature of the internal combustion engine 1) ) Is detected, and an air-fuel ratio sensor 38 that detects the air-fuel ratio A / F of the internal combustion engine 1 according to the oxygen concentration of the exhaust gas is input.

そして、ECM31は、内燃機関1の負荷や機関回転速度NEなどの機関運転条件に基づいて点火時期(点火進角値)を演算し、点火時期において点火プラグ6による火花放電がなされるように、図外の点火コイルへの通電を制御する。
また、ECM31は、アクセル開度ACCなどの機関運転条件から電子制御スロットル10の目標開度を演算し、電子制御スロットル10の実開度が目標開度に近づくようにスロットルモータ9を制御する。
The ECM 31 calculates the ignition timing (ignition advance value) based on engine operating conditions such as the load of the internal combustion engine 1 and the engine speed NE, and spark discharge by the spark plug 6 is performed at the ignition timing. Controls energization to an ignition coil (not shown).
The ECM 31 calculates the target opening of the electronic control throttle 10 from engine operating conditions such as the accelerator opening ACC, and controls the throttle motor 9 so that the actual opening of the electronic control throttle 10 approaches the target opening.

更に、ECM31は、燃圧センサ33で検出される燃圧FUPR(実燃圧)が、内燃機関1の運転条件(機関負荷、機関回転速度など)に基づいて決定した目標燃圧TGFUPRに近づくように、燃料ポンプ12(モータ)のデューティ制御におけるデューティ比DUTYを決定し、このデューティ比DUTY(%)を示すパルス信号PINSを、燃料ポンプ12の駆動指示信号としてFPCM30に送信する。
ECM31は、例えば、燃圧FUPRと目標燃圧TGFUPRとの偏差に基づく比例分,積分分及び微分分の演算によってデューティ比DUTYを決定する。
そして、FPCM30は、ECM31側から受信したパルス信号PINSに基づいて、燃料ポンプ12のモータのデューティ制御におけるデューティ比DUTY(%)を設定し、燃料ポンプ12のモータへの電源供給をデューティ制御する。
Further, the ECM 31 has a fuel pump so that the fuel pressure FUPR (actual fuel pressure) detected by the fuel pressure sensor 33 approaches the target fuel pressure TGFUPR determined based on the operating conditions (engine load, engine speed, etc.) of the internal combustion engine 1. A duty ratio DUTY in the duty control of 12 (motor) is determined, and a pulse signal PINS indicating the duty ratio DUTY (%) is transmitted to the FPCM 30 as a drive instruction signal for the fuel pump 12.
For example, the ECM 31 determines the duty ratio DUTY by calculating a proportional component, an integral component, and a differential component based on a deviation between the fuel pressure FUPR and the target fuel pressure TGFUPR.
The FPCM 30 sets a duty ratio DUTY (%) in the duty control of the motor of the fuel pump 12 based on the pulse signal PINS received from the ECM 31 side, and performs duty control of power supply to the motor of the fuel pump 12.

上記のように、ECM31、FPCM30、燃圧センサ33、電動式の燃料ポンプ12などは、燃料噴射弁3に供給する燃料の圧力(燃圧)を可変に調整する燃圧調整装置(燃圧調整手段)を構成する。
尚、FPCM30が備える回路及び制御機能などを、ECM31が備えることで、ECM31とFPCM30とを一体化した燃圧制御系とすることができる。
As described above, the ECM 31, the FPCM 30, the fuel pressure sensor 33, the electric fuel pump 12, and the like constitute a fuel pressure adjusting device (fuel pressure adjusting means) that variably adjusts the pressure (fuel pressure) of the fuel supplied to the fuel injection valve 3. To do.
It should be noted that the ECM 31 includes a circuit and a control function that the FPCM 30 includes, whereby a fuel pressure control system in which the ECM 31 and the FPCM 30 are integrated can be obtained.

また、ECM31は、1サイクル当たりの燃料噴射弁3の開弁期間(燃料噴射量)を制御するための噴射パルス幅TI(ms)を、以下のようにして演算する。
ECM31は、燃料圧力が基準値である場合に適合する基本噴射パルス幅TP(ms)を、吸入空気流量QA、機関回転速度NEなどの機関運転条件に基づいて演算し、この基本噴射パルス幅TPを、燃圧FUPRや空燃比センサ38の出力(空燃比)などに基づいて補正して、最終的な噴射パルス幅TI(ms)を演算する。
Further, the ECM 31 calculates an injection pulse width TI (ms) for controlling the valve opening period (fuel injection amount) of the fuel injection valve 3 per cycle as follows.
The ECM 31 calculates a basic injection pulse width TP (ms) suitable for the case where the fuel pressure is a reference value based on engine operating conditions such as the intake air flow rate QA and the engine rotational speed NE, and this basic injection pulse width TP. Is corrected based on the fuel pressure FUPR, the output (air-fuel ratio) of the air-fuel ratio sensor 38, etc., and the final injection pulse width TI (ms) is calculated.

そして、ECM31は、各気筒の吸気行程において、燃料噴射弁3に対して噴射パルス幅TIの噴射パルス信号を出力し、燃料噴射弁3による燃料噴射量及び噴射タイミングを制御する、所謂シーケンシャル噴射制御を行う。
燃料噴射弁3は、噴射パルス幅TIに相当する期間だけ開弁し、開弁時間(ms)に比例する量の燃料を噴射する。
The ECM 31 outputs an injection pulse signal having an injection pulse width TI to the fuel injection valve 3 in the intake stroke of each cylinder, and controls the fuel injection amount and the injection timing by the fuel injection valve 3, so-called sequential injection control. I do.
The fuel injection valve 3 opens for a period corresponding to the injection pulse width TI, and injects an amount of fuel proportional to the valve opening time (ms).

尚、燃料噴射弁3による吸気行程噴射における噴射タイミングは、噴射期間の全てが吸気行程中(吸気バルブ4の開弁中)となるタイミングの他、燃料噴射の開始が排気行程中(吸気バルブ4の開弁前)であるものの、主に吸気行程中(吸気バルブ4の開弁期間中)に燃料が噴射されることになるタイミングとすることができる。
即ち、燃料噴射の開始時期が吸気バルブ4の開弁前であっても、噴射期間の大部分が吸気バルブ4の開弁期間に重なる場合は、吸気行程中の燃料噴射に含まれる。
また、噴射タイミングを吸気行程中とする燃料噴射(吸気行程噴射)を、所定の運転条件において実施し、異なる運転条件では、例えば、吸気バルブ4の閉弁中である排気行程に燃料を噴射する排気行程噴射を行わせることができる。
The injection timing in the intake stroke injection by the fuel injection valve 3 is the timing at which the entire injection period is during the intake stroke (while the intake valve 4 is open), and the start of fuel injection is during the exhaust stroke (intake valve 4). However, it is possible to set the fuel injection timing mainly during the intake stroke (during the valve opening period of the intake valve 4).
That is, even when the start timing of fuel injection is before the opening of the intake valve 4, if the majority of the injection period overlaps with the opening period of the intake valve 4, it is included in the fuel injection during the intake stroke.
Further, fuel injection (intake stroke injection) in which the injection timing is during the intake stroke is performed under predetermined operating conditions. Under different operating conditions, for example, fuel is injected into an exhaust stroke in which the intake valve 4 is closed. Exhaust stroke injection can be performed.

ここで、吸気行程噴射では、吸気ポート2内に吸気の流れを生じている状態で燃料を噴射するため、機関運転条件の変化によって、吸気ポート2内のガス流速(吸気流速)が変化すると、燃料噴霧の指向方向が変化する偏向が生じる。そして、燃料噴霧が偏向すると、燃料が燃焼室内に偏って導入されるようになり、これによって、混合気の均質度が低下して、燃焼性が低下する可能性がある。
そこで、ECM31は、ガス流速の変化に伴う燃料噴霧の偏向を抑制するために燃料噴霧の貫徹力を変更する制御を行う。図2は、上記の貫徹力の変更制御の流れを示すフローチャートである。
尚、燃料噴霧の貫徹力は、例えば、燃料噴射弁3から燃料噴射してから所定時間経過後(数msec後)の噴霧到達距離における燃料噴霧粒子の径と噴霧速度を乗算した力として表すことができ、貫徹力は噴霧速度が低下または前記粒子の径が小さくなると小さくなり、逆に、噴霧速度が上昇または前記粒子の径が大きくなると貫徹力は大きくなる。ここで、前記粒子の径は、基本的に燃料噴射弁3の噴孔径で決まるため、一般的には一定であり、噴霧速度の変化によって貫徹力が変化する。
Here, in the intake stroke injection, fuel is injected in a state where an intake air flow is generated in the intake port 2, and therefore, when the gas flow velocity (intake air flow velocity) in the intake port 2 changes due to a change in engine operating conditions, A deflection occurs in which the direction of fuel spray changes. When the fuel spray is deflected, the fuel is introduced into the combustion chamber in a biased manner, which may reduce the homogeneity of the air-fuel mixture and reduce the combustibility.
Therefore, the ECM 31 performs control to change the penetration force of the fuel spray in order to suppress the deflection of the fuel spray accompanying the change in the gas flow rate. FIG. 2 is a flowchart showing a flow of the penetrating force change control.
The penetration force of the fuel spray is expressed as, for example, a force obtained by multiplying the spray speed by the diameter of the fuel spray particles at the spray reach distance after a predetermined time has elapsed after the fuel injection from the fuel injection valve 3 (several milliseconds). The penetration force decreases as the spraying speed decreases or the particle diameter decreases, and conversely, as the spraying speed increases or the particle diameter increases, the penetration force increases. Here, since the diameter of the particles is basically determined by the diameter of the injection hole of the fuel injection valve 3, it is generally constant, and the penetration force changes according to the change of the spray speed.

図2のフローチャートに示す処理は、ECM31によって所定時間毎に実行され、まず、ステップS101では、内燃機関1の回転速度NEと、内燃機関1のトルク(負荷)とに基づいて、現時点での吸気ポート2内におけるガス流速(吸気流速)を推定する。
ここでは、同じ機関回転速度NEのときに、内燃機関1のトルクが高くなるほど、ガス流速がより速くなるものと推定し、また、同じトルクのときに、機関回転速度NEが速くなるほど、ガス流速がより速くなるものと推定する。即ち、機関回転速度NEが高く、かつ、内燃機関1のトルクが高いほど、ガス流速がより速いと推定する。
The processing shown in the flowchart of FIG. 2 is executed at predetermined time intervals by the ECM 31. First, in step S101, based on the rotational speed NE of the internal combustion engine 1 and the torque (load) of the internal combustion engine 1, the current intake air The gas flow rate (intake flow rate) in port 2 is estimated.
Here, it is estimated that the gas flow rate becomes faster as the torque of the internal combustion engine 1 increases at the same engine speed NE, and the gas flow rate increases as the engine speed NE increases at the same torque. Is estimated to be faster. That is, it is estimated that the higher the engine speed NE and the higher the torque of the internal combustion engine 1, the faster the gas flow rate.

内燃機関1のトルクは、ECM31が、吸気管負圧(ブースト)、吸入空気流量、スロットル開度、アクセル開度などに基づいて算出する。
また、機関運転状態に基づくガス流速の推定は、図2中に示すようなマップからの検索によって行うことができる他、機関運転状態を変数とする関数の演算によって行うことができる。
また、ガス流速に応じた信号を出力するセンサを吸気ポート2に設けて、当該センサの出力からガス流速を検出することができる。
一方、機関回転速度NEは、ECM31が回転センサ(クランク角センサ)36の出力に基づき演算する。
The torque of the internal combustion engine 1 is calculated by the ECM 31 based on intake pipe negative pressure (boost), intake air flow rate, throttle opening, accelerator opening, and the like.
Further, the estimation of the gas flow rate based on the engine operating state can be performed by searching from a map as shown in FIG. 2 or by calculation of a function having the engine operating state as a variable.
In addition, a sensor that outputs a signal corresponding to the gas flow rate is provided in the intake port 2, and the gas flow rate can be detected from the output of the sensor.
On the other hand, the engine speed NE is calculated by the ECM 31 based on the output of the rotation sensor (crank angle sensor) 36.

ステップS102では、ステップS101で求めたガス流速と、噴射パルス幅TIでの噴霧の貫徹力(標準貫徹力)とから、吸気バルブ4がリフトして開口する開口部の面積に対して燃料噴霧が通過する面積の割合AR(%)を演算する。
一例として、ガス流速と噴射パルス幅TIでの貫徹力との組み合わせ毎に、面積割合ARを記憶したマップを参照し、補間演算処理などを行って、そのときのガス流速と噴射パルス幅TIでの貫徹力とに対応する面積割合ARを求める。
In step S102, the fuel spray is applied to the area of the opening where the intake valve 4 is lifted and opened from the gas flow rate obtained in step S101 and the spray penetration force (standard penetration force) at the injection pulse width TI. A ratio AR (%) of the passing area is calculated.
As an example, for each combination of the gas flow rate and the penetration force at the injection pulse width TI, the map storing the area ratio AR is referred to, interpolation processing is performed, and the gas flow rate and injection pulse width TI at that time are The area ratio AR corresponding to the penetrating power of is obtained.

面積割合ARは、吸気バルブ4に対する燃料噴霧の偏り度合を示すパラメータであり、面積割合ARが100%に近い状態は、吸気バルブ4がリフトして開口する環状の開口部の略全域にわたって燃料噴霧が通過する状態であることを示し、面積割合ARの数値が低くなるほど燃料噴霧の偏りがより大きく、燃料噴霧が通過しない部分の面積がより拡大している状態であることを示す。
そして、図3に示すように、面積割合ARが高くなるほど(燃料噴霧が流入する面積が広くなるほど)、筒内における混合気の均質度がより高くなり、均質度が高ければ、高い燃焼性が得られて、排気性状、燃費性能を改善できる。
換言すれば、面積割合ARが低くなる条件の場合(燃料噴霧が流入する面積が狭くなる条件の場合)、そのまま燃料噴射を行わせると、排気性状、燃費性能が低下してしまうことになる。
The area ratio AR is a parameter indicating the degree of bias of the fuel spray with respect to the intake valve 4. When the area ratio AR is close to 100%, the fuel spray is applied over substantially the entire annular opening where the intake valve 4 is lifted and opened. The lower the numerical value of the area ratio AR, the greater the bias of the fuel spray, and the larger the area of the portion where the fuel spray does not pass.
As shown in FIG. 3, the higher the area ratio AR (the larger the area into which the fuel spray flows), the higher the homogeneity of the air-fuel mixture in the cylinder, and the higher the homogeneity, the higher the combustibility. As a result, exhaust properties and fuel efficiency can be improved.
In other words, when the area ratio AR is low (when the area where the fuel spray flows in is narrow), if the fuel injection is performed as it is, the exhaust property and the fuel consumption performance are deteriorated.

また、噴射パルス幅TIでの噴霧の貫徹力は、噴射パルス幅TIで1サイクルに1回だけ噴射させた場合において、噴霧速度(m/s)と燃料噴霧の粒径とから算出される値(貫徹力=粒径×噴霧速度)である。
ECM31は、図4に示すように、噴射パルス幅TIが長くなるほどより速い噴霧速度を算出する一方、噴霧の粒径については、固定値若しくは噴射パルス幅TIが長くなるほどより小さい粒径として設定し、これら噴霧速度及び粒径に基づいて、噴射パルス幅TIでの噴霧の貫徹力を設定する。
Further, the spray penetration force at the injection pulse width TI is a value calculated from the spray speed (m / s) and the particle size of the fuel spray when the injection pulse width TI is injected only once per cycle. (Penetration force = particle size × spraying speed).
As shown in FIG. 4, the ECM 31 calculates a higher spray speed as the injection pulse width TI becomes longer. On the other hand, the particle size of the spray is set to a fixed value or a smaller particle diameter as the injection pulse width TI becomes longer. Based on these spray speeds and particle sizes, the penetration force of the spray with the injection pulse width TI is set.

尚、噴射パルス幅TIでの噴霧の貫徹力は、燃料噴射弁3に供給される燃料の圧力が、内燃機関1の運転条件(負荷、回転速度など)に基づいて決定した目標燃圧TGFUPRであることを前提として演算される。
ここで、燃料噴射弁3から噴射された燃料噴霧が、吸気バルブ4がリフトして開口する環状の開口部の略全域にわたって燃焼室内に吸引される状態から、燃料噴霧の指向方向が変化し、より点火プラグ6に近い側に偏って燃料噴霧が流れるようになったり、逆に、シリンダボアに近い側に偏って燃料噴霧が流れるようになったりすると、面積割合ARは低下することになる。
The penetration force of the spray with the injection pulse width TI is the target fuel pressure TGFUPR in which the pressure of the fuel supplied to the fuel injection valve 3 is determined based on the operating conditions (load, rotational speed, etc.) of the internal combustion engine 1. It is calculated on the assumption.
Here, the direction in which the fuel spray is changed from the state in which the fuel spray injected from the fuel injection valve 3 is sucked into the combustion chamber over substantially the entire annular opening where the intake valve 4 lifts and opens. If the fuel spray flows toward the side closer to the spark plug 6 and conversely the fuel spray flows toward the side closer to the cylinder bore, the area ratio AR decreases.

本実施形態では、ガス流速が中程度で、かつ、噴射パルス幅TIでの噴霧の貫徹力が中程度であるときに、面積割合ARが最も高くなるように、燃料噴射弁3の噴霧特性(噴孔の指向方向、噴霧角度、噴霧粒径、噴霧速度など)を設定してある。
このため、面積割合ARが最も高くなるガス流速よりもガス流速が速くなれば、燃料噴霧の指向方向が速いガス流速に影響されて偏向し、面積割合ARが低下することになり、また、ガス流速が逆に遅くなれば、燃料噴霧の指向方向に対するガス流速の影響が小さくなることで、やはり燃料噴霧が偏向し、面積割合ARが低下することになる。
In the present embodiment, when the gas flow rate is medium and the spray penetration force at the injection pulse width TI is medium, the spray characteristic (of the fuel injection valve 3) is set so that the area ratio AR is the highest. The direction of the nozzle hole, spray angle, spray particle size, spray speed, etc.) are set.
For this reason, if the gas flow rate becomes faster than the gas flow rate at which the area ratio AR is the highest, the direction of fuel spray is deflected due to the influence of the fast gas flow rate, and the area ratio AR decreases. On the contrary, if the flow velocity is slow, the influence of the gas flow velocity on the direction of fuel spray is reduced, so that the fuel spray is also deflected and the area ratio AR is reduced.

同様に、噴射パルス幅TIでの噴霧の貫徹力が、面積割合ARが最も高くなる場合よりも弱くなれば、相対的に燃料噴霧の指向方向がガス流速に影響される度合が拡大して燃料噴霧が偏向し、面積割合ARが低下することになり、また、貫徹力が逆に強くなれば、噴霧の指向方向に対するガス流速の影響が抑制されることで燃料噴霧が偏向し、やはり面積割合ARが低下することになる。
従って、ステップS102で求められる面積割合ARは、噴射パルス幅TIでの噴霧の貫徹力が弱く、かつ、ガス流速が速いほど小さいなり、また、ガス流速が遅く、かつ、噴射パルス幅TIでの噴霧の貫徹力が強いほど小さくなり、面積割合ARが小さいほど、燃料噴霧の指向方向が最適方向からより大きく変更していることを示す。
Similarly, if the penetration force of the spray with the injection pulse width TI becomes weaker than that in the case where the area ratio AR is the highest, the degree to which the direction of fuel spray is influenced by the gas flow rate is relatively increased. If the spray is deflected and the area ratio AR decreases, and if the penetration force is increased, the influence of the gas flow rate on the spray direction is suppressed, so that the fuel spray is deflected and the area ratio AR will decrease.
Therefore, the area ratio AR obtained in step S102 becomes smaller as the spray penetration force at the injection pulse width TI is weaker and the gas flow rate is faster, and the gas flow rate is slower and at the injection pulse width TI. The smaller the spray penetration force, the smaller the area ratio AR, and the smaller the area ratio AR, the greater the direction of fuel spray change from the optimum direction.

ステップS102では、前述した燃料噴霧の貫徹力とガス流速との組み合わせによる面積割合ARの特性に基づき、そのときの噴射パルス幅TIでの貫徹力とガス流速とに対応する面積割合ARを求める。
そして、次のステップS103では、ステップS102で求めた面積割合ARが設定値SL(例えば75%)以上であるか否かを判断する。
In step S102, the area ratio AR corresponding to the penetration force and the gas flow rate at the injection pulse width TI at that time is obtained based on the characteristics of the area ratio AR based on the combination of the fuel spray penetration force and the gas flow rate.
In the next step S103, it is determined whether or not the area ratio AR obtained in step S102 is equal to or greater than a set value SL (for example, 75%).

面積割合ARの設定値SLは、目標とする燃費性能や排気性状を得られる面積割合ARの最小値である。従って、この設定値SLを面積割合ARが下回る場合には、筒内における混合気の均質度の低下によって、目標よりも燃費性能や排気性状が低くなってしまうものと判断できる。一方、面積割合ARの設定値SL以上であれば、貫徹力を変更する処理を実施しなくても、燃料噴霧の指向方向が略適切であって、燃焼室内での混合気の均質度を十分に高いものと判断できる。
そこで、ステップS103において、ステップS102で求めた面積割合ARが設定値SL以上であると判断すると、ステップS108へ進む。
The set value SL of the area ratio AR is the minimum value of the area ratio AR that can obtain the target fuel efficiency and exhaust properties. Therefore, when the area ratio AR is lower than the set value SL, it can be determined that the fuel efficiency and the exhaust properties are lower than the target due to the decrease in the homogeneity of the air-fuel mixture in the cylinder. On the other hand, if the area ratio AR is equal to or greater than the set value SL, the fuel spray directing direction is substantially appropriate and the homogeneity of the air-fuel mixture in the combustion chamber is sufficient even without performing the process of changing the penetration force. It can be judged that it is very expensive.
Therefore, if it is determined in step S103 that the area ratio AR obtained in step S102 is greater than or equal to the set value SL, the process proceeds to step S108.

ステップS108では、標準の噴射制御である、1サイクル当たり噴射パルス幅TIでの噴射を1回行わせるようにし、また、燃圧については、前述の目標燃圧TGFUPR(標準燃圧)に制御させ、貫徹力を変更するための処理は実施しない。
即ち、面積割合ARが設定値SL以上である場合は、燃料噴霧の貫徹力を変更しなくとも、十分な均質度が得られる状態であり、逆に、貫徹力の変更は、面積割合AR(均質度)を低下させる可能性があるので、噴射制御、燃圧制御を変更せず、標準制御(1サイクル当たり噴射パルス幅TIでの1回噴射、目標燃圧TGFUPRに基づく燃圧制御)を行わせる。
In step S108, the standard injection control, that is, the injection with the injection pulse width TI per cycle is performed once, and the fuel pressure is controlled to the above-described target fuel pressure TGFUPR (standard fuel pressure). The process for changing is not performed.
That is, when the area ratio AR is equal to or greater than the set value SL, a sufficient degree of homogeneity can be obtained without changing the penetration force of the fuel spray. Therefore, standard control (single injection with an injection pulse width TI per cycle, fuel pressure control based on the target fuel pressure TGFUPR) is performed without changing the injection control and the fuel pressure control.

一方、面積割合ARが設定値SLを下回る場合には、貫徹力を変更せずに燃料噴射を行わせると、筒内における混合気の均質度の低下によって、目標よりも燃費性能や排気性状が低くなってしまう可能性がある。
そこで、ステップS104以降へ進んで、面積割合ARが設定値SL以上となるように、燃料噴霧の貫徹力を変更する処理を実施する。換言すれば、燃料噴霧の偏向によって面積割合ARが設定値SLを下回る条件であるから、燃料噴霧の偏向を抑制する方向に貫徹力を変更し、面積割合ARが設定値SL以上となる指向方向に近づけるようにする。
On the other hand, when the area ratio AR is lower than the set value SL, if the fuel injection is performed without changing the penetration force, the fuel efficiency and the exhaust property are more than the target due to the decrease in the homogeneity of the air-fuel mixture in the cylinder. There is a possibility of lowering.
Therefore, the process proceeds to step S104 and subsequent steps, and a process of changing the penetration force of the fuel spray is performed so that the area ratio AR becomes equal to or larger than the set value SL. In other words, since the area ratio AR is less than the set value SL due to the deflection of the fuel spray, the penetration force is changed in a direction to suppress the deflection of the fuel spray and the area ratio AR is equal to or greater than the set value SL. To be close to.

ステップS104では、面積割合ARを設定値SL以上とするための要求貫徹力をそのときのガス流速に基づいて演算する。
ここで、ガス流速の標準状態からの増大によって面積割合ARが設定値SLを下回る場合には、噴射パルス幅TIでの貫徹力よりも大きな貫徹力が要求値として演算されることになり、逆に、ガス流速の標準状態からの減少によって面積割合ARが設定値SLを下回る場合には、噴射パルス幅TIでの貫徹力よりも小さな貫徹力が要求値として演算されることになる。
In step S104, the required penetration force for setting the area ratio AR to be equal to or greater than the set value SL is calculated based on the gas flow rate at that time.
Here, when the area ratio AR falls below the set value SL due to an increase in the gas flow rate from the standard state, a penetration force larger than the penetration force at the injection pulse width TI is calculated as a required value. In addition, when the area ratio AR falls below the set value SL due to a decrease in the gas flow rate from the standard state, a penetration force smaller than the penetration force at the injection pulse width TI is calculated as the required value.

ステップS105では、ステップS104で求めた要求貫徹力と、ステップS102で面積割合ARを求めたときの標準貫徹力(1サイクル当たり噴射パルス幅TIでの噴射を1回行わせた場合の貫徹力)とを比較し、要求貫徹力を得るためには、貫徹力を増大させるのか減少させるのかを判別する。
そして、噴射パルス幅TIでの貫徹力が要求貫徹力よりも高く、貫徹力を弱めることで面積割合AR(均質度)を増大させることができる場合は、ステップS106へ進む。
In step S105, the required penetrating force obtained in step S104 and the standard penetrating force obtained when the area ratio AR is obtained in step S102 (the penetrating force when one injection is performed with the injection pulse width TI per cycle). In order to obtain the required penetrating force, it is determined whether the penetrating force is increased or decreased.
If the penetration force at the injection pulse width TI is higher than the required penetration force, and the area ratio AR (homogeneity) can be increased by reducing the penetration force, the process proceeds to step S106.

ステップS106では、燃料噴射弁3から噴射される燃料噴霧の貫徹力を標準よりも弱める設定を行う。
尚、標準の貫徹力とは、燃圧を目標燃圧TGFUPRに制御して、ステップS108で燃料噴射に用いた燃料噴射弁3によって、1サイクル当たり噴射パルス幅TIでの噴射を1回行わせた場合の貫徹力である。
燃料噴霧の貫徹力を標準よりも弱める処理として、噴射パルス幅TIでの噴射を1回行わせる設定を、噴射パルス幅TIを複数回に分けて噴射させる分割噴射に変更することができる。
In step S106, a setting is made to weaken the penetration force of the fuel spray injected from the fuel injection valve 3 from the standard.
The standard penetrating force means that the fuel pressure is controlled to the target fuel pressure TGFUPR, and the fuel injection valve 3 used for fuel injection in step S108 performs one injection with an injection pulse width TI per cycle. It is the penetration power of.
As a process for weakening the penetration force of the fuel spray from the standard, the setting for performing the injection with the injection pulse width TI once can be changed to the divided injection for performing the injection with the injection pulse width TI divided into a plurality of times.

図4に示したように、噴射パルス幅が短くなると、噴霧流速が遅くなって貫徹力が弱くなるので、分割噴射によって1回当たりの噴射パルス幅を短くすれば、総量として同じ量の燃料を噴射させながら、燃料噴霧の貫徹力を弱めて要求貫徹力に近づけることができる。そして、燃料噴霧の貫徹力が要求貫徹力に近づけば、面積割合ARが増大して、混合気の均質度が増し、燃費性能や排気性状が改善される。
噴射パルス幅TIでの貫徹力が要求貫徹力よりも高い場合には、ガス流速に対して貫徹力が過大であるために、吸気ポート2内のガス流に影響されての偏向が過少となっている状態であり、貫徹力を弱めれば、相対的にガス流に影響されての燃料噴霧の偏向が大きくなり、混合気の均質度が高くなる方向に燃料噴霧の指向方向を偏向できることになる。
As shown in FIG. 4, when the injection pulse width is shortened, the spray flow rate is slowed down and the penetration force is weakened. Therefore, if the injection pulse width per injection is shortened by divided injection, the same amount of fuel as the total amount can be obtained. While spraying, the penetration force of the fuel spray can be weakened to approach the required penetration force. When the fuel spray penetration force approaches the required penetration force, the area ratio AR increases, the homogeneity of the air-fuel mixture increases, and the fuel efficiency and exhaust properties are improved.
When the penetrating force at the injection pulse width TI is higher than the required penetrating force, the penetrating force is excessive with respect to the gas flow velocity, so that the deflection caused by the gas flow in the intake port 2 becomes too small. If the penetration force is weakened, the deflection of the fuel spray relatively affected by the gas flow becomes larger, and the direction of the fuel spray can be deflected in the direction in which the homogeneity of the mixture becomes higher. Become.

分割噴射においては、そのときのガス流速において要求貫徹力が得られる噴射パルス幅をそのときのガス流速に基づいて決定し、この要求貫徹力が得られる噴射パルス幅TIPNを噴射パルス幅TIで除算したときの商の小数点以下を切り捨てた整数値をNとする。
ここで、Nは、噴射パルス幅TIPNでの噴射回数を示すことになる。
尚、簡易には、噴射パルス幅TIPNを固定値として予め記憶しておくことができる。
In the divided injection, the injection pulse width at which the required penetration force is obtained at the current gas flow rate is determined based on the gas flow velocity at that time, and the injection pulse width TIPN at which the required penetration force is obtained is divided by the injection pulse width TI. Let N be the integer value obtained by rounding down the fractional part of the quotient.
Here, N indicates the number of injections with the injection pulse width TIPN.
For simplicity, the injection pulse width TIPN can be stored in advance as a fixed value.

そして、図5(B)に示すように、噴射パルス幅TIPNの噴射をN回だけ行った総和のパルスと、噴射パルス幅TIとの差分(差分=TI−TIPN×N)が、燃料噴射弁3における最小噴射パルス幅TIMIN未満であれば(0≦差分<TIMIN)、噴射パルス幅TIPNの噴射を同一吸気行程中にN回だけ行う分割噴射を行わせる。
最小噴射パルス幅TIMINとは、燃料噴射弁3において噴射パルス幅に比例する噴射量が得られる最小の噴射パルス幅であり、最小噴射パルス幅TIMIN未満の噴射パルス幅で噴射させた場合には、噴射量が不定となってしまう。
Then, as shown in FIG. 5B, the difference between the sum pulse obtained by performing the injection with the injection pulse width TIPN only N times and the injection pulse width TI (difference = TI−TIPN × N) is the fuel injection valve. If it is less than the minimum injection pulse width TIMIN 3 (0 ≦ difference <TIMIN), the injection with the injection pulse width TIPN is performed N times during the same intake stroke.
The minimum injection pulse width TIMIN is the minimum injection pulse width at which the fuel injection valve 3 can obtain an injection amount proportional to the injection pulse width. When injection is performed with an injection pulse width less than the minimum injection pulse width TIMIN, The injection amount becomes indefinite.

そこで、最小噴射パルス幅TIMIN未満の噴射パルス幅での噴射を行わせずに、噴射パルス幅TIPNの噴射を同一吸気行程中にN回だけ行わせる分割噴射を実施させる。このとき、噴射パルス幅TIに対して、分割噴射の総噴射パルス幅が、最小噴射パルス幅TIMIN未満の時間だけ不足することになるが、空燃比のずれは許容範囲内に抑えることができる。
一方、図5(A)に示すように、噴射パルス幅TIPNの噴射をN回だけ行った総和のパルスと、噴射パルス幅TIとの差分(差分=TI−TIPN×N)が、燃料噴射弁3における最小噴射パルス幅TIMIN以上であれば(TIMIN≦差分<TIPN)、噴射パルス幅TIPNによるN回の噴射と、差分(差分=TI−TIPN×N)による1回の噴射との計「N+1」回の噴射を同一吸気行程中に行わせる分割噴射を実施させる。
Therefore, split injection is performed in which injection with an injection pulse width TIPN is performed N times during the same intake stroke without performing injection with an injection pulse width less than the minimum injection pulse width TIMIN. At this time, the total injection pulse width of the divided injection is insufficient with respect to the injection pulse width TI for a time shorter than the minimum injection pulse width TIMIN, but the deviation of the air-fuel ratio can be suppressed within an allowable range.
On the other hand, as shown in FIG. 5A, the difference (difference = TI−TIPN × N) between the total pulse obtained by performing the injection with the injection pulse width TIPN only N times and the injection pulse width TI is the fuel injection valve. 3 is equal to or greater than the minimum injection pulse width TIMIN (TIMIN ≦ difference <TIPN), the sum of N injections with the injection pulse width TIPN and one injection with the difference (difference = TI−TIPN × N) is “N + 1” The divided injection is performed so that the number of injections is performed during the same intake stroke.

ここで、差分に相当するパルス幅での噴射では、要求貫徹力よりも弱い貫徹力の燃料噴霧が噴射されることになるが、混合気は、主に噴射パルス幅TIPNによるN回の噴射で形成されることになるから、混合気の均質度を十分に高めることができる。
上記のようにして、噴射パルス幅TIの噴射を吸気行程中に1回だけ行わせる噴射から、吸気行程中に噴射パルス幅TIを複数回に分けて噴射させる分割噴射に切り替えることで、燃料噴霧の貫徹力を弱め、ガス流速に対して貫徹力が過大になって噴霧の指向方向が最適方向からずれ、面積割合AR(均質度)が低下することを抑制する。
換言すれば、ガス流速の低下に応じて燃料噴霧の貫徹力を弱めることで、燃料噴霧の指向方向がガス流速の低下に伴って変化し、面積割合AR(均質度)が低下することを抑制する。
Here, in the injection with the pulse width corresponding to the difference, a fuel spray having a penetration force weaker than the required penetration force is injected, but the air-fuel mixture is mainly injected N times with the injection pulse width TIPN. Since it is formed, the homogeneity of the air-fuel mixture can be sufficiently increased.
As described above, the fuel spray is switched from the injection in which the injection with the injection pulse width TI is performed only once during the intake stroke to the divided injection in which the injection pulse width TI is divided into a plurality of times during the intake stroke. The penetration force is reduced, the penetration force is excessive with respect to the gas flow rate, the spray directing direction is deviated from the optimum direction, and the area ratio AR (homogeneity) is suppressed from decreasing.
In other words, by reducing the penetration force of the fuel spray according to the decrease in the gas flow rate, the directing direction of the fuel spray changes with the decrease in the gas flow rate, and the area ratio AR (homogeneity) is suppressed from decreasing. To do.

上記のように分割噴射によって1回当たりの噴射時間を短くする処理の他、燃料噴射弁3に対する燃料の供給圧(燃圧)を標準燃圧(目標燃圧TGFUPR)よりも低下させることによっても、燃料噴霧の貫徹力を弱めることができる。
即ち、図6に示すように、燃圧が高くなるほど、燃料噴霧の速度が速くなり、燃料噴霧の速度が速くなることで貫徹力が高くなるので、燃料圧力を低下させることで、燃料噴霧の貫徹力を低下させることができる。
In addition to the process of shortening the injection time per time by split injection as described above, the fuel spray is also reduced by lowering the fuel supply pressure (fuel pressure) to the fuel injection valve 3 below the standard fuel pressure (target fuel pressure TGFUPR). You can weaken the penetrating power.
That is, as shown in FIG. 6, the higher the fuel pressure, the faster the fuel spray speed, and the faster the fuel spray speed, the higher the penetration force. By reducing the fuel pressure, the fuel spray penetration is increased. The power can be reduced.

燃圧を低下させて貫徹力を弱める場合には、ガス流速及び噴射パルス幅TIの条件に対して要求貫徹力を得られる燃圧(<標準燃圧)を求め、当該燃圧を目標値として、燃料ポンプ12(モータ)の駆動デューティ比を制御させるようにする。
尚、簡易には、ガス流速と噴射パルス幅TIとのいずれか一方と要求貫徹力とに基づいて、要求貫徹力を得るための燃圧を設定し、又は、貫徹力を弱めるための燃圧を固定値として予め記憶しておくことができる。
When the penetration pressure is weakened by lowering the fuel pressure, a fuel pressure (<standard fuel pressure) that obtains the required penetration force with respect to the conditions of the gas flow velocity and the injection pulse width TI is obtained, and the fuel pump 12 The drive duty ratio of the (motor) is controlled.
For simplicity, set the fuel pressure to obtain the required penetration force based on either the gas flow velocity or the injection pulse width TI and the required penetration force, or fix the fuel pressure to weaken the penetration force. It can be stored in advance as a value.

また、燃圧の低下と分割噴射とを同時に実行して燃料噴霧の貫徹力を低下させたり、条件に応じて燃圧の低下と分割噴射とのいずれか一方を切り替えて実行させたりすることができる。
例えば、噴射パルス幅TIが長く、分割噴射のみで貫徹力を要求値にまで低下させようとした場合に、分割数が多くなって吸気行程中に分割噴射を終了させることができない場合に、燃圧を低下させることで、分割数を減らし(1回当たりの噴射パルス幅を増やし)、吸気行程中に分割噴射が終了するようにできる。
Further, the fuel pressure can be decreased and the divided injection can be simultaneously performed to reduce the penetration force of the fuel spray, or the fuel pressure can be decreased and the divided injection can be switched depending on the conditions.
For example, when the injection pulse width TI is long and the penetration force is to be reduced to the required value only by the divided injection, the fuel pressure is increased when the number of divisions increases and the divided injection cannot be terminated during the intake stroke. By reducing the number, it is possible to reduce the number of divisions (increase the injection pulse width per one time) and end the divided injection during the intake stroke.

分割噴射においては、噴射終了から噴射開始までの間隔時間を一定時間以上とする必要があり、間隔時間の分だけ、分割噴射の初回の開始から最終回の噴射終了までの時間が、噴射パルス幅TIよりも長くなり、分割数が多くなると、吸気行程中に全ての燃料を噴射させることができなくなる可能性がある。
ここで、燃圧を低下させれば、要求貫徹力が得られる噴射パルス幅がより長くなって分割数が減り、分割数が減ることで噴射期間を短くして、吸気行程中に全ての燃料を噴射させることができるようになる。
In split injection, the interval time from the end of injection to the start of injection needs to be a certain time or more, and the time from the first start of split injection to the end of the final injection is the injection pulse width by the interval time. If it becomes longer than TI and the number of divisions increases, it may become impossible to inject all the fuel during the intake stroke.
Here, if the fuel pressure is lowered, the injection pulse width that provides the required penetration force becomes longer and the number of divisions decreases, and by reducing the number of divisions, the injection period is shortened and all the fuel is removed during the intake stroke. It becomes possible to make it spray.

また、図7に示すように、同じ噴射パルス幅のときの貫徹力が異なる2本の燃料噴射弁3a,3bを各気筒に設け、例えば、ステップS108へ進んだ場合には、2本の燃料噴射弁3a,3bのうちで、貫徹力がより高い方の燃料噴射弁3aで燃料噴射を行わせ、ステップS106へ進んだ場合には、貫徹力がより弱い方の燃料噴射弁3bで燃料噴射を行わせることができる。   Also, as shown in FIG. 7, two fuel injection valves 3a and 3b having different penetration forces at the same injection pulse width are provided in each cylinder. For example, when the process proceeds to step S108, two fuel injection valves 3a and 3b are provided. When fuel injection is performed by the fuel injection valve 3a having the higher penetration force among the injection valves 3a and 3b and the process proceeds to step S106, fuel injection is performed by the fuel injection valve 3b having the weaker penetration force. Can be performed.

上記の貫徹力が相互に異なる2本の燃料噴射弁3a,3bは、相互に燃料噴霧の粒径が異なる、及び/又は、燃料噴霧の流速が異なる燃料噴射弁である。
また、上記のような貫徹力がより弱い燃料噴霧を噴射する燃料噴射弁3への切り替えと、分割噴射と燃圧低下との少なくとも一方とを組み合わせて実行することで、貫徹力を低下させることもできる。
The two fuel injection valves 3a, 3b having different penetrating forces are fuel injection valves having different fuel spray particle sizes and / or different fuel spray flow rates.
In addition, the penetration force may be reduced by performing a combination of switching to the fuel injection valve 3 that injects fuel spray having a weaker penetration force as described above and at least one of divided injection and fuel pressure reduction. it can.

一方、ステップS105で、噴射パルス幅TIでの貫徹力が要求貫徹力よりも低く、貫徹力を強めることで面積割合AR(均質度)を増大させることができると判断した場合には、ステップS107へ進む。
ステップS107では、燃料噴霧の貫徹力を標準よりも強める処理を行う。
On the other hand, if it is determined in step S105 that the penetration force at the injection pulse width TI is lower than the required penetration force and the penetration ratio can be increased, the area ratio AR (homogeneity) can be increased. Proceed to
In step S107, processing for increasing the penetration force of fuel spray from the standard is performed.

燃料噴霧の貫徹力を強める処理として、燃料噴射弁3に対する燃料の供給圧(燃圧)を増大させる処理を行わせることができる。
図6に示すように、燃圧が高くなるほど、燃料噴霧の速度が速くなり、燃料噴霧の速度が速くなることで貫徹力が高くなるので、燃料圧力を増大させることで、燃料噴霧の貫徹力を強めることができる。
As a process of increasing the penetration force of fuel spray, a process of increasing the fuel supply pressure (fuel pressure) to the fuel injection valve 3 can be performed.
As shown in FIG. 6, the higher the fuel pressure, the faster the fuel spray speed, and the faster the fuel spray speed, the higher the penetration force. By increasing the fuel pressure, the fuel spray penetration power is increased. Can strengthen.

また、燃料噴霧の貫徹力を強める処理としては、ステップS108での燃料噴射で用いる燃料噴射弁3は別に、燃料噴霧の貫徹力がより強い燃料噴射弁3を、各気筒に設けるようにして、ステップS107では、2本の燃料噴射弁3のうちの燃料噴霧の貫徹力がより強い方の燃料噴射弁3を用いるようにすることができる。
尚、ステップS108で用いる燃料噴射弁の他に、より貫徹力が強い又は弱い燃料噴射弁を設けるようにし、燃料噴射弁の切り替えによる貫徹力の調整を、ステップS106とステップS107とのいずれか一方で行わせることができる。また、貫徹力が大中小の3種類となる3本の燃料噴射弁を各気筒に設け、ステップS108では貫徹力が中程度の燃料噴射弁を用い、ステップS107では貫徹力が最も強い燃料噴射弁を用い、ステップS106では貫徹力が最も弱い燃料噴射弁を用いることができる。
Further, as a process for increasing the penetration force of the fuel spray, a fuel injection valve 3 having a stronger penetration force of the fuel spray is provided in each cylinder separately from the fuel injection valve 3 used in the fuel injection in step S108. In step S107, the fuel injection valve 3 having the stronger penetration force of the fuel spray of the two fuel injection valves 3 can be used.
In addition to the fuel injection valve used in step S108, a fuel injection valve having a stronger or weaker penetration force is provided, and adjustment of the penetration force by switching the fuel injection valve is performed in one of steps S106 and S107. Can be done. Further, three fuel injection valves having three penetration forces of large, medium, and small are provided in each cylinder. A fuel injection valve having a medium penetration force is used in step S108, and a fuel injection valve having the strongest penetration force in step S107. In step S106, it is possible to use the fuel injection valve having the weakest penetration force.

また、貫徹力を低下させて要求貫徹力に近づける制御(ステップS106)を実行する一方で、貫徹力を増大させて要求貫徹力に近づける制御(ステップS107)を省略することができる。逆に、貫徹力を増大させて要求貫徹力に近づける制御(ステップS107)を実行する一方で、貫徹力を減少させて要求貫徹力に近づける制御(ステップS106)を省略することができる。   Moreover, while executing the control to reduce the penetration force and approach the required penetration force (step S106), the control to increase the penetration force and approximate the required penetration force (step S107) can be omitted. Conversely, the control for increasing the penetration force to approach the required penetration force (step S107), while the control for reducing the penetration force to approach the required penetration force (step S106) can be omitted.

また、上記実施形態では、燃料噴霧の偏向を判断する状態量として面積割合ARを設定し、当該面積割合ARに基づいて貫徹力の変更を必要としているか否かを判断するが、面積割合ARを設定することなく、貫徹力の変更処理を実施させることができる。例えば、ステップS102において、ガス流速と噴射パルス幅TIでの噴霧の貫徹力とから、分割噴射における1回当たりの噴射パルス幅や燃圧を決定させることができる。
また、燃料噴霧の貫徹力を変化させる手段として、公知の手段を適宜選択することができ、ガス流速の変化に伴う燃料噴霧の偏向を抑制する方向に、貫徹力を変化させるという技術的思想の範囲内において種々の異なる実施の形態にて実施され得るものである。
In the above embodiment, the area ratio AR is set as a state quantity for determining the deflection of the fuel spray, and it is determined whether or not the penetration force needs to be changed based on the area ratio AR. Without setting, it is possible to change the penetration force. For example, in step S102, it is possible to determine the injection pulse width and the fuel pressure per one time in the divided injection from the gas flow velocity and the spray penetration force at the injection pulse width TI.
Further, as a means for changing the penetration force of the fuel spray, a known means can be selected as appropriate, and the technical idea of changing the penetration force in a direction to suppress the deflection of the fuel spray accompanying the change of the gas flow rate. It can be implemented in various different embodiments within the scope.

ここで、上記実施形態から把握し得る請求項以外の技術的思想について、以下に効果と共に記載する。
(イ)燃料噴霧の粒径と流速との少なくとも一方を変更することで、燃料噴霧の貫徹力を変化させる、請求項1記載の内燃機関の制御装置。
上記発明によると、燃料噴霧の粒径及び流速に応じて貫徹力が変化するので、粒径と流速との少なくとも一方を変更して、燃料噴霧の前記吸気ポート内での偏向を抑制する方向に貫徹力を変化させる。
ここで、燃料噴霧の流速が速くなれば貫徹力は強くなり、燃料噴霧の粒径が大きくなると貫徹力は強くなるので、例えば、燃料噴霧の偏向を抑制するために貫徹力を強くする必要がある場合には、燃料噴霧の流速をより速くするか、及び/又は、燃料噴霧の粒径をより大きくする。
Here, technical ideas other than the claims that can be grasped from the above embodiment will be described together with effects.
(A) The control device for an internal combustion engine according to claim 1, wherein the penetration force of the fuel spray is changed by changing at least one of the particle size and the flow velocity of the fuel spray.
According to the above invention, the penetrating force changes according to the particle size and flow velocity of the fuel spray, so that at least one of the particle size and the flow velocity is changed to suppress the deflection of the fuel spray in the intake port. Change penetrating power.
Here, the penetration force increases as the flow rate of the fuel spray increases, and the penetration force increases as the particle size of the fuel spray increases. For example, it is necessary to increase the penetration force to suppress the deflection of the fuel spray. In some cases, the fuel spray flow rate is increased and / or the fuel spray particle size is increased.

(ロ)燃料噴霧の偏向を抑制するために貫徹力を弱める場合に、1サイクル当たりの燃料量を1回で噴射する一括噴射から、1サイクル当たりの燃料量を複数回に分けて噴射する分割噴射に切り替える、請求項3記載の内燃機関の制御装置。
上記発明によると、ガス流速の変化に伴って貫徹力が過大となり、燃料噴霧の指向方向が偏向してしまう場合には、一括噴射から1サイクル当たりの燃料量を複数回に分けて噴射する分割噴射に切り替えることで、燃料噴霧の流速を遅くし、燃料噴霧の貫徹力を低下させる。
(B) When the penetration force is weakened in order to suppress the deflection of the fuel spray, the fuel amount per cycle is divided into a plurality of times from the batch injection that injects the fuel amount per cycle once. The control apparatus for an internal combustion engine according to claim 3, wherein the control is switched to injection.
According to the above invention, when the penetrating force becomes excessive with the change in the gas flow rate and the fuel spray directing direction is deflected, the fuel amount per cycle is divided into multiple injections from the batch injection. By switching to injection, the flow rate of fuel spray is slowed and the penetration force of fuel spray is reduced.

(ハ)吸気ポート内におけるガス流速を、内燃機関の回転速度及び内燃機関の負荷に基づいて推定する、請求項1〜3記載の内燃機関の制御装置。
上記発明によると、吸気ポート内におけるガス流速を、機関回転速度及び機関負荷に基づき推定し、推定したガス流速の増減による燃料噴霧の偏向を抑制するように、貫徹力を変化させる。
(C) The control device for an internal combustion engine according to any one of claims 1 to 3, wherein the gas flow velocity in the intake port is estimated based on a rotational speed of the internal combustion engine and a load of the internal combustion engine.
According to the above invention, the gas flow velocity in the intake port is estimated based on the engine rotation speed and the engine load, and the penetration force is changed so as to suppress the deflection of the fuel spray due to the increase or decrease in the estimated gas flow velocity.

1…内燃機関(エンジン)、3…燃料噴射弁、11…燃料タンク、12…燃料ポンプ、14…圧力調整弁(プレッシャレギュレータ)、15…燃料ギャラリー配管、16…燃料供給配管、17…燃料戻し配管、30…FPCM(フューエル・ポンプ・コントロール・モジュール)、31…ECM(エンジン・コントロール・モジュール)、33…燃料圧力センサ(圧力検出手段)   DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine (engine), 3 ... Fuel injection valve, 11 ... Fuel tank, 12 ... Fuel pump, 14 ... Pressure regulating valve (pressure regulator), 15 ... Fuel gallery piping, 16 ... Fuel supply piping, 17 ... Fuel return Piping, 30 ... FPCM (Fuel pump control module), 31 ... ECM (Engine control module), 33 ... Fuel pressure sensor (pressure detection means)

Claims (3)

吸気行程において吸気ポート内に燃料を噴射する燃料噴射弁を備えた内燃機関に適用される制御装置において、
前記吸気ポート内におけるガス流速の増減に対して、前記燃料噴射弁から噴射される燃料噴霧の前記吸気ポート内での偏向を抑制する方向に、前記燃料噴霧の貫徹力を変化させる、内燃機関の制御装置。
In a control device applied to an internal combustion engine having a fuel injection valve that injects fuel into an intake port in an intake stroke,
An internal combustion engine that changes a penetration force of the fuel spray in a direction that suppresses a deflection of the fuel spray injected from the fuel injection valve in the intake port with respect to an increase or decrease in a gas flow velocity in the intake port. Control device.
前記吸気ポート内におけるガス流速の減少に対して、前記燃料噴霧の貫徹力を減少させ、かつ、前記燃料噴射弁の1サイクル当たりの開弁時間の増大に対して、前記燃料噴霧の貫徹力を減少させる、請求項1記載の内燃機関の制御装置。   The penetration force of the fuel spray is decreased with respect to the decrease in the gas flow velocity in the intake port, and the penetration force of the fuel spray is increased with respect to the increase in the valve opening time per cycle of the fuel injection valve. The control device for an internal combustion engine according to claim 1, wherein the control device is decreased. 前記燃料噴射弁による燃料噴射の分割回数の変更、前記燃料噴射弁に供給される燃料の圧力の変更、燃料を噴射させる燃料噴射弁の切り替えのうちの少なくとも1つによって、前記燃料噴霧の貫徹力を変化させる、請求項1又は2記載の内燃機関の制御装置。   The penetration force of the fuel spray by at least one of a change in the number of divisions of fuel injection by the fuel injection valve, a change in the pressure of fuel supplied to the fuel injection valve, and a switching of the fuel injection valve for injecting fuel The control device for an internal combustion engine according to claim 1 or 2, wherein
JP2012207919A 2012-09-21 2012-09-21 Control device for internal combustion engine Active JP6067295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012207919A JP6067295B2 (en) 2012-09-21 2012-09-21 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012207919A JP6067295B2 (en) 2012-09-21 2012-09-21 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2014062493A true JP2014062493A (en) 2014-04-10
JP6067295B2 JP6067295B2 (en) 2017-01-25

Family

ID=50617931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012207919A Active JP6067295B2 (en) 2012-09-21 2012-09-21 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6067295B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031343A (en) * 2016-08-26 2018-03-01 株式会社デンソー Filter module and fuel pump module using the same
WO2018155141A1 (en) * 2017-02-24 2018-08-30 日立オートモティブシステムズ株式会社 Vehicle control device
WO2019150146A1 (en) * 2018-02-01 2019-08-08 日産自動車株式会社 Fuel injection control method for spark ignition-type combustion engine, and fuel injection device
WO2022059262A1 (en) * 2020-09-17 2022-03-24 日立Astemo株式会社 Internal combustion engine and fuel injection valve

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126012A (en) * 1991-11-01 1993-05-21 Hitachi Ltd Electric control fuel injection device for internal combustion engine
JPH05263698A (en) * 1992-03-18 1993-10-12 Toyota Motor Corp Fuel pressure control device of internal combustion engine of fuel injection type
JP2001263142A (en) * 2000-03-15 2001-09-26 Hitachi Ltd Fuel injection device for internal combustion engine
JP2002161790A (en) * 2000-11-27 2002-06-07 Nissan Motor Co Ltd Combustion control device for direct injection/spark ignition type internal combustion engine
JP2002339789A (en) * 2001-05-16 2002-11-27 Mazda Motor Corp Control device for spark ignition type direct-injection engine and fuel injection time setting method
JP2003262175A (en) * 2002-03-07 2003-09-19 Nissan Motor Co Ltd Internal combustion engine
JP2003286879A (en) * 2002-03-27 2003-10-10 Mazda Motor Corp Combustion control device for diesel engine
JP2003314413A (en) * 2002-04-18 2003-11-06 Nissan Motor Co Ltd Fuel injection device of internal combustion engine
JP2005090369A (en) * 2003-09-18 2005-04-07 Toyota Motor Corp Two cycle type internal combustion engine enabling self-ignition operation for self-igniting air-fuel mixture by compression
JP2007224753A (en) * 2006-02-21 2007-09-06 Mazda Motor Corp Spark ignition type direct injection engine
JP2008163824A (en) * 2006-12-28 2008-07-17 Toyota Motor Corp Intake flow control device of internal combustion engine
JP2008202534A (en) * 2007-02-21 2008-09-04 Toyota Motor Corp Fuel injection control device for cylinder injection type internal combustion engine
JP2011190741A (en) * 2010-03-15 2011-09-29 Hitachi Automotive Systems Ltd Fuel injection control device of internal combustion engine for vehicle

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126012A (en) * 1991-11-01 1993-05-21 Hitachi Ltd Electric control fuel injection device for internal combustion engine
JPH05263698A (en) * 1992-03-18 1993-10-12 Toyota Motor Corp Fuel pressure control device of internal combustion engine of fuel injection type
JP2001263142A (en) * 2000-03-15 2001-09-26 Hitachi Ltd Fuel injection device for internal combustion engine
JP2002161790A (en) * 2000-11-27 2002-06-07 Nissan Motor Co Ltd Combustion control device for direct injection/spark ignition type internal combustion engine
JP2002339789A (en) * 2001-05-16 2002-11-27 Mazda Motor Corp Control device for spark ignition type direct-injection engine and fuel injection time setting method
JP2003262175A (en) * 2002-03-07 2003-09-19 Nissan Motor Co Ltd Internal combustion engine
JP2003286879A (en) * 2002-03-27 2003-10-10 Mazda Motor Corp Combustion control device for diesel engine
JP2003314413A (en) * 2002-04-18 2003-11-06 Nissan Motor Co Ltd Fuel injection device of internal combustion engine
JP2005090369A (en) * 2003-09-18 2005-04-07 Toyota Motor Corp Two cycle type internal combustion engine enabling self-ignition operation for self-igniting air-fuel mixture by compression
JP2007224753A (en) * 2006-02-21 2007-09-06 Mazda Motor Corp Spark ignition type direct injection engine
JP2008163824A (en) * 2006-12-28 2008-07-17 Toyota Motor Corp Intake flow control device of internal combustion engine
JP2008202534A (en) * 2007-02-21 2008-09-04 Toyota Motor Corp Fuel injection control device for cylinder injection type internal combustion engine
JP2011190741A (en) * 2010-03-15 2011-09-29 Hitachi Automotive Systems Ltd Fuel injection control device of internal combustion engine for vehicle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10690096B2 (en) 2016-08-26 2020-06-23 Denso Corporation Filter module and fuel pump module utilizing same
CN109642526A (en) * 2016-08-26 2019-04-16 株式会社电装 Filter module and the fuel pump module for using the filter module
JP2018031343A (en) * 2016-08-26 2018-03-01 株式会社デンソー Filter module and fuel pump module using the same
WO2018155141A1 (en) * 2017-02-24 2018-08-30 日立オートモティブシステムズ株式会社 Vehicle control device
JP2018135866A (en) * 2017-02-24 2018-08-30 日立オートモティブシステムズ株式会社 Vehicle control device
CN110291284A (en) * 2017-02-24 2019-09-27 日立汽车系统株式会社 Vehicle console device
US11143131B2 (en) 2017-02-24 2021-10-12 Hitachi Automotive Systems, Ltd. Vehicle control device
JP7013133B2 (en) 2017-02-24 2022-01-31 日立Astemo株式会社 Vehicle control device
CN110291284B (en) * 2017-02-24 2022-05-13 日立安斯泰莫株式会社 Vehicle control device
WO2019150146A1 (en) * 2018-02-01 2019-08-08 日産自動車株式会社 Fuel injection control method for spark ignition-type combustion engine, and fuel injection device
WO2022059262A1 (en) * 2020-09-17 2022-03-24 日立Astemo株式会社 Internal combustion engine and fuel injection valve
JPWO2022059262A1 (en) * 2020-09-17 2022-03-24
JP7365512B2 (en) 2020-09-17 2023-10-19 日立Astemo株式会社 internal combustion engine

Also Published As

Publication number Publication date
JP6067295B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP5951388B2 (en) Control device for internal combustion engine
CN104870774A (en) Engine control device
WO2013038524A1 (en) Internal combustion engine control apparatus
JP6067295B2 (en) Control device for internal combustion engine
JP2006144639A (en) Engine control system
JP4858502B2 (en) EGR device for internal combustion engine
JP5880219B2 (en) Engine fuel property estimation device
JP5121965B2 (en) Control device for internal combustion engine
JP5561427B2 (en) Cetane number estimation device
US10508611B2 (en) Control device and control method for internal combustion engine
JP5475079B2 (en) Fuel pump drive control device for internal combustion engine
US20190120163A1 (en) Dual-fuel internal combustion engine
JP5273314B2 (en) Cetane number estimation device
JP6960370B2 (en) Internal combustion engine fuel injection control device
WO2013061424A1 (en) Fuel injection control device for internal combustion engine
US20120097128A1 (en) Cylinder Injection Engine and Control Device Therefor
JP2012067634A (en) Fuel supply control device of internal combustion engine
JP5498353B2 (en) Spark ignition internal combustion engine
JP6204878B2 (en) Internal combustion engine
JP5890228B2 (en) Fuel injection control device
JP5181890B2 (en) Control device for internal combustion engine
JP2009030515A (en) Fuel injection system for spark ignition type internal combustion engine
JP5742772B2 (en) Engine control device
JP2013068102A (en) Engine control device
JP5729255B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161221

R150 Certificate of patent or registration of utility model

Ref document number: 6067295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250