JP2002151838A - Pb-free solder connection structure and electronic equipment - Google Patents

Pb-free solder connection structure and electronic equipment

Info

Publication number
JP2002151838A
JP2002151838A JP2001252274A JP2001252274A JP2002151838A JP 2002151838 A JP2002151838 A JP 2002151838A JP 2001252274 A JP2001252274 A JP 2001252274A JP 2001252274 A JP2001252274 A JP 2001252274A JP 2002151838 A JP2002151838 A JP 2002151838A
Authority
JP
Japan
Prior art keywords
lead
layer
free solder
solder
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001252274A
Other languages
Japanese (ja)
Other versions
JP3551168B2 (en
Inventor
Hideyoshi Shimokawa
英恵 下川
Tasao Soga
太佐男 曽我
Hiroaki Okudaira
弘明 奥平
Toshiharu Ishida
寿治 石田
Tetsuya Nakatsuka
哲也 中塚
Kichiji Inaba
吉治 稲葉
Asao Nishimura
朝雄 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001252274A priority Critical patent/JP3551168B2/en
Publication of JP2002151838A publication Critical patent/JP2002151838A/en
Application granted granted Critical
Publication of JP3551168B2 publication Critical patent/JP3551168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Pb-free solder connection structure that has proper connection strength, a stable interface with time, and can secure whisker- resistance properties or the like, and to provide electronic equipment. SOLUTION: Sn-Ag-Bi-based solder that is a likely candidate as Pb solder is connected to an electrode, whose surface has an Sn-Bi-based layer. Bi concentration in the Sn-Bi layer should preferably be 1-2 wt.% for improved wetting properties. Furthermore, when highly reliable joint is required, by providing a Cu layer under the Sn-Bi layer, a connection section having sufficient interface strength is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リードフレーム等
の電極に対して毒性の少ないPbフリーはんだ合金を用
いて適するように接続するPbフリーはんだ接続構造体
およびこれを用いた電子機器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Pb-free solder connection structure which is suitably connected to an electrode such as a lead frame by using a Pb-free solder alloy having low toxicity, and to an electronic device using the same. is there.

【0002】[0002]

【従来の技術】従来、有機基板等の回路基板にLSI等
の電子部品を接続して電子回路基板を製造するには、S
n−Pb共晶はんだ、及びこのSn−Pb共晶はんだ近
傍で、融点も類似なSn−Pbはんだ、或いは、これら
に少量のBiやAgを添加したはんだ合金が用いられて
いる。これらのはんだには、Pbが約40重量%含まれ
ている。いずれのこれらのはんだ合金も、融点はほぼ1
83℃であり、220〜240℃でのはんだ付けが可能
である。また、はんだ付けされるQFP(Quad Flat Pa
ckage)−LSI等の電子部品の電極は、Fe−Ni系
合金である42アロイ表面に90重量%Sn−10重量
%Pb(以下Sn−10Pbと略す)層をめっき等で施
した電極が一般的に用いられている。これは、はんだぬ
れ性が良好であり、且つ保存性が良く、ウィスカーの発
生の問題がないためである。
2. Description of the Related Art Conventionally, in order to manufacture an electronic circuit board by connecting an electronic component such as an LSI to a circuit board such as an organic substrate, it is necessary to use S
An n-Pb eutectic solder, an Sn-Pb solder having a similar melting point in the vicinity of the Sn-Pb eutectic solder, or a solder alloy obtained by adding a small amount of Bi or Ag to these are used. These solders contain about 40% by weight of Pb. Each of these solder alloys has a melting point of almost 1
It is 83 ° C, and soldering at 220 to 240 ° C is possible. In addition, QFP (Quad Flat Pa
An electrode of an electronic component such as an LSI is generally formed by plating a 90% by weight Sn-10% by weight Pb (hereinafter abbreviated as Sn-10Pb) layer on the surface of a 42 alloy which is an Fe-Ni alloy. It is used regularly. This is because solder wettability is good, storage stability is good, and there is no problem of generation of whiskers.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記のSn−
Pb系はんだ中に含まれているPbは人体に有毒な重金
属であり、Pbを含む製品を廃棄することによる地球環
境の汚染、生物への悪影響が問題となっている。この電
気製品による地球環境の汚染は、野ざらしに放置された
Pbを含む電気製品から、雨等によってPbが溶出する
ことによって起こる。Pbの溶出は、最近の酸性雨によ
って加速される傾向にある。従って、環境汚染を低減す
るためには、大量に使用されている上記のSn−Pb共
晶系はんだの代替としてPbを含まない低毒性のPbフ
リーはんだ材料、及び部品電極上で使用されているSn
−10Pb層の代替材料としてPbを含まない部品電極
構造が必要である。Pbフリーはんだ材料としては低毒
性、材料供給性、コスト、ぬれ性、機械的性質、接続信
頼性等と観点からSn−Ag−Bi系はんだが有力候補
となっている。また、はんだ付けにおいては、通常、2
20〜240℃付近に加熱し、部品、基板の電極とはん
だとの間に化合物を生成させることによって、接続を行
っている。従って、形成される界面は、はんだ材料と部
品側の電極材料の組み合わせによって異なるため、安定
な接続界面を得るためには、そのはんだに適する電極材
料が必要である。
However, the above Sn-
Pb contained in the Pb-based solder is a heavy metal toxic to the human body, and the disposal of products containing Pb has a problem of pollution of the global environment and adverse effects on living organisms. Pollution of the global environment by this electric product is caused by elution of Pb by rain or the like from an electric product containing Pb left in the open. Pb elution tends to be accelerated by recent acid rain. Therefore, in order to reduce environmental pollution, Pb-free low-toxic Pb-free solder materials and Pb-free solder materials are used as substitutes for the Sn-Pb eutectic solders used in large quantities, and on component electrodes. Sn
A component electrode structure that does not contain Pb is required as a substitute material for the -10Pb layer. As a Pb-free solder material, Sn-Ag-Bi-based solder is a promising candidate from the viewpoints of low toxicity, material supply, cost, wettability, mechanical properties, connection reliability, and the like. In soldering, usually, 2
The connection is made by heating to around 20 to 240 ° C. to generate a compound between the electrode of the component and the substrate and the solder. Therefore, the interface formed differs depending on the combination of the solder material and the electrode material on the component side. To obtain a stable connection interface, an electrode material suitable for the solder is required.

【0004】本発明の目的は、リードフレーム等の電極
に対して毒性の少ないSn−Ag−Bi系のPbフリー
はんだ合金を用いて十分な接続強度を有し、且つ安定な
接続界面が得られるようにしたPbフリーはんだ接続構
造体を提供することにある。また、本発明の他の目的
は、毒性の少ないSn−Ag−Bi系のPbフリーはん
だ合金を用いて、電子部品、基板間の熱膨張係数の差、
はんだ付け後の割基板作業、或いはプロービングテスト
時の基板の反り、ハンドリング等によってはんだ接続部
に発生する応力に耐え得る十分な接続強度を有し、且つ
経時的にも安定な界面を得ることができるようにした電
子機器を提供することにある。また、本発明の他の目的
は、毒性の少ないSn−Ag−Bi系のPbフリーはん
だ合金を用いて、十分なぬれ性を確保して十分な接続強
度を有し、また耐ウィスカー性等も確保できるようにし
たPbフリーはんだ接続構造体および電子機器を提供す
ることにある。
[0004] An object of the present invention is to use a Sn-Ag-Bi-based Pb-free solder alloy that is less toxic to electrodes such as a lead frame and has a sufficient connection strength and a stable connection interface. An object of the present invention is to provide a Pb-free solder connection structure as described above. Another object of the present invention is to use a Sn-Ag-Bi-based Pb-free solder alloy having a low toxicity, to obtain a difference in thermal expansion coefficient between an electronic component and a substrate.
It has sufficient connection strength to withstand the stress generated in the solder connection part due to the warpage of the substrate during soldering or the warping of the probing test, handling, etc., and it is possible to obtain a stable interface over time. It is an object of the present invention to provide an electronic device which can be used. Another object of the present invention is to use a Sn-Ag-Bi-based low-toxic Pb-free solder alloy to secure sufficient wettability and to have sufficient connection strength, and to improve whisker resistance and the like. An object of the present invention is to provide a Pb-free solder connection structure and an electronic device that can be secured.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、Sn−Ag−Bi系のPbフリーはんだ
をSn−Bi系層を介して電極に接続したことを特徴と
するPbフリーはんだ接続構造体である。また、本発明
は、前記Pbフリーはんだ接続構造体におけるSn−B
i系層中のBi量は、1〜20重量%であることを特徴
とする。また、本発明は、前記Pbフリーはんだ接続構
造体において、前記Sn−Bi系層と前記電極との間に
Cu層を有することを特徴とする。また、本発明は、前
記Pbフリーはんだ接続構造体において、前記電極がC
u材で形成されていることを特徴とする。また、本発明
は、前記Pbフリーはんだ接続構造体における電極は、
Fe−Ni系合金またはCu系のリードであることを特
徴とする。また、本発明は、前記Pbフリーはんだ接続
構造体におけるSn−Ag−Bi系のPbフリーはんだ
は、Snを主成分として、Biが5〜25重量%、Ag
が1.5〜3重量%、Cuが0〜1重量%を含有するこ
とを特徴とする。
In order to achieve the above object, the present invention provides a Pb-free solder comprising a Sn-Ag-Bi-based Pb-free solder connected to an electrode via a Sn-Bi-based layer. It is a free solder connection structure. Further, the present invention provides a method for manufacturing a Pb-free solder connection structure comprising the steps of:
The amount of Bi in the i-type layer is 1 to 20% by weight. Further, the present invention is characterized in that the Pb-free solder connection structure has a Cu layer between the Sn—Bi-based layer and the electrode. Also, in the present invention, in the Pb-free solder connection structure, the electrode may be a Cb-free solder connection structure.
It is characterized by being formed of a u material. Further, in the present invention, the electrode in the Pb-free solder connection structure,
It is a Fe-Ni-based alloy or a Cu-based lead. In addition, the present invention provides the Sn-Ag-Bi Pb-free solder in the Pb-free solder connection structure, wherein Sn is a main component, Bi is 5 to 25% by weight, and Ag is Ag.
Is 1.5 to 3% by weight, and Cu is 0 to 1% by weight.

【0006】また、本発明は、電子部品に形成された第
1の電極と、回路基板に形成された第2の電極とを電気
的に接続する電子機器であって、前記第1の電極にSn
−Bi系層を施し、該Sn−Bi系層を施した第1の電
極と前記第2の電極とをSn−Ag−Bi系のPbフリ
ーはんだで接続したことを特徴とする電子機器である。
The present invention is also an electronic device for electrically connecting a first electrode formed on an electronic component and a second electrode formed on a circuit board, wherein the first electrode is connected to the first electrode. Sn
An electronic device, wherein a first Bi-based layer is provided, and the first electrode provided with the Sn-Bi-based layer and the second electrode are connected by Sn-Ag-Bi-based Pb-free solder. .

【0007】また、本発明は、前記電子機器におけるS
n−Bi系層中のBi量は、1〜20重量%であること
を特徴とする。また、本発明は、前記電子機器におい
て、前記Sn−Bi系層と第1の電極との間にCu層を
有することを特徴とする。また、本発明は、前記電子機
器において、前記Sn−Bi系層の第1の電極側がCu
材であることを特徴とする。また、本発明は、前記電子
機器における第1の電極は、Fe−Ni系合金またはC
u系のリードであることを特徴とする。
[0007] Further, the present invention provides an electronic apparatus, comprising:
The amount of Bi in the n-Bi-based layer is 1 to 20% by weight. Further, according to the invention, in the electronic device, a Cu layer is provided between the Sn-Bi-based layer and the first electrode. Further, the present invention provides the electronic device, wherein the first electrode side of the Sn—Bi-based layer is Cu
It is characterized by being a material. Also, in the present invention, the first electrode in the electronic device may be formed of a Fe—Ni-based alloy or C
It is a u-type lead.

【0008】また、本発明は、前記電子機器におけるS
n−Ag−Bi系のPbフリーはんだは、Snを主成分
として、Biが5〜25重量%、Agが1.5〜3重量
%、Cuが0〜1重量%を含有することを特徴とする。
また、本発明は、電極に接続されるPbフリーはんだと
して、Snを主成分として、Biが5〜25重量%、A
gが1.5〜3重量%、Cuが0〜1重量%を含有する
Sn−Ag−Bi系であることを特徴とするPbフリー
はんだ接続構造体である。
[0008] Further, the present invention provides an electronic apparatus, comprising:
The n-Ag-Bi-based Pb-free solder is characterized in that Sn is a main component and Bi is 5 to 25% by weight, Ag is 1.5 to 3% by weight, and Cu is 0 to 1% by weight. I do.
Further, the present invention provides a Pb-free solder connected to an electrode, which contains Sn as a main component, Bi is 5 to 25% by weight,
A Pb-free solder connection structure characterized by being a Sn-Ag-Bi-based material containing 1.5 to 3% by weight of g and 0 to 1% by weight of Cu.

【0009】以上説明したように、前記構成によれば、
リードフレーム等の電極に対して毒性の少ないSn−A
g−Bi系のPbフリーはんだ合金を用いて十分な接続
強度を有し、且つ安定な接続界面を得ることができる。
また、前記構成によれば、毒性の少ないSn−Ag−B
i系のPbフリーはんだ合金を用いて、電子部品、基板
間の熱膨張係数の差、はんだ付け後の割基板作業、或い
はプロービングテスト時の基板の反り、ハンドリング等
によってはんだ接続部に発生する応力に耐え得る十分な
接続強度を有し、且つ経時的にも安定な界面を得ること
ができる。また、前記構成によれば、毒性の少ないSn
−Ag−Bi系のPbフリーはんだ合金を用いて、例え
ば220〜240℃での十分なぬれ性を確保して十分な
フィレットを形成して十分な接続強度を有し、また耐ウ
ィスカー性等も確保することができる。
As described above, according to the above configuration,
Sn-A with low toxicity for electrodes such as lead frames
Using a g-Bi-based Pb-free solder alloy, a sufficient connection strength can be obtained and a stable connection interface can be obtained.
Further, according to the above configuration, Sn-Ag-B with low toxicity is used.
Using i-based Pb-free solder alloy, stress generated in solder joints due to differences in thermal expansion coefficient between electronic components and boards, split board work after soldering, board warpage during probing test, handling, etc. It is possible to obtain an interface having a sufficient connection strength that can withstand the stress and stable over time. Further, according to the above configuration, Sn with low toxicity is used.
Using an Ag-Bi Pb-free solder alloy, for example, ensuring sufficient wettability at 220 to 240 ° C. to form a sufficient fillet and having a sufficient connection strength, and a whisker resistance etc. Can be secured.

【0010】[0010]

【発明の実施の形態】本発明に係る実施の形態について
説明する。本発明に係る実施の形態は、半導体装置(L
SI)などの電子部品に形成されたQFP形リードやT
SOP形リード等で形成された第1の電極と回路基板に
形成された第2の電極との間を毒性の少ないPbフリー
はんだ材料を用いて接続することによって電子機器を構
成するものである。Pbフリーはんだ接続構造体として
は、例えば、上記第1の電極、または上記第2の電極
に、毒性の少ないPbフリーはんだ材料を用いて接続す
る構造体がある。上記毒性の少ないPbフリーはんだ材
料としては、Sn−Ag−Bi系はんだを用いる。とこ
ろで、毒性の少ないSn−Ag−Bi系のPbフリーは
んだ合金を用いて、電子部品、回路基板間の熱膨張係数
の差、はんだ付け後の割基板作業、或いはプロービング
テスト時の基板の反り、ハンドリング等によってはんだ
接続部に発生する応力に耐え得る十分な接続強度を有
し、且つ経時的にも安定な界面を得ることが必要とな
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described. The embodiment according to the present invention relates to a semiconductor device (L
SI) and other QFP leads and T
An electronic device is configured by connecting a first electrode formed by an SOP type lead or the like and a second electrode formed on a circuit board by using a Pb-free solder material having low toxicity. As the Pb-free solder connection structure, for example, there is a structure that is connected to the first electrode or the second electrode using a Pb-free solder material having low toxicity. As the less toxic Pb-free solder material, Sn-Ag-Bi-based solder is used. By the way, using a less toxic Sn-Ag-Bi-based Pb-free solder alloy, the difference in thermal expansion coefficient between electronic components and circuit boards, the work of split boards after soldering, or the warpage of boards during probing tests, It is necessary to have a sufficient connection strength to withstand the stress generated in the solder connection part due to handling or the like, and to obtain a stable interface over time.

【0011】また、毒性の少ないSn−Ag−Bi系の
Pbフリーはんだ合金を用いて、回路基板や電子部品の
耐熱性から適切なはんだ付け温度である220〜240
℃での十分なぬれ性を確保して十分なフィレット形状を
形成して十分な接続強度を有するようにする必要があ
る。もし、ぬれ性が悪いと十分なフィレット形状が形成
されずに十分な接続強度が得られなかったり、強いフラ
ックスが必要となって絶縁信頼性に悪影響を及ぼすこと
になる。また、めっき等により作成した電極表面からウ
イスカーが発生し、成長すると電極間のショートが起き
ることからして、耐ウィスカー性等も確保することが必
要となる。
[0011] Further, by using a Sn-Ag-Bi-based Pb-free solder alloy having low toxicity, the soldering temperature is set to 220 to 240 which is appropriate from the heat resistance of the circuit board and the electronic parts.
It is necessary to ensure sufficient wettability at ℃ and form a sufficient fillet shape to have sufficient connection strength. If the wettability is poor, a sufficient fillet shape is not formed and a sufficient connection strength cannot be obtained, or a strong flux is required, adversely affecting insulation reliability. In addition, whiskers are generated from the surface of the electrode formed by plating or the like, and short-circuiting between the electrodes occurs when the electrode grows. Therefore, it is necessary to ensure whisker resistance and the like.

【0012】本発明に係る上記電極構造として、十分な
接続強度を得るために、図1および図2に示すように、
リードからなる電極1の表面にSn−Bi系層2を施す
ようにした。そして、次に、本発明に係る電極構造の選
定について説明する。この選定は、上記要求に基づい
て、主に接続強度、ぬれ性、ウィスカー性の評価により
行った。始めにSn−Ag−Bi系はんだと各種電極材
料との接続強度を調べた結果を示す。図3に測定方法の
概略を示したが、従来のSn−10Pb層の代替材料と
してPbのない系で可能性があると考えられる材料(S
n、Sn−Bi、Sn−Zn、Sn−Agめっき)を、
Fe−Ni系合金(42アロイ)で形成された電極であ
るリード上に施したモデルリード4を作成した。この他
に、従来のSn−10Pbめっきとの組み合わせについ
ても評価を行った。モデルリード4の形状は、幅3m
m、長さ38mmであり、はんだ付け部の長さが22m
mになるように直角に折り曲げてある。めっき厚みは各
組成ともに約10μmとした。このモデルリード4を8
2.2重量%Snー2.8重量%Agー15重量%Bi
(以下Sn−2.8Ag−15Biと略す)のPbフリ
ーはんだ5を用いて、回路基板であるガラスエポキシ基
板6上のCuパッド(Cu電極)7にはんだ付けした。
ガラスエポキシ基板6のCuパッド(Cu電極)7の大
きさは3.5mm×25mmであり、はんだ5は0.1
mm×25mm×3.5mmのはんだ箔で供給した。即
ち、ガラスエポキシ基板6上のCuパッド7へ、上記の
はんだ箔5を載せ、この上に上記の直角に折り曲げたモ
デルリード4を載せた。はんだ付けは大気中で、予熱を
140℃60秒、最高温度220℃の条件で行った。ま
た、フラックスは、ロジン系で、塩素を含有したフラッ
クスを用いた。はんだ付け後は、有機溶剤で洗浄した。
引っ張り試験は、はんだ付け直後と、経時変化による接
続部強度劣化を考慮して125℃168時間の高温放置
を行ってからと、リードのぬれ性が劣化した場合の界面
強度を調べるためにモデルリードを150℃168時間
放置してからはんだ付けした場合と3種類行った。引っ
張り試験は、基板を固定し、モデルリードの先端をつか
んで垂直方向に5mm/分の速度で引っ張った。このと
きの、最大強度、及び一定となる引張強度を、それぞれ
フィレット部強度、フラット部強度として各組成のモデ
ルリードについて評価した。この試験は各条件につき1
0回行い、平均をとった。
As shown in FIGS. 1 and 2, in order to obtain a sufficient connection strength, the electrode structure according to the present invention has the following features.
The Sn-Bi-based layer 2 was applied to the surface of the electrode 1 composed of a lead. Next, selection of the electrode structure according to the present invention will be described. This selection was performed mainly based on the above-mentioned requirements by evaluating the connection strength, wettability, and whisker property. First, the results of examining the connection strength between the Sn—Ag—Bi-based solder and various electrode materials are shown. FIG. 3 shows an outline of the measuring method. As a substitute for the conventional Sn-10Pb layer, a material (S
n, Sn-Bi, Sn-Zn, Sn-Ag plating)
A model lead 4 provided on a lead which is an electrode formed of an Fe-Ni-based alloy (42 alloy) was prepared. In addition, evaluation was also made on a combination with conventional Sn-10Pb plating. Model lead 4 is 3m wide
m, length 38mm, soldering part length 22m
m is bent at a right angle. The plating thickness was about 10 μm for each composition. 8 of this model lead 4
2.2% by weight Sn-2.8% by weight Ag-15% by weight Bi
Using a Pb-free solder 5 (hereinafter abbreviated as Sn-2.8Ag-15Bi), it was soldered to a Cu pad (Cu electrode) 7 on a glass epoxy substrate 6 as a circuit board.
The size of the Cu pad (Cu electrode) 7 of the glass epoxy substrate 6 is 3.5 mm × 25 mm, and the size of the solder 5 is 0.1 mm.
It was supplied in a solder foil of mm × 25 mm × 3.5 mm. That is, the solder foil 5 was placed on the Cu pad 7 on the glass epoxy substrate 6, and the model lead 4 bent at a right angle was placed thereon. Soldering was performed in the atmosphere under the conditions of preheating at 140 ° C. for 60 seconds and a maximum temperature of 220 ° C. The flux used was a rosin-based flux containing chlorine. After soldering, it was washed with an organic solvent.
The tensile test was performed immediately after soldering, and after leaving at a high temperature of 125 ° C. for 168 hours in consideration of deterioration of the connection strength due to aging. Was left at 150 ° C. for 168 hours and then soldered. In the tensile test, the substrate was fixed, and the tip of the model lead was grasped and pulled vertically at a speed of 5 mm / min. At this time, the maximum strength and the constant tensile strength were evaluated as the fillet part strength and the flat part strength, respectively, for the model leads of each composition. This test is one for each condition
Performed 0 times and averaged.

【0013】各組成のモデルリードのフィレット部強度
の評価結果を図4に示す。通常のQFP−LSI等のプ
ラスチックパッケージ部品ではプリント基板の熱膨張係
数の差を考慮すると、フィレット部強度は5kgf程度
以上必要である。これから、Sn、及び、Biを23重
量%含有しているSn−23Bi以外のSn−Bi系層
をFe−Ni系合金(42アロイ)上に施したモデルリ
ードでは、5kgf以上のフィレット部強度が得られた
が、Sn−Zn,Sn−Ag,Sn−Pb層の場合では
十分な接続界面が得られないことがわかった。この他に
も42アロイ上に約2μmのNiめっきを施し、これ
に、Auめっき、Pdめっき、Pdめっきの上に更にA
uめっきを施した3種類のモデルリードを作成し、同様
にはんだ付けし、界面強度を調べたが、図4に示したよ
うに十分なフィレット部強度が得られなかった。従っ
て、電極であるリード上にSn−Bi系層を施すことが
必要であることがわかった。
FIG. 4 shows the results of evaluation of the fillet strength of model leads of each composition. In general, plastic package components such as QFP-LSI require a fillet strength of about 5 kgf or more in consideration of the difference in thermal expansion coefficient of the printed circuit board. Thus, a model lead in which a Sn-Bi-based layer other than Sn-23Bi containing 23% by weight of Sn and Bi is applied on a Fe-Ni-based alloy (42 alloy) has a fillet strength of 5 kgf or more. Although it was obtained, it was found that a sufficient connection interface could not be obtained in the case of the Sn—Zn, Sn—Ag, and Sn—Pb layers. In addition to this, Ni plating of about 2 μm was applied on the 42 alloy, and further, Au plating, Pd plating, and Pd plating were further subjected to A plating.
Three types of u-plated model leads were prepared, soldered in the same manner, and the interface strength was examined. As shown in FIG. 4, sufficient fillet strength was not obtained. Therefore, it was found that it was necessary to apply a Sn-Bi-based layer on the lead as the electrode.

【0014】上記の引っ張り試験を行った各組成のモデ
ルリードのうち、十分な界面強度が得られたSn−Bi
系めっきを施したリードについて、Sn−2.8Ag−
15Biはんだに対するぬれ性をメニスコグラフ法によ
って検討した。フラックスは、ぬれ性を調べるため、活
性の弱いものを用いた。試験片は上記モデルリードを1
cmの長さに切って用いた。ぬれ性の試験条件は、はん
だ浴温度が220℃、浸漬速度は1mm/分、浸漬深さ
は2mm、浸漬時間は20秒とし、荷重が0に回復する
までの時間をぬれ時間、浸漬20秒後の荷重をぬれ荷重
とした。また、ぬれ性はめっき直後のリードと、150
℃168時間放置したリードについて2種類行った。ま
た、各条件について10回ずつ測定し、平均をとった。
Among the model leads of each composition subjected to the above tensile test, Sn-Bi having a sufficient interfacial strength was obtained.
Sn-2.8Ag-
The wettability to 15Bi solder was examined by the meniscograph method. The flux used was weak in activity in order to examine the wettability. The test piece is one of the above model leads.
cm. The test conditions for the wettability were as follows: the solder bath temperature was 220 ° C., the immersion speed was 1 mm / min, the immersion depth was 2 mm, and the immersion time was 20 seconds. The later load was defined as a wet load. In addition, the wettability of the lead immediately after plating was
Two kinds of leads were left for 168 hours at ℃. The measurement was performed 10 times for each condition, and the average was taken.

【0015】各組成のぬれ時間、ぬれ荷重をそれぞれ図
5、6に示した。図5のぬれ時間の結果から、めっき初
期のSn−Bi系めっきリードでは、Bi濃度が高い方
がぬれ性が良いが、150℃168時間の高温放置を行
った場合では、Biが1重量%未満、及び23重量%で
ぬれ性が劣化することがわかった。Biが1重量%未満
の場合は、図6に示したように、ぬれ荷重は確保されて
いたが、ぬれ時間が劣化していたことから、ぬれにくく
なっているといえる。従って、Sn−Bi系層のなかで
も、十分なぬれ性を得るためには、Bi量は1〜20重
量%であることが望ましいことがわかった。
The wetting time and wetting load of each composition are shown in FIGS. From the results of the wetting time shown in FIG. 5, the higher the Bi concentration, the better the wettability of the Sn—Bi-based plating lead in the initial stage of plating. However, when left at 150 ° C. for 168 hours, Bi contained 1% by weight. It was found that the wettability deteriorated at less than 23% by weight and at 23% by weight. In the case where Bi is less than 1% by weight, as shown in FIG. 6, although the wetting load was secured, it can be said that the wetting became difficult because the wetting time was deteriorated. Therefore, it was found that, in order to obtain sufficient wettability, the amount of Bi is preferably 1 to 20% by weight among the Sn-Bi-based layers.

【0016】更に熱膨張係数の差が大きい材料間の接
続、温度差が大きい環境で使用される場合等では、界面
に発生する応力が大きくなるため、十分な信頼性を確保
するためには界面の接続強度は10kgf程度以上でな
ければならない。従って、図4を見てみると、Fe−N
i系合金(42アロイ)に直接Sn−Bi系層を施した
のでは、10kgf以上のフィレット部強度が得られな
いことがわかった。これは、界面での化合物層が十分形
成されていないためと考えられる。そこで、界面でのは
んだとの反応性を高めるために、Fe−Ni系合金(4
2アロイ)上に平均7μm程度のCuめっき層、この上
にSn−Bi系めっき層を施し界面強度の測定を行っ
た。この時のフィレット部強度の結果をCu層がない場
合も合わせて図7に示したが、Bi量が23重量%の場
合を除けば、10kgf以上の接続強度が得られ、下地
のCu層の効果が確認できた。また、この電極構造を取
ることにより、図7に一緒に示したように、Sn−Pb
共晶はんだを42アロイリード上に直接Sn−10Pb
層を施したリードにはんだ付けした従来の場合に得られ
るはんだ付け直後の界面強度、12.1kgfと同程度
以上の界面強度を得ることができた。また、図8に示し
たように、Sn−Bi層の下にCu層を施すことにより
フラット部強度も向上させることができた。ここで、こ
のCu層は42アロイのリードフレームを用いた場合に
は、上記のように42アロイ上にCu層を施せばよい
が、Cu系リードフレームを用いた場合は、これをこの
ままCu層としても良いし、また、剛性を向上させるた
めに他の元素をリードフレーム材料中に添加することも
あるので、この影響をなくすために、更にCu層を形成
してもよい。また、このCu層を施したモデルリードの
ぬれ性については、図5、6に一緒に示したが、Cu層
の影響はほとんど無く、やはりBiが1重量%以下で
は、高温放置を行った場合にぬれ性が劣化していたが、
1〜20重量%では、十分なぬれ性を得ることができ
た。尚、図7、図8の例はSn−2.8Ag−15Bi
を用いたが、Bi量が少ない系、例えばSn−2Ag−
7.5Bi−0.5Cu系でも、下地にCu層を入れる
ことにより、界面強度向上の効果がある。
Further, in the case of connection between materials having a large difference in thermal expansion coefficient or use in an environment having a large temperature difference, stress generated at the interface becomes large. Must have a connection strength of about 10 kgf or more. Therefore, looking at FIG.
It was found that if the Sn-Bi-based layer was directly applied to the i-based alloy (42 alloy), a fillet strength of 10 kgf or more could not be obtained. This is probably because the compound layer at the interface was not sufficiently formed. Therefore, in order to increase the reactivity with the solder at the interface, an Fe—Ni alloy (4
2 alloy) on which a Cu plating layer having an average of about 7 μm and an Sn—Bi-based plating layer were applied thereon, and the interface strength was measured. The results of the strength of the fillet portion at this time are also shown in FIG. 7 when there is no Cu layer. Except when the Bi amount is 23% by weight, a connection strength of 10 kgf or more is obtained, and The effect was confirmed. In addition, by adopting this electrode structure, as shown in FIG.
Eutectic solder Sn-10Pb directly on 42 alloy lead
The interface strength immediately after soldering, which was obtained in the conventional case of soldering to the layered lead, was at least about 12.1 kgf. Further, as shown in FIG. 8, by applying a Cu layer under the Sn-Bi layer, the flat portion strength could be improved. Here, as for the Cu layer, when a 42 alloy lead frame is used, the Cu layer may be applied on the 42 alloy as described above. However, when a Cu-based lead frame is used, the Cu layer may be used as it is. Alternatively, another element may be added to the lead frame material in order to improve the rigidity. Therefore, a Cu layer may be further formed to eliminate the influence. The wettability of the model lead provided with the Cu layer is shown together in FIGS. 5 and 6. However, there is almost no influence of the Cu layer. The wettability has deteriorated,
At 1 to 20% by weight, sufficient wettability could be obtained. 7 and 8 are Sn-2.8Ag-15Bi.
Was used, but a system with a small amount of Bi, for example, Sn-2Ag-
Even in the case of 7.5 Bi-0.5 Cu, an effect of improving the interface strength can be obtained by adding a Cu layer as a base.

【0017】上記のSn−Bi系層、Cu層は、めっき
に限らず、ディップ、蒸着、ローラーコート、金属粉末
による塗布によって形成することができる。このよう
に、電極材料により異なる理由を調べるために、接続部
の断面研磨を行って、界面の様子を調べた。また、引っ
張り試験を行った試料の剥離面をSEMで観察した。こ
の代表的な組み合わせについての結果を説明する。ま
ず、従来使用されているFe−Ni系合金(42アロ
イ)に直接Sn−10Pbめっきが施されているリード
をSn−Ag−Bi系はんだで接合した場合の観察結果
を図9に示したが、この組み合わせでは界面にはPbと
Biが化合物を作って集まっていて、剥離は42アロイ
とはんだとの界面で起こっていた。また、剥離したリー
ドの42アロイ表面には、薄くSnが検出され、はんだ
中のSnがリードの42アロイと化合物を形成していた
と考えられる。従って、上記のPbとBiの化合物が界
面に集まることによって、Snと42アロイとの接続面
積が小さくなり、接続強度が非常に弱くなったと考えら
れる。
The above-mentioned Sn—Bi-based layer and Cu layer are not limited to plating, but can be formed by dipping, vapor deposition, roller coating, or coating with metal powder. As described above, in order to investigate the reason different depending on the electrode material, the cross section of the connection portion was polished, and the state of the interface was examined. Further, the peeled surface of the sample subjected to the tensile test was observed by SEM. The results of this representative combination will be described. First, FIG. 9 shows an observation result when a lead in which Sn-10Pb plating is directly applied to a conventionally used Fe-Ni-based alloy (42 alloy) is joined with Sn-Ag-Bi-based solder. In this combination, Pb and Bi formed a compound at the interface and gathered, and the separation occurred at the interface between the 42 alloy and the solder. Further, Sn was thinly detected on the surface of the 42 alloy of the peeled lead, and it is considered that Sn in the solder formed a compound with the 42 alloy of the lead. Therefore, it is considered that the connection area between Sn and the 42 alloy was reduced due to the above-mentioned compound of Pb and Bi gathering at the interface, and the connection strength became extremely weak.

【0018】次に、Sn−10PbめっきをSn−4B
iめっきに変えた場合の観察結果を図10に示したが、
界面に形成される化合物層は薄く、剥離は同様に42ア
ロイとはんだとの界面で起こっていた。しかし、Biは
粒状の結晶のままで、Snと42アロイとの接続面積の
低下をSn−10Pbの場合ほど起こさないため、5k
gf以上の接続強度を得ることができたと考えられる。
この時の化合物層はオージェ分析から、約70nmのS
n−Fe層であった。更にSn−4Bi層の下にCu層
を施した場合の観察結果を図11に示したが、界面に
は、厚いCuとSnの化合物層が形成されることがわか
った。剥離は、この化合物層とはんだとの界面、または
化合物層中で起こっていた。剥離面は、図10の42ア
ロイリードに直接Sn−Bi層を形成したリードの場合
はほとんど平らであったのに比べて、Cu層が存在する
場合にはでこぼこしていた。このため、このような剥離
面の違いが界面強度の向上につながったと考えられる。
尚、以上の検討結果はSn−Ag−Bi系はんだの別の
組成でも同様の結果が得られた。
Next, Sn-10Pb plating is performed on Sn-4B.
FIG. 10 shows the observation results when the plating was changed to i-plating.
The compound layer formed at the interface was thin, and peeling also occurred at the interface between the 42 alloy and the solder. However, Bi remains a granular crystal and does not cause a decrease in the connection area between Sn and the 42 alloy as much as in the case of Sn-10Pb.
It is considered that a connection strength of gf or more could be obtained.
At this time, the compound layer was found to have an S
It was an n-Fe layer. Further, FIG. 11 shows an observation result when a Cu layer was formed under the Sn-4Bi layer, and it was found that a thick compound layer of Cu and Sn was formed at the interface. The peeling occurred at the interface between the compound layer and the solder or in the compound layer. The peeled surface was almost flat in the case where the Sn-Bi layer was formed directly on the 42 alloy lead in FIG. 10, but was uneven when the Cu layer was present. Therefore, it is considered that such a difference between the peeled surfaces has led to an improvement in the interface strength.
In addition, the same result was obtained also with another composition of the Sn-Ag-Bi solder based on the above examination results.

【0019】上記の各組成のモデルリードについて、ウ
ィスカーの発生を調べたが、Sn−Znめっきを施した
モデルリードでは表面にウィスカーの発生が見られた。
また、Snめっきについては従来からウィスカー性に問
題があると言われている。しかし、Sn−Bi系層につ
いてはウィスカーの発生は見られず、耐ウィスカー性も
問題なかった。従って、本発明の電極構造であれば、S
n−Ag−Bi系はんだに対して、接続強度、ぬれ性、
耐イスカー性に優れる接続部を得ることができる。
The occurrence of whiskers was examined with respect to the model leads having the above-mentioned respective compositions. The generation of whiskers was observed on the surface of the model leads plated with Sn-Zn.
It has been conventionally said that Sn plating has a problem in whisker properties. However, no whisker was observed in the Sn—Bi-based layer, and there was no problem with whisker resistance. Therefore, according to the electrode structure of the present invention, S
For n-Ag-Bi solder, connection strength, wettability,
It is possible to obtain a connection part having excellent isker resistance.

【0020】はんだ材料について、主成分がSnで、B
iが5〜25重量%、Agが1.5〜3重量%、Cuが
0〜1重量%含有するSn−Ag−Bi系はんだを選ん
だのは、この範囲内の組成のはんだは、220〜240
℃ではんだ付けが可能であり、Cuに対して従来実績の
あるSn−Ag共晶とほぼ同等のぬれ性を有し、且つ、
高温で十分な信頼性を有しているからである。即ち、S
n−Ag−Bi系はんだではBiが約10重量%以上で
138℃付近で溶融する部分(3元共晶)を有し高温で
の信頼性に影響を及ぼすことが心配されるが、この3元
共晶析出量を実用上問題のないレベルに抑え、且つ12
5℃での高温強度も確保している。従って、この組成の
はんだを用いて、上記の電極をはんだ付けすることによ
って、実用的であり、高信頼な電子機器を得ることがで
きる。
Regarding the solder material, the main component is Sn and B
The reason why the Sn-Ag-Bi-based solder containing i of 5 to 25% by weight, Ag of 1.5 to 3% by weight and Cu of 0 to 1% by weight is selected is that the solder having a composition within this range is 220%. ~ 240
° C, and has almost the same wettability to Cu as Sn-Ag eutectic, which has been proven in the past, and
This is because it has sufficient reliability at high temperatures. That is, S
The n-Ag-Bi solder has a portion (ternary eutectic) where Bi is about 10% by weight or more and melts at around 138 ° C., which may affect the reliability at high temperatures. The eutectic precipitation amount is suppressed to a level that does not cause a practical problem, and
High temperature strength at 5 ° C is also ensured. Therefore, a practical and highly reliable electronic device can be obtained by soldering the above-mentioned electrode using the solder having this composition.

【0021】[0021]

【実施例1】図1にQFP−LSI用のリードの断面構
造を示した。これは、リードの断面構造のある一部分を
示したものであるが、Fe−Ni系合金(42アロイ)
の電極であるリード1上にSn−Bi系層2が形成され
ている。このSn−Bi系層2はめっきによって形成
し、厚みは10μm程度とした。また、Sn−Biめっ
き層中のBi濃度は8重量%とした。この電極構造を持
つ上記のQFP−LSIをSn−2.8Ag−15Bi
ー0.5Cuはんだを用いて回路基板であるガラスエポ
キシ基板にはんだ付けした。はんだ付けは最高温度を2
20℃として、窒素リフロー炉を用いて行った。これに
より、十分な接続強度を有する接続部を得ることができ
た。また、同様にSn−2Ag−7.5Biー0.5C
uはんだを用いてガラスエポキシ基板に240℃で大気
中でリフローした。リフローした継手は特に高温での信
頼性が高い。
Embodiment 1 FIG. 1 shows a sectional structure of a lead for a QFP-LSI. This shows a part of the cross-sectional structure of the lead, which is a Fe-Ni alloy (42 alloy).
An Sn—Bi-based layer 2 is formed on a lead 1 which is an electrode of the present invention. This Sn—Bi-based layer 2 was formed by plating, and the thickness was about 10 μm. The Bi concentration in the Sn—Bi plating layer was 8% by weight. The above-mentioned QFP-LSI having this electrode structure is formed by Sn-2.8Ag-15Bi.
It was soldered to a glass epoxy substrate, which is a circuit board, using -0.5Cu solder. Soldering temperature up to 2
The temperature was set at 20 ° C., and a nitrogen reflow furnace was used. As a result, a connection portion having sufficient connection strength was obtained. Similarly, Sn-2Ag-7.5Bi-0.5C
Using a u solder, the glass epoxy substrate was reflowed at 240 ° C. in the air. Reflowed joints are particularly reliable at high temperatures.

【0022】[0022]

【実施例2】図2にTSOP用のリードの断面構造を示
した。これも、リードの断面構造のある一部分を示した
ものであるが、Fe−Ni系合金(42アロイ)の電極
であるリード1上にCu層3、その上にSn−Bi系層
2が形成されている。このCu層3、Sn−Bi系層2
はめっきによって形成した。Cu層3の厚みは8μm程
度であり、Sn−Bi系めっき層2の厚みは10μm程
度とした。また、Sn−Biめっき層中のBi量は5重
量%である。TSOPはリードの剛性が大きいため、実
稼働時の部品自身の発熱、また、高温で使用される場
合、界面に発生する応力がQFP−LSIと比較して大
きくなる。このような場合には、この界面応力に耐えら
れるように十分な界面強度を有する界面を形成させる必
要があり、Sn−Bi系層2の下にCu層3が効果的で
ある。
Embodiment 2 FIG. 2 shows a sectional structure of a lead for TSOP. This also shows a part of the cross-sectional structure of the lead, in which a Cu layer 3 is formed on a lead 1 which is an electrode of an Fe-Ni alloy (42 alloy), and an Sn-Bi layer 2 is formed thereon. Have been. The Cu layer 3 and the Sn—Bi-based layer 2
Was formed by plating. The thickness of the Cu layer 3 was about 8 μm, and the thickness of the Sn—Bi-based plating layer 2 was about 10 μm. The Bi content in the Sn—Bi plating layer is 5% by weight. Since TSOP has high rigidity of the lead, the heat generated by the component itself during actual operation, and when used at a high temperature, the stress generated at the interface becomes larger than that of the QFP-LSI. In such a case, it is necessary to form an interface having sufficient interface strength to withstand this interface stress, and the Cu layer 3 is effective under the Sn-Bi-based layer 2.

【0023】このTSOPをプリント基板にSn−Ag
−Bi系はんだを用いてベーパーリフロー炉ではんだ付
けし、温度サイクル試験を行った。試験条件はー55℃
30分、125℃30分の1時間/1サイクル、及び、
0℃30分、90℃30分の1時間/1サイクルの2条
件であり、500サイクル、1000サイクル後に断面
観察を行ってクラックの発生状況を調べた。これを、4
2アロイリード上に直接Sn-10Pb層が形成されているリ
ードを有する同じ大きさのTSOPをSn−Pb共晶は
んだではんだ付けした場合と比較したが、ー55℃/1
25℃の温度サイクルではクラックの発生が早かった
が、0℃/90℃の温度サイクルでは、特に問題とはな
らず、実用上十分な接続界面が得られた。
This TSOP is printed on a printed circuit board using Sn-Ag.
-Soldering was performed using a Bi-based solder in a vapor reflow furnace, and a temperature cycle test was performed. Test condition is -55 ° C
30 minutes, 1 hour / 1 cycle at 125 ° C. for 30 minutes, and
Under two conditions of 0 ° C. for 30 minutes and 90 ° C. for 30 minutes, 1 hour / 1 cycle, cross sections were observed after 500 cycles and 1000 cycles, and the state of occurrence of cracks was examined. This is 4
2 Compared to a case where the same size TSOP having a lead in which a Sn-10Pb layer is formed directly on an alloy lead was soldered with Sn-Pb eutectic solder, -55 ° C / 1
Cracks were generated earlier in the 25 ° C. temperature cycle, but were not particularly problematic in the 0 ° C./90° C. temperature cycle, and a practically sufficient connection interface was obtained.

【0024】[0024]

【実施例3】本発明の電極構成は基板上の電極にも適用
することができる。例えば、基板のはんだ付け性を向上
させるためにはんだコートが効果的であるが、従来はS
n−Pbはんだ、特にSn−Pb共晶はんだ等のPbを
含んだはんだを使用している。このため、コート用はん
だのPbフリー化として、本発明のSn−Bi層を用い
ることができる。また、通常、基板の電極はCuで形成
されているため、Sn−Ag−Bi系はんだを使用した
場合に十分な接続強度を得ることができる。この構成を
適用した例を示すが、回路基板であるガラスエポキシ基
板上のCuパッド(Cu電極)に約5μm程度のSn−
8Bi層をローラーコートで作成した。このはんだ層を
形成したために基板に対するぬれ性が向上し、且つ、接
続強度も向上させることができた。
Embodiment 3 The electrode configuration of the present invention can be applied to an electrode on a substrate. For example, a solder coat is effective to improve the solderability of a board, but conventionally, a solder coat is used.
An n-Pb solder, particularly a Pb-containing solder such as a Sn-Pb eutectic solder is used. For this reason, the Sn-Bi layer of the present invention can be used to make the coating solder Pb-free. In addition, since the electrodes of the substrate are usually formed of Cu, a sufficient connection strength can be obtained when Sn-Ag-Bi-based solder is used. An example in which this configuration is applied will be described below. A Sn pad of about 5 μm is formed on a Cu pad (Cu electrode) on a glass epoxy substrate which is a circuit board.
An 8 Bi layer was made with a roller coat. Since this solder layer was formed, the wettability to the substrate was improved, and the connection strength was also improved.

【0025】[0025]

【発明の効果】本発明によれば、Pbフリー材料として
優れるSn−Ag−Bi系はんだに適する電極構造を実
現することができる効果を奏する。また、本発明によれ
ば、リードフレーム等の電極に対して毒性の少ないSn
−Ag−Bi系のPbフリーはんだ合金を用いて十分な
接続強度を有し、且つ安定な接続界面を得ることができ
るPbフリーはんだ接続構造体を実現することができる
効果を奏する。また、本発明によれば、毒性の少ないS
n−Ag−Bi系のPbフリーはんだ合金を用いて、電
子部品、基板間の熱膨張係数の差、はんだ付け後の割基
板作業、或いはプロービングテスト時の基板の反り、ハ
ンドリング等によってはんだ接続部に発生する応力に耐
え得る十分な接続強度を有し、且つ経時的にも安定な界
面を得ることができるPbフリーはんだ接続構造体を備
えた電子機器を実現することができる効果を奏する。
According to the present invention, there is an effect that an electrode structure suitable for Sn-Ag-Bi-based solder which is excellent as a Pb-free material can be realized. Further, according to the present invention, Sn which is less toxic to electrodes such as a lead frame is provided.
The present invention has the effect of realizing a Pb-free solder connection structure having sufficient connection strength and a stable connection interface using an Ag-Bi-based Pb-free solder alloy. In addition, according to the present invention, the less toxic S
Using an n-Ag-Bi-based Pb-free solder alloy, the difference in the coefficient of thermal expansion between the electronic components and the board, the work of the split board after soldering, or the warpage of the board during the probing test, handling, etc. This has the effect of providing an electronic device having a Pb-free solder connection structure that has a sufficient connection strength to withstand the stress generated in the Pb-free solder connection structure and can obtain a stable interface over time.

【0026】また、本発明によれば、毒性の少ないSn
−Ag−Bi系のPbフリーはんだ合金を用いて、例え
ば220〜240℃での十分なぬれ性を確保して十分な
フィレットを形成して十分な接続強度を有し、また耐ウ
ィスカー性等も確保することができる。また、本発明に
よれば、電子部品をSn−Ag−Bi系はんだではんだ
付けすることにより、十分な接続強度を有する界面が得
られ、且つ、実用上十分なぬれ性も確保することができ
る。またウィスカー性についても問題無い。従って、環
境にやさしいPbフリーの電気製品を従来と同じ設備、
プロセスを使用して実現することができる効果を奏す
る。
Further, according to the present invention, Sn having low toxicity is used.
Using an Ag-Bi Pb-free solder alloy, for example, ensuring sufficient wettability at 220 to 240 ° C. to form a sufficient fillet and having a sufficient connection strength, and a whisker resistance etc. Can be secured. Further, according to the present invention, by soldering the electronic component with Sn-Ag-Bi solder, an interface having a sufficient connection strength can be obtained, and practically sufficient wettability can be secured. . There is no problem with whisker properties. Therefore, environmentally friendly Pb-free electrical products are replaced with the same equipment as before,
An effect that can be realized by using the process is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るQFP−LSI用のリードの断面
構造を示す図である。
FIG. 1 is a diagram showing a sectional structure of a lead for a QFP-LSI according to the present invention.

【図2】本発明に係るTSOP用のリードの断面構造を
示す図である。
FIG. 2 is a diagram showing a cross-sectional structure of a TSOP lead according to the present invention.

【図3】接続強度評価試験方法についての概略説明図で
ある。
FIG. 3 is a schematic explanatory view of a connection strength evaluation test method.

【図4】本発明に係る各種メタライズリードのフィレッ
ト部強度についての評価結果を示す図である。
FIG. 4 is a view showing evaluation results of fillet strength of various metallized leads according to the present invention.

【図5】本発明に係る各種メタライズリードのぬれ時間
についての評価結果を示す図である。
FIG. 5 is a diagram showing the results of evaluating the wetting time of various metallized leads according to the present invention.

【図6】本発明に係る各種メタライズリードのぬれ荷重
についての評価結果を示す図である。
FIG. 6 is a diagram showing the results of evaluating the wetting load of various metallized leads according to the present invention.

【図7】本発明に係るCu層を形成した場合のフィレッ
ト部強度についての評価結果を示す図である。
FIG. 7 is a view showing evaluation results of fillet strength when a Cu layer according to the present invention is formed.

【図8】本発明に係るCu層を形成した場合のフラット
部強度についての評価結果を示す図である。
FIG. 8 is a diagram showing evaluation results of flat portion strength when a Cu layer according to the present invention is formed.

【図9】従来のFe−Ni合金(42アロイ)にSn−
10Pbめっきを施したリードとの界面の観察結果を示
す図で、(a)は断面を示す図、(b)は剥離部を、リ
ード側とはんだ側とについて示す図である。
FIG. 9 shows a conventional Fe—Ni alloy (42 alloy) with Sn—
It is a figure which shows the observation result of the interface with the lead which performed 10Pb plating, (a) is a figure which shows a cross section, (b) is a figure which shows the peeling part about the lead side and the solder side.

【図10】本発明に係るFe−Ni合金(42アロイ)
にSn−4Biめっきを施したリードとの界面の観察結
果を示す図で、(a)は断面を示す図、(b)は剥離部
を、リード側とはんだ側とについて示す図である。
FIG. 10 shows an Fe—Ni alloy (42 alloy) according to the present invention.
5A and 5B are diagrams showing observation results of an interface with a lead plated with Sn-4Bi, wherein FIG. 5A is a diagram showing a cross section, and FIG. 5B is a diagram showing a peeled portion on a lead side and a solder side.

【図11】本発明に係るFe−Ni合金(42アロイ)
にCu層、その上にSn−4Biめっきを施したリード
との界面の観察結果を示す図で、(a)は断面を示す
図、(b)は剥離部を、リード側とはんだ側とについて
示す図である。
FIG. 11 shows an Fe—Ni alloy (42 alloy) according to the present invention.
Showing the results of observation of the interface between the Cu layer and the lead on which Sn-4Bi plating has been applied, (a) showing the cross section, (b) showing the peeled portion, and the lead side and the solder side. FIG.

【符号の説明】[Explanation of symbols]

1…Fe−Ni合金のリード(電極)、2…Sn−Bi
系層、3…Cu層、4…モデルリード、5…はんだ、6
…ガラスエポキシ基板、7…Cuパッド(Cu電極)
1. Lead (electrode) of Fe-Ni alloy, 2. Sn-Bi
System layer, 3 ... Cu layer, 4 ... Model lead, 5 ... Solder, 6
... Glass epoxy substrate, 7 ... Cu pad (Cu electrode)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥平 弘明 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 石田 寿治 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 中塚 哲也 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 稲葉 吉治 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体事業部内 (72)発明者 西村 朝雄 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体事業部内 Fターム(参考) 4K024 AA09 AA21 AB01 AB02 BB11 BB12 GA14 4K044 AA02 AA06 AB02 BA06 BA10 BB01 BB03 BC08 CA11 CA13 CA14 CA15 CA18 CA53 5E319 BB01 CC22 GG03  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiroaki Okuhira 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside the Hitachi, Ltd.Production Technology Laboratory (72) Inventor Toshiharu Ishida 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Inside Hitachi, Ltd.Production Technology Laboratory (72) Inventor Tetsuya Nakatsuka 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside Hitachi Ltd.Production Technology Laboratory (72) Inventor Yoshiharu Inaba Gojomihoncho, Kodaira-shi, Tokyo No. 20-1, Hitachi Semiconductor Co., Ltd. Semiconductor Division (72) Inventor Asao Nishimura 5-2-1, Kamimizu Honcho, Kodaira-shi, Tokyo F-term, Hitachi Semiconductor Co., Ltd. F-term (reference) 4K024 AA09 AA21 AB01 AB02 BB11 BB12 GA14 4K044 AA02 AA06 AB02 BA06 BA10 BB01 BB03 BC08 CA11 CA13 CA14 CA15 CA18 CA53 5E319 BB01 CC22 GG03 </ S> </ s> </ s>

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】基板と、表面層となるSn−約(1〜2
0)重量%Bi系層をCu系リード上に直接形成した半
導体装置とが、鉛フリーはんだ材料を用いて接続された
ことを特徴とする電子機器。
A substrate and a surface layer of Sn-about (1-2)
0) An electronic apparatus, wherein a semiconductor device in which a weight-% Bi-based layer is directly formed on a Cu-based lead is connected using a lead-free solder material.
【請求項2】基板と、他のめっき層を介在させずに表面
層となるSn−約(1〜20)重量%Bi系のめっき層
をCu系リード上に形成した半導体装置とが、鉛フリー
はんだ材料を用いて接続されたことを特徴とする電子機
器。
2. A semiconductor device in which a substrate and a Sn-approximately (1 to 20) wt% Bi-based plating layer serving as a surface layer formed on a Cu-based lead without intervening another plating layer are formed of lead. Electronic equipment characterized by being connected using a free solder material.
【請求項3】基板と、表面層となるSn−約(1〜2
0)重量%Bi系層をFe―Ni系合金リード上に直接
形成した半導体装置とが、鉛フリーはんだ材料を用いて
接続されたことを特徴とする電子機器。
3. The method according to claim 1, wherein the substrate and Sn-about (1-2)
0) An electronic apparatus wherein a semiconductor device in which a weight-% Bi-based layer is directly formed on an Fe—Ni-based alloy lead is connected using a lead-free solder material.
【請求項4】基板と、他のめっき層を介在させずに表面
層となるSn−約(1〜20)重量%Bi系のめっき層
をFe―Ni系合金リード上に形成した半導体装置と
が、鉛フリーはんだ材料を用いて接続されたことを特徴
とする電子機器。
4. A semiconductor device comprising: a substrate; and a Sn-approximately (1-20) wt% Bi-based plating layer serving as a surface layer formed on an Fe--Ni-based alloy lead without intervening another plating layer. Wherein the electronic device is connected using a lead-free solder material.
【請求項5】請求項1から4のいずれか1項に記載の電
子機器であって、前記鉛フリーはんだ材料はBiを有す
ることを特徴とする電子機器。
5. The electronic device according to claim 1, wherein said lead-free solder material contains Bi.
【請求項6】請求項5に記載の電子機器であって、前記
Biを有する鉛フリーはんだ材料がSn−Ag−Bi系
のフリーはんだ材料であることを特徴とする電子機器。
6. The electronic device according to claim 5, wherein said lead-free solder material having Bi is a Sn-Ag-Bi-based free solder material.
【請求項7】請求項1から6のいずれか1項に記載の電
子機器であって、前記半導体装置がTSOPタイプの半
導体装置であることを特徴とする電子機器。
7. The electronic device according to claim 1, wherein said semiconductor device is a TSOP type semiconductor device.
【請求項8】基板と、表面層となるSn−約(1〜2
0)重量%Bi系層をFe―Ni系合金リード上に直接
形成した半導体装置とを、鉛フリーはんだ材料を用いて
はんだ接続することを特徴とする電子機器の製造方法。
8. A substrate, and Sn-approximately (1-2) serving as a surface layer
0) A method for manufacturing an electronic device, wherein a semiconductor device in which a weight-% Bi-based layer is directly formed on an Fe-Ni-based alloy lead is soldered using a lead-free solder material.
【請求項9】基板と、他のめっき層を介在させずに表面
層となるSn−約(1〜20)重量%Bi系のめっき層
をFe―Ni系合金リード上に形成した半導体装置と
を、鉛フリーはんだ材料を用いてはんだ接続することを
特徴とする電子機器の製造方法。
9. A semiconductor device comprising: a substrate; and a Sn-approximately (1-20) wt% Bi-based plating layer serving as a surface layer formed on a Fe—Ni-based alloy lead without intervening another plating layer. Using a lead-free solder material.
【請求項10】基板と、表面層となるSn−約(1〜2
0)重量%Bi系層をFe―Ni系合金リード上に直接
形成した半導体装置とを、鉛フリーはんだ材料を用いて
はんだ接続することを特徴とする電子機器の製造方法。
10. A substrate and a surface layer of Sn-about (1-2)
0) A method for manufacturing an electronic device, wherein a semiconductor device in which a weight-% Bi-based layer is directly formed on an Fe-Ni-based alloy lead is soldered using a lead-free solder material.
【請求項11】基板と、他のめっき層を介在させずに表
面層となるSn−約(1〜20)重量%Bi系のめっき
層をFe―Ni系合金リード上に形成した半導体装置と
を、鉛フリーはんだ材料を用いてはんだ接続することを
特徴とする電子機器の製造方法。
11. A semiconductor device comprising: a substrate; and a Sn-approximately (1-20) wt% Bi-based plating layer serving as a surface layer formed on an Fe--Ni-based alloy lead without intervening another plating layer. Using a lead-free solder material.
【請求項12】請求項8から11のいずれか1項に記載
の電子機器の製造方法であって、前記鉛フリーはんだ材
料はBiを有することを特徴とする電子機器の製造方
法。
12. The method for manufacturing an electronic device according to claim 8, wherein said lead-free solder material contains Bi.
【請求項13】請求項12に記載の電子機器の製造方法
であって、前記Biを有する鉛フリーはんだ材料がSn
−Ag−Bi系のフリーはんだ材料であることを特徴と
する電子機器の製造方法。
13. The method for manufacturing an electronic device according to claim 12, wherein the lead-free solder material having Bi is Sn.
-A method for manufacturing an electronic device, wherein the method is a Ag-Bi-based free solder material.
【請求項14】請求項8から13のいずれか1項に記載
の電子機器の製造方法であって、前記半導体装置がTS
OPタイプの半導体装置であることを特徴とする電子機
器の製造方法。
14. The method for manufacturing an electronic device according to claim 8, wherein the semiconductor device is a TS.
A method of manufacturing an electronic device, which is an OP type semiconductor device.
JP2001252274A 2001-08-23 2001-08-23 Pb-free solder connection structure and electronic equipment Expired - Lifetime JP3551168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001252274A JP3551168B2 (en) 2001-08-23 2001-08-23 Pb-free solder connection structure and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001252274A JP3551168B2 (en) 2001-08-23 2001-08-23 Pb-free solder connection structure and electronic equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP34681197A Division JP3622462B2 (en) 1997-12-16 1997-12-16 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2002151838A true JP2002151838A (en) 2002-05-24
JP3551168B2 JP3551168B2 (en) 2004-08-04

Family

ID=19080782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001252274A Expired - Lifetime JP3551168B2 (en) 2001-08-23 2001-08-23 Pb-free solder connection structure and electronic equipment

Country Status (1)

Country Link
JP (1) JP3551168B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339605A (en) * 2003-05-12 2004-12-02 Rohm & Haas Electronic Materials Llc Improved tin-plating method
US7235309B2 (en) 2002-12-16 2007-06-26 Nec Electronics Corporation Electronic device having external terminals with lead-free metal thin film formed on the surface thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235309B2 (en) 2002-12-16 2007-06-26 Nec Electronics Corporation Electronic device having external terminals with lead-free metal thin film formed on the surface thereof
JP2004339605A (en) * 2003-05-12 2004-12-02 Rohm & Haas Electronic Materials Llc Improved tin-plating method
JP4603812B2 (en) * 2003-05-12 2010-12-22 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Improved tin plating method

Also Published As

Publication number Publication date
JP3551168B2 (en) 2004-08-04

Similar Documents

Publication Publication Date Title
JP3622462B2 (en) Semiconductor device
JP3446517B2 (en) Pb-free solder material and electronic equipment using the same
JP3551168B2 (en) Pb-free solder connection structure and electronic equipment
US20020009610A1 (en) Technical field
JP3551167B2 (en) Semiconductor device
JP4535429B2 (en) Manufacturing method of semiconductor device
JP3551169B2 (en) Electronic device and method of manufacturing the same
JP4535464B2 (en) Manufacturing method of electronic equipment
JP5061168B2 (en) Manufacturing method of electronic equipment
JP2001298270A (en) Electronic unit and solder used for its connection
CA2493351C (en) Pb-free solder-connected structure and electronic device
JP2003200288A (en) Pb-FREE SOLDER MATERIAL AND ELECTRONIC APPARATUS USING THE SAME
JP2001358459A (en) Electronic equipment and solder used for its connection
JP2002151639A5 (en)
JP2005021929A (en) Solder, and solder joined structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180514

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180514

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180514

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term