JP2002161649A - Method and apparatus for controlling active base isolation - Google Patents

Method and apparatus for controlling active base isolation

Info

Publication number
JP2002161649A
JP2002161649A JP2000358347A JP2000358347A JP2002161649A JP 2002161649 A JP2002161649 A JP 2002161649A JP 2000358347 A JP2000358347 A JP 2000358347A JP 2000358347 A JP2000358347 A JP 2000358347A JP 2002161649 A JP2002161649 A JP 2002161649A
Authority
JP
Japan
Prior art keywords
building
floor
relative displacement
absolute acceleration
isolated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000358347A
Other languages
Japanese (ja)
Other versions
JP4587011B2 (en
Inventor
Tomoo Saito
知生 斎藤
Teru Fukukita
輝 福喜多
Kiyoto Shiotani
清人 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2000358347A priority Critical patent/JP4587011B2/en
Publication of JP2002161649A publication Critical patent/JP2002161649A/en
Application granted granted Critical
Publication of JP4587011B2 publication Critical patent/JP4587011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Feedback Control In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling active base isolation, which can implement optimum vibration control according to the circumstances of an installation location and the capacity of an actuator. SOLUTION: There is employed a method for controlling the active base isolation, in which an evaluation function in optimum feedback control is determined by independently weighing the absolute acceleration and the relative displacement of a floor 2A or a building 2B. According to the method, not only both the absolute acceleration and relative displacement of the floor 2A or the building 2B can be reduced, but also it is determined which amount of the absolute acceleration and the relative displacement can be emphatically reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、免震床あるいは免
震建物にアクチュエータを付加して、床あるいは建物を
アクティブに制御するアクティブ免震の制御方法及び制
御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active seismic isolation control method and control apparatus for actively controlling a floor or a building by adding an actuator to a seismic isolated floor or a seismic isolated building.

【0002】[0002]

【従来の技術】半導体工場などの精密生産施設では、地
震時における生産機器類の耐震安全性確保や機能性維持
が強く求められている。この対策としては、工場の一部
に免震床を設置し、特に高価で重要な機器や転倒しやす
い機器をその上に置くという方法が実施されている。
2. Description of the Related Art In precision production facilities such as semiconductor factories, there is a strong demand for ensuring seismic safety and maintaining functionality of production equipment during an earthquake. As a countermeasure, seismic isolation floors are installed in a part of the factory, and especially expensive and important equipment or equipment that easily falls over is placed on it.

【0003】しかし、免震床は地震時に建物との間に大
きな水平方向の相対変位を生ずるため、その周りに十分
なクリアランスを取っておくことが必要となる。半導体
工場などでは、製品が専用の運搬機械によって各行程を
移動するため、生産ラインの中に免震床を設置しようと
した場合、このクリアランスが大きな障害となる。ま
た、通常の免震建物や免震レトロフィットの場合にも、
敷地境界までに十分な距離がなく、クリアランスの確保
に苦労することは少なくない。
[0003] However, since the seismic isolation floor causes a large horizontal relative displacement with the building during an earthquake, it is necessary to provide a sufficient clearance around the floor. In semiconductor factories and the like, products move on each process by dedicated transport machines, and this clearance becomes a major obstacle when attempting to install seismic isolation floors in production lines. Also, in the case of a normal seismic isolated building or seismic isolated retrofit,
There is not enough distance to the site boundary, and it is not difficult to secure clearance.

【0004】このような問題を解決するために、免震床
あるいは免震建物にアクチュエータを付加してアクティ
ブに制御することにより、床あるいは建物の絶対加速度
及び相対変位をさらに抑制し、免震床あるいは免震建物
の周囲に必要とされるクリアランスを減少させることが
狙われている。
[0004] In order to solve such a problem, an actuator is added to a base-isolated floor or a base-isolated building and actively controlled to further suppress the absolute acceleration and relative displacement of the floor or the building, so that a base-isolated floor is provided. Alternatively, the aim is to reduce the required clearance around the base-isolated building.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、設置場
所の状況に応じて、相対変位をどれだけ抑制するかとい
ったことと、アクチュエータの能力に応じて、絶対加速
度をどれだけ抑制するかといったことの両方を同時に参
酌しながら、絶対加速度と相対変位とのどちらを重点的
に抑制するかといったことまでを考慮した最適な振動制
御を実現させることができず、結果的にアクチュエータ
の能力を十分に活用できていないおそれや、余分なクリ
アランスが存在するおそれがあった。
However, both how to suppress the relative displacement according to the situation of the installation location and how to suppress the absolute acceleration according to the capability of the actuator are both. However, it is not possible to realize optimal vibration control that takes into account which of the absolute acceleration and the relative displacement should be prioritized while taking into account There was a possibility that no clearance was present, or that there was an extra clearance.

【0006】本発明は、上記課題に鑑みてなされたもの
で、設置場所の状況やアクチュエータの能力に応じて、
最適な振動制御を実現することができるアクティブ免震
の制御方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and has been made in accordance with the situation of an installation place and the capability of an actuator.
An object of the present invention is to provide a control method of active seismic isolation capable of realizing optimal vibration control.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決して、
このような目的を達成するために、本発明は、免震床あ
るいは免震建物にアクチュエータを付加することによ
り、床あるいは建物の絶対加速度及び相対変位を抑制す
るアクティブ免震の制御方法において、最適状態フィー
ドバック制御における評価関数を、床あるいは建物の絶
対加速度と相対変位とに独立に重みをかける形で構成し
たことを特徴とする。
Means for Solving the Problems To solve the above problems,
In order to achieve such an object, the present invention provides an optimal method for controlling an active seismic isolation system in which an absolute acceleration and a relative displacement of a floor or a building are suppressed by adding an actuator to a base-isolated floor or a building. The evaluation function in the state feedback control is characterized in that the absolute acceleration and the relative displacement of the floor or the building are weighted independently.

【0008】絶対加速度と相対変位は相反する制御量
で、どちらかの制御を強くしていくと、ある段階から必
ずもう一方は逆に大きくなってしまう。ここで、最適状
態フィードバック制御における評価関数を上記のように
構成することにより、単に絶対加速度及び相対変位を同
時に低減するだけでなく、どちらの量を重点的に低減で
きるかまで設計できる。
[0008] The absolute acceleration and the relative displacement are contradictory control amounts, and if one of the controls is strengthened, the other always increases from a certain stage. Here, by configuring the evaluation function in the optimal state feedback control as described above, it is possible not only to reduce the absolute acceleration and the relative displacement at the same time, but also to design which amount can be mainly reduced.

【0009】また、前記評価関数は以下に示す式で表さ
れることを特徴とする。
Further, the evaluation function is represented by the following equation.

【数2】 ただし、uは制御力、yは床あるいは建物の相対変位と
絶対加速度を要素にもつ出力ベクトル、ω0は免震床あ
るいは免震建物の固有角振動数、λは相対変位と絶対加
速度とのいずれを主に抑制したいかを決定するパラメ
タ、gは制御力の大きさを決定するパラメタである。
(Equation 2) Where u is the control force, y is an output vector having the relative displacement and absolute acceleration of the floor or building as elements, ω 0 is the natural angular frequency of the seismic isolated floor or building, and λ is the relative displacement and absolute acceleration. G is a parameter that mainly determines which one is to be suppressed, and g is a parameter that determines the magnitude of the control force.

【0010】また、前記評価関数を用いて最適状態フィ
ードバック制御を行うような制御装置を用いて、免震床
あるいは免震建物のアクティブ制御を行うことにより、
上記の制御方法を有効に実施することができる。
[0010] Further, by performing active control of a base-isolated floor or a base-isolated building by using a control device that performs optimal state feedback control using the evaluation function,
The above control method can be effectively implemented.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態を添付し
た図面を参照しながら説明する。図1は本発明の制御対
象である免震床あるいは免震建物の概略図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic diagram of a base-isolated floor or a base-isolated building to be controlled by the present invention.

【0012】本発明の制御対象は、図1に示すように、
設置場所である基礎1と構造物である床2Aあるいは建
物2Bとの間に免震装置3が介されており、さらに、床
2Aあるいは建物2Bと基礎1との間にアクチュエータ
4が付加されているものである。
The control object of the present invention is as shown in FIG.
A seismic isolation device 3 is interposed between a foundation 1 as an installation place and a floor 2A or a building 2B as a structure, and an actuator 4 is added between the floor 2A or the building 2B and the foundation 1. Is what it is.

【0013】このアクチュエータ4には、床上あるいは
建物内と基礎1との両地点に設置されたセンサ5から得
られた信号が入力されて、アクチュエータ4を指示通り
に動作させるための制御装置6が接続されている。この
制御装置6により、床2Aあるいは建物2Bがアクティ
ブに制御される。
The actuator 4 receives a signal obtained from a sensor 5 installed on the floor or in the building and at both points on the foundation 1 and a control device 6 for operating the actuator 4 as instructed. It is connected. The control device 6 actively controls the floor 2A or the building 2B.

【0014】ここで、図1に示すようなアクティブ免震
床あるいは免震建物を1質点系でモデル化し、固有振動
数をf0、固有角振動数をω0=2πf0、減衰定数をh0
とする。状態フィードバックによる最適制御を行う場
合、状態方程式及び観測方程式は次式で表すことができ
る。
Here, an active base-isolated floor or a base-isolated building as shown in FIG. 1 is modeled by a one-mass system, and the natural frequency is f 0 , the natural angular frequency is ω 0 = 2πf 0 , and the damping constant is h. 0
And When performing optimal control by state feedback, the state equation and the observation equation can be expressed by the following equations.

【数3】 ただし、(Equation 3) However,

【数4】 は床あるいは建物の相対変位と絶対加速度を要素にもつ
出力ベクトル、
(Equation 4) Is an output vector with relative displacement and absolute acceleration of the floor or building as elements.

【数5】 である。(Equation 5) It is.

【0015】ここで、相対変位と絶対加速度とのいずれ
を主に抑制したいかを決定するパラメタλを導入し、制
御力の大きさを決定するパラメタgとともに、次式で評
価関数を定義する。
Here, a parameter λ for determining which one of the relative displacement and the absolute acceleration is to be mainly suppressed is introduced, and an evaluation function is defined by the following equation together with a parameter g for determining the magnitude of the control force.

【数6】 (Equation 6)

【0016】式(2),(8),(9)から、式(1
0)は以下のように書き直せる。
From equations (2), (8) and (9), equation (1)
0) can be rewritten as follows.

【数7】 ただし、(Equation 7) However,

【数8】 (Equation 8)

【0017】これより、最適制御入力が以下のように求
められる。
Thus, the optimum control input is obtained as follows.

【数9】 ここで、Pは以下のリカッチ方程式を解いて得られる正
定対称行列である。
(Equation 9) Here, P is a positive definite symmetric matrix obtained by solving the following Riccati equation.

【数10】 (Equation 10)

【0018】以上の構成により、パラメタgを大きくす
ればするほど制御力は大きくなり、また、パラメタλは
0の時に絶対加速度のみに、1の時には相対変位のみ
に、それぞれ重みが作用し、パラメタλが0から1に変
化するに伴い制御の重点が絶対加速度から相対変位へ移
ることになる。
With the above configuration, the control force increases as the parameter g increases, and the weight acts on only the absolute acceleration when the parameter λ is 0, and only on the relative displacement when the parameter λ is 1, As λ changes from 0 to 1, the emphasis of control shifts from absolute acceleration to relative displacement.

【0019】よって、上記のような評価関数を用いて、
最適状態フィードバック制御を行うことにより、パラメ
タg及びパラメタλの2つを適当に選択するだけで、ア
クチュエータ4の能力の制限の範囲内で、設置状況に応
じて絶対加速度と相対変位のどちらに重点を置いてどの
程度低減するのかを設計することができる。
Therefore, using the above evaluation function,
By performing the optimum state feedback control, only the parameter g and the parameter λ are appropriately selected, and only the absolute acceleration or the relative displacement is emphasized depending on the installation condition within the limit of the capability of the actuator 4. Can be designed to reduce how much.

【0020】すなわち、アクチュエータ4の能力の範囲
内で、設置状況に応じて、免震床あるいは免震建物の周
囲に必要なクリアランスを最小限にすることができ、免
震システムの適用範囲を大幅に拡大することができる。
That is, the clearance required around the base-isolated floor or the base-isolated building can be minimized depending on the installation condition within the range of the capability of the actuator 4, and the applicable range of the base-isolated system is greatly increased. Can be expanded to:

【0021】[0021]

【実施例】上記パラメタλ,gを変化させたときの絶対
加速度及び相対変位に対する制御効果を評価する。免震
床あるいは免震建物の固有振動数及び減衰定数はそれぞ
れf0=0.5Hz,h0=10%とした。評価指数とし
ては、絶対加速度及び相対変位についてそれぞれの伝達
関数のH2ノルム
EXAMPLE The control effect on the absolute acceleration and the relative displacement when the parameters λ and g are changed will be evaluated. The natural frequency and damping constant of the base-isolated floor or the base-isolated building were f 0 = 0.5 Hz and h 0 = 10%, respectively. As the evaluation index, the H 2 norm of each transfer function for the absolute acceleration and the relative displacement

【数11】 をとる。これは白色雑音の加速度が入力した場合の床あ
るいは建物の絶対加速度及び相対変位のrms値に相当
する。
[Equation 11] Take. This corresponds to the rms value of the absolute acceleration and relative displacement of the floor or building when the acceleration of white noise is input.

【0022】評価結果を図2に示す。ここで、図2
(a)は絶対加速度に関する指標、(b)は相対変位に
関する指標であり、それぞれの指標を非制御の場合の指
標により基準化した値で表現している。
FIG. 2 shows the evaluation results. Here, FIG.
(A) is an index relating to the absolute acceleration, and (b) is an index relating to the relative displacement, and each index is represented by a value standardized by the index in the case of no control.

【0023】図2(a)の絶対加速度に関する指標を見
ると、λが0に近いときには、制御力が強まるほど(g
が大きくなるほど)値が小さくなって絶対加速度が低減
することを示しているが、λが1に近いときには、ある
程度以上制御力を強めると絶対加速度が下げ止まり、反
対に上昇に転ずることがわかる。これは、相対変位を抑
制しようとした場合、床2Aあるいは建物2Bが設置場
所である基礎1あるいは地盤と同じ動きをしようとし
て、免震の効果を喪失することによる。
Referring to the index relating to the absolute acceleration in FIG. 2A, when λ is close to 0, the more the control force is increased (g
This indicates that the value decreases and the absolute acceleration decreases. However, when λ is close to 1, it can be seen that the absolute acceleration stops decreasing when the control force is increased to a certain degree and conversely starts to increase. This is because when the relative displacement is to be suppressed, the floor 2A or the building 2B attempts to make the same movement as the foundation 1 or the ground on which the floor 2A is installed, and the effect of seismic isolation is lost.

【0024】逆に、図2(b)の相対変位に関する指標
を見ると、λが1に近いときには、制御力が強まるほど
相対変位も低減するが、λが0に近いときには、ある程
度以上の制御力に対しては値が増加に向かう。
Conversely, looking at the index relating to the relative displacement in FIG. 2B, when λ is close to 1, the relative displacement decreases as the control force increases, but when λ is close to 0, a certain degree of control is obtained. For force, the value tends to increase.

【0025】よって、例えば、免震床あるいは免震建物
の周りにクリアランスを取る余裕が非常に少ない場合に
は、λを1に近くとり、gを102程度に設定すること
により、絶対加速度の低減を多少犠牲にしながらも、相
対変位をパッシブの場合の1/5程度まで抑えることが
できる。この場合でも、絶対加速度についてもパッシブ
の場合と比較するとさらに2割低減できていることがわ
かる。
Therefore, for example, when there is very little room for clearance around the base-isolated floor or the base-isolated building, λ is set close to 1 and g is set to about 10 2 , so that the absolute acceleration The relative displacement can be suppressed to about 1/5 of the passive case, while sacrificing the reduction somewhat. Also in this case, it can be seen that the absolute acceleration can be further reduced by 20% as compared with the passive case.

【0026】[0026]

【発明の効果】本発明によれば、最適状態フィードバッ
ク制御における評価関数を、床あるいは建物の絶対加速
度と相対変位とに独立に重みをかける形で構成したこと
により、絶対加速度と相対変位のどちらを重点的に制御
できるかといったことまで制御できる。これにより、ア
クチュエータの能力の範囲内で、設置状況に応じて、免
震床あるいは免震建物の周囲に必要なクリアランスを最
小限にすることができ、免震システムの適用範囲を大幅
に拡大することができる。
According to the present invention, the evaluation function in the optimal state feedback control is configured to independently weight the absolute acceleration and the relative displacement of the floor or the building. Can be controlled even if it can be controlled. As a result, the required clearance around the base-isolated floor or the base-isolated building can be minimized, depending on the installation conditions, within the range of the capacity of the actuator, and the scope of application of the base-isolated system is greatly expanded. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の制御対象である免震床あるいは免震
建物の概略図である。
FIG. 1 is a schematic view of a base-isolated floor or a base-isolated building to be controlled by the present invention.

【図2】 (a)は本発明による制御方法を用いて行っ
た制御試験の評価指数の絶対加速度を示すグラフであ
り、(b)は、同評価指数の相対変位を示すグラフであ
る。
FIG. 2A is a graph showing an absolute acceleration of an evaluation index of a control test performed using the control method according to the present invention, and FIG. 2B is a graph showing a relative displacement of the evaluation index.

【符号の説明】[Explanation of symbols]

1 基礎 2A 床 2B 建物 3 免震装置 4 アクチュエータ 5 センサ 6 制御装置 DESCRIPTION OF SYMBOLS 1 Foundation 2A Floor 2B Building 3 Seismic isolation device 4 Actuator 5 Sensor 6 Control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩谷 清人 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 Fターム(参考) 3J048 AB07 AD02 EA38 5H004 GA07 GA09 GB20 HA07 HA09 HB07 HB09 KC08  ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Kiyoto Shioya 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Corporation F-term (reference) 3J048 AB07 AD02 EA38 5H004 GA07 GA09 GB20 HA07 HA09 HB07 HB09 KC08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 免震床あるいは免震建物にアクチュエー
タを付加することにより、床あるいは建物の絶対加速度
及び相対変位を抑制するアクティブ免震の制御方法にお
いて、 最適状態フィードバック制御における評価関数を、床あ
るいは建物の絶対加速度と相対変位とに独立に重みをか
ける形で構成したことを特徴とするアクティブ免震の制
御方法。
An active seismic isolation control method for suppressing an absolute acceleration and a relative displacement of a floor or a building by adding an actuator to a floor or a building. Alternatively, an active seismic isolation control method characterized by independently weighting the absolute acceleration and relative displacement of the building.
【請求項2】 前記評価関数は以下に示す式で表される
ことを特徴とする請求項1に記載のアクティブ免震の制
御方法。 【数1】 ただし、uは制御力、yは床あるいは建物の相対変位と
絶対加速度を要素にもつ出力ベクトル、ω0は免震床あ
るいは免震建物の固有角振動数、λは相対変位と絶対加
速度とのいずれを主に抑制したいかを決定するパラメ
タ、gは制御力の大きさを決定するパラメタである。
2. The active seismic isolation control method according to claim 1, wherein the evaluation function is represented by the following equation. (Equation 1) Where u is the control force, y is an output vector having the relative displacement and absolute acceleration of the floor or building as elements, ω 0 is the natural angular frequency of the seismic isolated floor or building, and λ is the relative displacement and absolute acceleration. G is a parameter that mainly determines which one is to be suppressed, and g is a parameter that determines the magnitude of the control force.
【請求項3】 請求項1または請求項2に記載のアクテ
ィブ免震の制御方法が用いられていることを特徴とする
制御装置。
3. A control device, wherein the active seismic isolation control method according to claim 1 or 2 is used.
JP2000358347A 2000-11-24 2000-11-24 Active seismic isolation control method and control device Expired - Fee Related JP4587011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000358347A JP4587011B2 (en) 2000-11-24 2000-11-24 Active seismic isolation control method and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000358347A JP4587011B2 (en) 2000-11-24 2000-11-24 Active seismic isolation control method and control device

Publications (2)

Publication Number Publication Date
JP2002161649A true JP2002161649A (en) 2002-06-04
JP4587011B2 JP4587011B2 (en) 2010-11-24

Family

ID=18830266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000358347A Expired - Fee Related JP4587011B2 (en) 2000-11-24 2000-11-24 Active seismic isolation control method and control device

Country Status (1)

Country Link
JP (1) JP4587011B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319197A (en) * 2004-05-11 2005-11-17 Aiho Corp Heating apparatus
JP2006286503A (en) * 2005-04-04 2006-10-19 Hitachi High-Technologies Corp Charged particle beam apparatus
JP2010001668A (en) * 2008-06-20 2010-01-07 Kumagai Gumi Co Ltd Ground vibration transmission suppressing system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243473A (en) * 1988-08-01 1990-02-14 Tatsuji Ishimaru Structure for damping vibration of structure
JPH02221568A (en) * 1989-02-23 1990-09-04 Kazuo Yoshida Optimum dynamic vibration reducer control system for building of multi-degree of freedom
JPH05231039A (en) * 1992-02-20 1993-09-07 Ohbayashi Corp Vibration control device
JPH0711810A (en) * 1993-06-24 1995-01-13 Takenaka Komuten Co Ltd Controlling method for active mass damper
JPH07229324A (en) * 1994-02-16 1995-08-29 Ohbayashi Corp Vibration control device
JPH08171403A (en) * 1994-12-16 1996-07-02 Kyowa Gokin Kk Modeling method and vibration control method for elastic structure
JPH0925707A (en) * 1995-07-13 1997-01-28 Taisei Corp Floor vibration control device
JPH09217701A (en) * 1996-02-09 1997-08-19 Fuji Electric Co Ltd Vibration control method for structure
JP2000073621A (en) * 1998-08-31 2000-03-07 Takenaka Komuten Co Ltd Active vibration isolation device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243473A (en) * 1988-08-01 1990-02-14 Tatsuji Ishimaru Structure for damping vibration of structure
JPH02221568A (en) * 1989-02-23 1990-09-04 Kazuo Yoshida Optimum dynamic vibration reducer control system for building of multi-degree of freedom
JPH05231039A (en) * 1992-02-20 1993-09-07 Ohbayashi Corp Vibration control device
JPH0711810A (en) * 1993-06-24 1995-01-13 Takenaka Komuten Co Ltd Controlling method for active mass damper
JPH07229324A (en) * 1994-02-16 1995-08-29 Ohbayashi Corp Vibration control device
JPH08171403A (en) * 1994-12-16 1996-07-02 Kyowa Gokin Kk Modeling method and vibration control method for elastic structure
JPH0925707A (en) * 1995-07-13 1997-01-28 Taisei Corp Floor vibration control device
JPH09217701A (en) * 1996-02-09 1997-08-19 Fuji Electric Co Ltd Vibration control method for structure
JP2000073621A (en) * 1998-08-31 2000-03-07 Takenaka Komuten Co Ltd Active vibration isolation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319197A (en) * 2004-05-11 2005-11-17 Aiho Corp Heating apparatus
JP2006286503A (en) * 2005-04-04 2006-10-19 Hitachi High-Technologies Corp Charged particle beam apparatus
JP2010001668A (en) * 2008-06-20 2010-01-07 Kumagai Gumi Co Ltd Ground vibration transmission suppressing system

Also Published As

Publication number Publication date
JP4587011B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
CN108762331B (en) A kind of active vibration isolation controller and its design method
CN101959783B (en) Dynamic compensation during elevator car re-leveling
Miyamoto et al. Automatic determination of LQR weighting matrices for active structural control
JP2002031187A (en) Vibration resistant device using magnetic levitation device
Khatibinia et al. Optimal sliding mode control for seismic control of buildings equipped with ATMD
JP2019509440A (en) Active inertia damper system and method
JP2002161649A (en) Method and apparatus for controlling active base isolation
Miyamoto et al. New spectra of responses and control force for design of equivalent-input-disturbance-based active structural control of base-isolated buildings
JP2002327791A (en) Device and method for vibration insulation and support of load
JP3467642B2 (en) Seismic isolation system
Xu et al. Hybrid platform for high‐tech equipment protection against earthquake and microvibration
JPH0472094B2 (en)
Panda et al. Development and performance evaluation of a robust suboptimal H∞‐based proportional–integral controller–observer system with target tracking for better control of seismic responses
JPH01275867A (en) Vibration control method for building
Xue et al. Independent modal space phase‐lead velocity feedback control of floor vibration
Sato et al. Active control of seismic response of structures
JP3087774B2 (en) Damping device
JP4239362B2 (en) Active vibration control method
JP2862470B2 (en) Boom damping device
JP4621364B2 (en) Variable damping device
JP2736056B2 (en) Motor speed control device
Yoshioka et al. Active microvibration control system by pole assignment method using genetic algorithm
Yoshioka et al. An active microvibration isolation system
Tomiyoshi et al. Design of an active mass damper to simultaneously mitigate seismic acceleration in superstructures and substructures of a mid-story isolation building
JPH10212840A (en) Vibration-control structure of steel frame structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100825

R150 Certificate of patent or registration of utility model

Ref document number: 4587011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140917

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees