JP2002139260A - Velocity regulator of blower for condenser - Google Patents

Velocity regulator of blower for condenser

Info

Publication number
JP2002139260A
JP2002139260A JP2000336056A JP2000336056A JP2002139260A JP 2002139260 A JP2002139260 A JP 2002139260A JP 2000336056 A JP2000336056 A JP 2000336056A JP 2000336056 A JP2000336056 A JP 2000336056A JP 2002139260 A JP2002139260 A JP 2002139260A
Authority
JP
Japan
Prior art keywords
condenser
blower
temperature
outside air
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000336056A
Other languages
Japanese (ja)
Other versions
JP3668121B2 (en
Inventor
Tsutomu Yamaguchi
勤 山口
Shinpachiro Uehara
伸八郎 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000336056A priority Critical patent/JP3668121B2/en
Publication of JP2002139260A publication Critical patent/JP2002139260A/en
Application granted granted Critical
Publication of JP3668121B2 publication Critical patent/JP3668121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the velocity regulator of a blower for condenser which can perform the operation control of a compressor stably even at start of a refrigerating machine in a cold district in winter. SOLUTION: The velocity regulator 18 of the blower 11 for a condenser constitutes a refrigerating cycle, with the compressor 1, a condenser 3, a pressure reducing device (expansion valve) 7, and an evaporator 8 connected circularly in order. This regulator is provided with a condenser temperature sensor 14 which detects the temperature of the condenser 3. This is provided with a controller 16 which controls the operation of the blower 11 for a condenser with a specified standard pattern, and an outside air temperature 17 which detects the temperature of outside air. The controller 16 starts the blower 11 for a condenser with a pattern to accelerate the temperature rise of the condenser 3 more than the standard pattern, at a specified low outside air temperature, based on the output of the outside air temperature sensor 17.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機、凝縮器、
減圧装置及び蒸発器を順次環状に接続して冷凍サイクル
を構成する凝縮器の空冷を行なう凝縮器用送風機の速度
調整装置に関するものである。
TECHNICAL FIELD The present invention relates to a compressor, a condenser,
The present invention relates to a speed adjusting device of a blower for a condenser for performing air cooling of a condenser constituting a refrigeration cycle by sequentially connecting a pressure reducing device and an evaporator in a ring shape.

【0002】[0002]

【従来の技術】従来より冷凍機の冷凍サイクルを構成す
る凝縮器は、凝縮圧力や外気温度によって、冷媒を最適
に凝縮できるように、凝縮器に設けられた凝縮器用送風
機の回転数を調整できるように構成している。この凝縮
器用送風機の回転数と凝縮圧力と凝縮温度の関係を図4
に示している。図中縦軸に凝縮器用送風機の回転数、横
軸に凝縮器の凝縮圧力を示している。また、凝縮器用送
風機の回転数は、縦軸下端を低速(0rpm)、上端を
高速(1000rpm)で示しており、凝縮器の凝縮圧
力は、横軸左端を高圧(2.30MPa)、右端を低圧
(0.60MPa)で示している。尚、凝縮温度は、凝
縮圧力が高圧(2.30MPa)の場合は高温(約+5
8.5℃)で凝縮し、低圧の場合は低温(約+10.0
℃)で凝縮する。
2. Description of the Related Art Conventionally, a condenser constituting a refrigeration cycle of a refrigerator can adjust the rotation speed of a blower for the condenser provided in the condenser so that the refrigerant can be optimally condensed according to the condensation pressure and the outside air temperature. It is configured as follows. FIG. 4 shows the relationship among the rotation speed, condensation pressure and condensation temperature of this condenser blower.
Is shown in In the figure, the vertical axis indicates the rotation speed of the condenser blower, and the horizontal axis indicates the condensation pressure of the condenser. The rotation speed of the blower for the condenser is shown at a low speed (0 rpm) at the lower end of the vertical axis and at a high speed (1000 rpm) at the upper end, and the condensing pressure of the condenser is high (2.30 MPa) at the left end of the horizontal axis and at the right end. It is shown at a low pressure (0.60 MPa). The condensing temperature is high (about +5) when the condensing pressure is high (2.30 MPa).
8.5 ° C.) and low temperature (about +10.0
° C).

【0003】凝縮器用送風機の運転は、高モードM1、
中モードM2、低モードM3の3モードあり、凝縮器用
送風機の回転数は各モードM1、M2、M3によって変
わる。高モードM1では、凝縮圧力と凝縮温度が高い状
態(凝縮圧力が約0.92MPa、凝縮温度が約+24
℃)で凝縮器用送風機が回転を始め、凝縮圧力と凝縮温
度が上昇していくに従って回転数を上げていくパターン
の回転制御が行なわれる。中モードM2では、凝縮圧力
と凝縮温度が高モードM1より低い状態(凝縮圧力が約
0.63MPa、凝縮温度が約+12℃)で凝縮器用送
風機が回転を始め、凝縮圧力と凝縮温度が上昇していく
に従って回転数を上げていくパターンの回転制御が行な
われる。
The operation of the blower for the condenser is performed in a high mode M1,
There are three modes, a medium mode M2 and a low mode M3, and the number of revolutions of the blower for the condenser changes depending on each mode M1, M2, M3. In the high mode M1, the condensing pressure and the condensing temperature are high (condensing pressure is about 0.92 MPa, condensing temperature is about +24
C), the rotation of the condenser blower starts to rotate and the rotation speed is increased as the condensing pressure and the condensing temperature increase. In the middle mode M2, in a state where the condensing pressure and the condensing temperature are lower than the high mode M1 (condensing pressure is about 0.63 MPa and the condensing temperature is about + 12 ° C.), the blower for the condenser starts rotating, and the condensing pressure and the condensing temperature rise. Rotation control of a pattern in which the number of rotations is increased as the rotation proceeds.

【0004】また、低モードM3では、凝縮圧力と凝縮
温度が中モードM2より更に低い状態(凝縮圧力が約
0.77MPa、凝縮温度が約+17℃)で凝縮器用送
風機が回転を始め、凝縮圧力と凝縮温度が上昇していく
に従って回転数を上げていくパターンの回転制御が行な
われる。各モードM1、M2、M3は冷凍機が設置され
た時点で設備業者によって、寒冷地などで冷媒が凝縮し
過ぎる場合や、ファン回転数を抑え、低騒音としたい場
合は、凝縮能力を下げる高モードM1、凝縮圧力を低く
抑え、COP(成績係数)を向上し、省エネ運転とした
い場合は、凝縮能力を高める低モードM3など状況の応
じたモードに設定される。
In the low mode M3, when the condensing pressure and the condensing temperature are further lower than those in the medium mode M2 (condensing pressure is about 0.77 MPa and condensing temperature is about + 17 ° C.), the blower for the condenser starts rotating, and the condensing pressure is reduced. Then, rotation control is performed in a pattern in which the number of rotations increases as the condensation temperature increases. Each of the modes M1, M2, and M3 is set by the equipment supplier when the refrigerator is installed, when the refrigerant is excessively condensed in a cold region or when the fan speed is reduced and the noise is reduced, the condensing capacity is reduced. In the mode M1, when the condensing pressure is to be kept low, the COP (coefficient of performance) is to be improved, and energy saving operation is desired, a mode suitable for the situation is set, such as the low mode M3 for increasing the condensing capacity.

【0005】[0005]

【発明が解決しようとする課題】ところで、冷凍機が特
に外気温が低い寒冷地に設置された場合、凝縮器の温度
(凝縮温度)は外気が低いので上昇しにくくなって、圧
縮機の始動時に高圧側と低圧側の圧力が低下し運転時に
低圧圧力が上昇しにくくなる。また、高圧側と低圧側の
圧力が低下すると、圧縮機の始動時に凝縮器の凝縮圧力
が上昇せずに蒸発側圧力も低いままの状態となるので圧
縮機の運転、停止が短時間に繰り返えされて庫内の冷却
不良が発生してしまう不具合(ショートサイクル運転)
があった。そこで、凝縮圧力を検出する圧力スイッチを
設け、圧縮機の始動時は、任意の圧力まで凝縮器用送風
機を停止させ、凝縮圧力を上昇させる制御を行なってい
た(図4)。しかし、この方式では凝縮器用送風機の運
転時と停止時の回転数が大きく異なり、凝縮圧力が不安
定となって蒸発圧力も不安定になってしまう問題があっ
た。このため、外気温度が低い冬期に冷却不良が発生し
てしまう不都合が発生してしまう問題もあった。
When the refrigerator is installed in a cold region where the outside air temperature is particularly low, the temperature of the condenser (condensation temperature) is difficult to rise because the outside air is low, and the compressor is started. At times, the pressures on the high pressure side and the low pressure side decrease, and it becomes difficult for the low pressure pressure to increase during operation. Also, when the pressures on the high pressure side and the low pressure side decrease, the condensing pressure of the condenser does not increase when starting the compressor, and the pressure on the evaporation side remains low. Failure to return the cooling chamber inside (short cycle operation)
was there. Therefore, a pressure switch for detecting the condensing pressure is provided, and when the compressor is started, control is performed to stop the blower for the condenser to an arbitrary pressure and increase the condensing pressure (FIG. 4). However, this method has a problem in that the rotation speed of the blower for the condenser during operation is greatly different from the number of revolutions at the time of stoppage, so that the condensing pressure becomes unstable and the evaporating pressure becomes unstable. For this reason, there is also a problem that a cooling failure occurs in winter when the outside air temperature is low.

【0006】本発明は、係る従来技術の課題を解決する
ために成されたものであり、冬期の寒冷地などにおける
冷凍機の始動時でも、安定して圧縮機の運転制御を行な
える凝縮器用送風機の速度調整装置を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art, and is intended for a condenser capable of stably controlling the operation of a compressor even when the refrigerator is started in a cold region in winter. An object of the present invention is to provide a speed adjusting device for a blower.

【0007】[0007]

【課題を解決するための手段】即ち、請求項1の発明の
凝縮器用送風機の速度調整装置は、圧縮機、凝縮器、減
圧装置及び蒸発器を順次環状に接続して冷凍サイクルを
構成すると共に、凝縮器を空冷するための凝縮器用送風
機を設けたものであって、凝縮器の温度を検出する凝縮
器温度センサと、該凝縮器温度センサの出力に基づき、
所定の標準的パターンにて凝縮器用送風機の運転を制御
する制御装置と、外気温度を検出する外気温度センサと
を備えており、制御装置は、外気温度センサの出力に基
づき、所定の低外気温時には、標準的パターンよりも凝
縮器の温度上昇を促すパターンにて凝縮器用送風機を始
動させるものである。
According to a first aspect of the present invention, there is provided a speed adjusting device for a blower for a condenser, wherein a compressor, a condenser, a decompression device, and an evaporator are sequentially connected in a ring to form a refrigeration cycle. A condenser blower for air-cooling the condenser, wherein the condenser temperature sensor detects the temperature of the condenser, based on the output of the condenser temperature sensor,
A control device for controlling the operation of the condenser blower in a predetermined standard pattern, and an outside air temperature sensor for detecting an outside air temperature, wherein the control device is configured to output a predetermined low outside air temperature based on an output of the outside air temperature sensor. Occasionally, the blower for the condenser is started in a pattern that promotes a rise in the temperature of the condenser rather than a standard pattern.

【0008】また、請求項2の発明の凝縮器用送風機の
速度調整装置は、圧縮機、凝縮器、減圧装置及び蒸発器
を順次環状に接続して冷凍サイクルを構成すると共に、
凝縮器を空冷するための凝縮器用送風機を設けたもので
あって、凝縮器の温度を検出する凝縮器温度センサと、
この凝縮器温度センサの出力に基づいて凝縮器用送風機
の運転を制御する制御装置と、外気温度を検出する外気
温度センサとを備えており、制御装置は、外気温度セン
サの出力に基づき、所定の低外気温時には、凝縮器の温
度が通常よりも高い値となるまで遅延させて凝縮器用送
風機を始動するものである。
According to a second aspect of the present invention, there is provided a speed adjusting device for a blower for a condenser, wherein a compressor, a condenser, a decompression device, and an evaporator are sequentially connected in a ring to constitute a refrigeration cycle.
A condenser blower for air-cooling the condenser, comprising a condenser temperature sensor for detecting the temperature of the condenser,
A control device that controls the operation of the condenser blower based on the output of the condenser temperature sensor, and an outside air temperature sensor that detects the outside air temperature are provided.The control device performs a predetermined operation based on the output of the outside air temperature sensor. At a low outside temperature, the condenser blower is started with a delay until the temperature of the condenser becomes higher than usual.

【0009】請求項1の発明によれば、凝縮器の温度を
検出する凝縮器温度センサと、該凝縮器温度センサの出
力に基づき、所定の標準的パターンにて凝縮器用送風機
の運転を制御する制御装置と、外気温度を検出する外気
温度センサとを備えており、制御装置は、外気温度セン
サの出力に基づき、所定の低外気温時には、標準的パタ
ーンよりも凝縮器の温度上昇を促すパターンにて凝縮器
用送風機を始動させるようにしているので、例えば、請
求項2の如く制御装置は、外気温度センサの出力に基づ
き、所定の低外気温時には、凝縮器の温度が通常よりも
高い値となるまで遅延させて凝縮器用送風機を始動する
ようにしているので、例えば、冬期の寒冷地などにおけ
る外気温が低い場合などでも、冷凍サイクルを構成する
冷凍機の始動後、凝縮器の温度が通常よりも高い値とな
るまで凝縮器用送風機を停止させて置き、そこから凝縮
器用送風機を低速で回転させることが可能となる。これ
により、凝縮器用送風機の停止時からの運転の回転数を
徐々に上げていくことができるので、凝縮圧力と蒸発圧
力を極めて安定させることが可能となる。従って、外気
温度が低い冬期に冷却不良が発生する不都合を未然に阻
止することができるようになるものである。
According to the first aspect of the present invention, the operation of the condenser blower is controlled in a predetermined standard pattern based on the output of the condenser temperature sensor and the output of the condenser temperature sensor. A control device, and an outside air temperature sensor for detecting an outside air temperature.The control device, based on the output of the outside air temperature sensor, at a predetermined low outside air temperature, prompts a rise in the condenser temperature more than a standard pattern. For example, the controller according to claim 2, based on the output of the outside air temperature sensor, at a predetermined low outside air temperature, causes the temperature of the condenser to be higher than normal. Since the condenser blower is started with a delay until it becomes, for example, even when the outside air temperature is low in a cold region in winter, for example, after the start of the refrigerator constituting the refrigeration cycle, Temperature of condenser is placed to stop the condenser blower until a higher value than usual, it is possible to rotate the condenser blower at low speed therefrom. Thereby, the rotation speed of the operation from the stop of the condenser blower can be gradually increased, so that the condensation pressure and the evaporation pressure can be extremely stabilized. Therefore, it is possible to prevent the inconvenience of poor cooling in winter when the outside air temperature is low.

【0010】[0010]

【発明の実施の形態】次に、図面に基づき本発明の実施
形態を詳述する。図1は本発明の凝縮器用送風機11の
速度調整装置18を適用した冷凍機の冷媒回路図、図2
は本発明の速度調整装置18の凝縮圧力と凝縮温度と凝
縮器用送風機11の回転数の関係を示す図、図3は本発
明の速度調整装置18を構成する制御装置16のプログ
ラムのフローチャートをそれぞれ示している。
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a refrigerator to which a speed adjusting device 18 of a blower 11 for a condenser according to the present invention is applied.
FIG. 3 is a diagram showing the relationship between the condensing pressure and the condensing temperature of the speed adjusting device 18 of the present invention and the number of revolutions of the condenser blower 11, and FIG. Is shown.

【0011】図1において、ロータリーコンプレッサ、
スクロールコンプレッサ等からなる圧縮機1の吐出側の
配管2には凝縮器3を構成する配管4が接続され、この
凝縮器3の出口側は配管6を介して減圧装置としての膨
張弁7に接続されている。この膨張弁7は蒸発器8に接
続され、蒸発器8の出口側は圧縮機1に接続されて環状
の冷凍サイクルを構成している。
In FIG. 1, a rotary compressor,
A pipe 4 constituting a condenser 3 is connected to a pipe 2 on a discharge side of a compressor 1 composed of a scroll compressor or the like, and an outlet side of the condenser 3 is connected via a pipe 6 to an expansion valve 7 as a pressure reducing device. Have been. The expansion valve 7 is connected to an evaporator 8, and the outlet side of the evaporator 8 is connected to the compressor 1 to form an annular refrigeration cycle.

【0012】前記凝縮器3は、複数の熱交換フィンに前
記配管4が挿通された熱交換器9と凝縮器用送風機11
とからなり、凝縮器用送風機11はモーター12とプロ
ペラファン13とから構成されている。そして、蒸発器
8は室内に設置されると共に、圧縮機1及び凝縮器3は
屋外に設置される。また、凝縮器3の熱交換器9の配管
4には凝縮器温度センサ14が取り付けられると共に、
凝縮器温度センサ14は凝縮器用送風機11の制御装置
16に接続されている。
The condenser 3 includes a heat exchanger 9 in which the pipe 4 is inserted through a plurality of heat exchange fins and a blower 11 for the condenser.
The condenser blower 11 includes a motor 12 and a propeller fan 13. Then, the evaporator 8 is installed indoors, and the compressor 1 and the condenser 3 are installed outdoors. A condenser temperature sensor 14 is attached to the pipe 4 of the heat exchanger 9 of the condenser 3,
The condenser temperature sensor 14 is connected to the control device 16 of the condenser blower 11.

【0013】この制御装置16には更に凝縮器3が設置
された屋外の温度、即ち、外気温度を検出する外気温度
センサ17が接続され、これら制御装置16、凝縮器温
度センサ14及び外気温度センサ17により凝縮器用送
風機11の速度調整装置18が構成されている。また、
凝縮器3の出口側配管6には凝縮器用送風機11を全速
で回転させる圧力スイッチ10が接続されており、この
圧力スイッチ10も制御装置16に接続されている。
The controller 16 is further connected to an outdoor temperature sensor 17 for detecting an outdoor temperature at which the condenser 3 is installed, that is, an outside air temperature. The controller 16, the condenser temperature sensor 14, and the outside air temperature sensor The speed adjustment device 18 of the condenser blower 11 is constituted by 17. Also,
A pressure switch 10 for rotating the condenser blower 11 at full speed is connected to the outlet pipe 6 of the condenser 3, and this pressure switch 10 is also connected to the control device 16.

【0014】そして、圧縮機1が起動されると、圧縮機
1から吐出された高温高圧のガス冷媒は配管2を経て凝
縮器3の熱交換器9に流入する。熱交換器9には後述す
る如く凝縮器用送風機11から外気が通風されており、
熱交換器9に流入した冷媒は空冷されて凝縮液化する。
凝縮器3から出た冷媒は配管6を経て膨張弁7に至り、
そこで減圧された後、蒸発器8に流入してそこで蒸発す
る。このときの吸熱作用により庫内を冷却する。そし
て、蒸発器8から出た冷媒は圧縮機1に吸入される。
尚、圧縮機1の吸込側(低圧側)には図示しない低圧圧
力スイッチが設けられており、設定圧力(低圧側)の上
限と下限を検知して圧縮機1を運転・停止する。
When the compressor 1 is started, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows through the pipe 2 into the heat exchanger 9 of the condenser 3. Outside air is passed through the heat exchanger 9 from the condenser blower 11 as described later.
The refrigerant flowing into the heat exchanger 9 is air-cooled and condensed and liquefied.
The refrigerant flowing out of the condenser 3 reaches the expansion valve 7 via the pipe 6,
Then, after the pressure is reduced, it flows into the evaporator 8 and evaporates there. The interior of the refrigerator is cooled by the heat absorbing action at this time. Then, the refrigerant flowing out of the evaporator 8 is sucked into the compressor 1.
A low-pressure switch (not shown) is provided on the suction side (low-pressure side) of the compressor 1 to detect the upper and lower limits of the set pressure (low-pressure side) and start / stop the compressor 1.

【0015】一方、図2に速度調整装置18による凝縮
器用送風機11の運転制御を示している。凝縮器用送風
機11の運転は従来同様の高モードM1、中モードM
2、低モードM3の3モードと、外気温度センサ17の
出力に基づいて、所定の低外気温時(外気温度が低い冬
期など)には、凝縮器3の温度が通常よりも高い値とな
るまで遅延させて凝縮器用送風機11を始動する寒冷地
用特性カーブの寒冷地モードM4とを備えている(図2
点線)。該寒冷地モードM4は、凝縮圧力が約1.21
MPa、凝縮温度が約+33℃の状態で凝縮器用送風機
11が回転を始め、凝縮圧力と凝縮温度が上昇していく
に従って回転数を上げていくパターンの回転制御が行な
われる。
FIG. 2 shows the operation control of the condenser blower 11 by the speed adjusting device 18. The operation of the condenser blower 11 is the same as the conventional high mode M1 and medium mode M
2. Based on the three modes of the low mode M3 and the output of the outside air temperature sensor 17, the temperature of the condenser 3 becomes higher than usual at a predetermined low outside air temperature (for example, in winter when the outside air temperature is low). And a cold district mode M4 of a cold district characteristic curve for starting the condenser blower 11 with a delay of up to
dotted line). In the cold district mode M4, the condensing pressure is about 1.21.
The rotation of the condenser blower 11 is started in a state where the condensing temperature is about + 33 ° C. and the rotation speed is increased as the condensing pressure and the condensing temperature are increased.

【0016】即ち、制御装置16は外気温度センサ17
の出力に基づいて、所定の低外気温時には、標準的パタ
ーン(高モードM1、中モードM2、低モードM3で凝
縮器用送風機11を運転するパターン)よりも凝縮器3
の温度上昇を促すパターンにて凝縮器用送風機11を始
動する。具体的には、外気温度が例えば+3℃以下の場
合は、寒冷地モードM4で始動する。該寒冷地モードM
4の特性は、凝縮圧力が約1.21MPa、凝縮温度が
約+33℃の状態で凝縮器用送風機11の回転を開始さ
せて、これにより、凝縮器3の温度上昇を促すように構
成している。尚、始動時外気温度が+3℃を越える場合
は通常のモード(高モードM1、中モードM2、低モー
ドM3)で凝縮器用送風機11の回転制御を行なう。
That is, the controller 16 controls the outside air temperature sensor 17
At the time of a predetermined low outside temperature based on the output of the condenser 3 is higher than the standard pattern (the pattern in which the condenser blower 11 is operated in the high mode M1, the middle mode M2, and the low mode M3).
The condenser blower 11 is started in a pattern that promotes the temperature rise. Specifically, when the outside air temperature is, for example, equal to or lower than + 3 ° C., the operation is started in the cold district mode M4. The cold region mode M
The characteristic of No. 4 is such that the condensing pressure is about 1.21 MPa and the condensing temperature is about + 33 ° C., so that the rotation of the condenser blower 11 is started, thereby promoting the temperature rise of the condenser 3. . When the outside air temperature at the time of starting exceeds + 3 ° C., the rotation of the condenser blower 11 is controlled in a normal mode (high mode M1, middle mode M2, low mode M3).

【0017】次に、図3のフローチャートを用いて速度
調整装置18の制御装置16による凝縮器用送風機11
の回転数制御につき説明する。ステップS1で圧縮機1
の始動が開始してステップS2に進む。ステップS2で
制御装置16は外気温度センサ17の出力信号に基づき
外気温度ATを入力し、外気温度ATが+3℃以下か否
か判断する。
Next, referring to the flowchart of FIG. 3, the control device 16 of the speed adjusting device 18 controls the blower 11 for the condenser.
Will be described. Compressor 1 in step S1
Starts and the process proceeds to step S2. In step S2, the control device 16 inputs the outside air temperature AT based on the output signal of the outside air temperature sensor 17, and determines whether or not the outside air temperature AT is equal to or lower than + 3 ° C.

【0018】そして、制御装置16は外気温度ATが+
3℃以下でない場合は、ステップS3に進んで通常モー
ド(高モードM1、中モードM2、低モードM3の標準
的パターン)にて凝縮器用送風機11の運転を行なう。
即ち、制御装置16は、外気温度ATが+3℃以下でな
い場合、この場合、凝縮器温度センサ14から入力した
凝縮器3の熱交換器9の温度(凝縮温度)が高モードM
1の場合、凝縮圧力が約0.92MPa、凝縮温度が約
+24℃の状態で凝縮器用送風機11が回転を始め、凝
縮圧力と凝縮温度が上昇していくに従って回転数を上げ
ていくパターンで凝縮器用送風機11の回転制御を行な
う。
The control device 16 determines that the outside air temperature AT is +
If the temperature is not equal to or lower than 3 ° C., the process proceeds to step S3 to operate the condenser blower 11 in the normal mode (the standard pattern of the high mode M1, the middle mode M2, and the low mode M3).
That is, if the outside air temperature AT is not equal to or lower than + 3 ° C., the controller 16 sets the temperature (condensation temperature) of the heat exchanger 9 of the condenser 3 input from the condenser temperature sensor 14 to the high mode M in this case.
In the case of 1, the condenser blower 11 starts rotating with the condensing pressure being about 0.92 MPa and the condensing temperature being about + 24 ° C., and condensing in a pattern of increasing the number of revolutions as the condensing pressure and the condensing temperature rise. The rotation of the dexterous blower 11 is controlled.

【0019】また、制御装置16は、凝縮器温度センサ
14から入力した凝縮器3の熱交換器9の温度が中モー
ドM2の範囲の場合は、凝縮圧力と凝縮温度が高モード
M1より低い凝縮圧力が約0.63MPa、凝縮温度が
約+12℃の状態から凝縮器用送風機11が回転を始
め、凝縮圧力と凝縮温度が上昇していくに従って回転数
を上げていくパターンで凝縮器用送風機11の回転制御
を行なう。
When the temperature of the heat exchanger 9 of the condenser 3 input from the condenser temperature sensor 14 is in the range of the middle mode M2, the controller 16 sets the condensation pressure and the condensation temperature lower than those of the high mode M1. When the pressure is about 0.63 MPa and the condensing temperature is about + 12 ° C., the condenser blower 11 starts to rotate, and the rotation of the condenser blower 11 in a pattern of increasing the number of revolutions as the condensing pressure and the condensing temperature rises. Perform control.

【0020】また、制御装置16は、凝縮器温度センサ
14から入力した凝縮器3の熱交換器9の温度が低モー
ドM3の範囲の場合は、凝縮圧力と凝縮温度が中モード
M2より更に低い凝縮圧力が約0.77MPa、凝縮温
度が約+17℃の状態から凝縮器用送風機11が回転を
始め、凝縮圧力と凝縮温度が上昇していくに従って回転
数を上げていくパターンで凝縮器用送風機11の回転制
御を行なう。そして、凝縮器用送風機11を通常モード
制御で運転し、ステップS4に進んで圧縮機1の運転が
停止するとステップS1に戻りこれが繰り返えされる。
When the temperature of the heat exchanger 9 of the condenser 3 input from the condenser temperature sensor 14 is in the low mode M3, the control device 16 further reduces the condensing pressure and the condensing temperature in the middle mode M2. The condenser blower 11 starts to rotate from the state where the condensing pressure is about 0.77 MPa and the condensing temperature is about + 17 ° C., and the number of rotations increases as the condensing pressure and the condensing temperature rise. Perform rotation control. Then, the blower 11 for the condenser is operated in the normal mode control, and the process proceeds to step S4, and when the operation of the compressor 1 is stopped, the process returns to step S1 and is repeated.

【0021】前記、ステップS2で制御装置16は、外
気温度センサ17の出力信号に基づき入力した外気温度
ATが+3℃以下の場合ステップS5に進み、寒冷地モ
ードM4で凝縮器用送風機11を始動(標準的パターン
よりも凝縮器3の温度上昇を促すパターンにて凝縮器用
送風機11を始動)する。具体的には制御装置16は、
外気温度ATが+3℃以下の場合には、凝縮圧力が約
1.2MPa、凝縮温度が約+33℃に上昇するまで凝
縮器用送風機11の運転始動(回転)を遅らせている。
In step S2, the control device 16 proceeds to step S5 if the outside air temperature AT inputted based on the output signal of the outside air temperature sensor 17 is equal to or lower than + 3 ° C., and starts the condenser blower 11 in the cold district mode M4 ( The condenser blower 11 is started in a pattern that promotes a rise in the temperature of the condenser 3 as compared with the standard pattern. Specifically, the control device 16
When the outside air temperature AT is equal to or lower than + 3 ° C., the operation start (rotation) of the condenser blower 11 is delayed until the condensing pressure rises to about 1.2 MPa and the condensing temperature rises to about + 33 ° C.

【0022】そして、凝縮圧力が約1.2MPa、凝縮
温度が約+33℃に上昇した時点で制御装置16は凝縮
器用送風機11のモーター12の運転(回転)を低速で
開始し、凝縮圧力と凝縮温度が上昇していくに従って回
転数を上げていく。これによって、外気温度ATが+3
℃以下での凝縮器3の空冷能力を調整し、凝縮器3内の
凝縮圧力を適正値に制御する。次に、ステップS4に進
んで圧縮機1の運転が停止するとステップS1に戻りこ
れが繰り返えされる。
When the condensing pressure rises to about 1.2 MPa and the condensing temperature rises to about + 33 ° C., the control device 16 starts the operation (rotation) of the motor 12 of the condenser blower 11 at a low speed, and the condensing pressure and the condensing pressure rise. As the temperature rises, the number of revolutions is increased. Thereby, the outside air temperature AT is increased by +3.
The condensing pressure in the condenser 3 is controlled to an appropriate value by adjusting the air cooling capacity of the condenser 3 at a temperature of not more than ° C. Next, when the operation proceeds to step S4 and the operation of the compressor 1 is stopped, the operation returns to step S1 and this operation is repeated.

【0023】このように、外気温度センサ17の出力に
基づき、所定の低外気温時に、凝縮器3の温度が通常よ
りも高い値となるまで制御装置16は凝縮器用送風機1
1の始動を遅らせたのち回転を開始するようにしている
ので、冬期の寒冷地などにおける外気温が低い場合で
も、圧縮機1が運転、停止を繰り返えしてしまうのを防
止することが可能となる。これにより、外気温度ATが
低い冬期に冷却不良が発生してしまう不都合を未然に阻
止することができるようになる。
As described above, based on the output of the outside air temperature sensor 17, at a predetermined low outside air temperature, the control device 16 controls the blower 1 for the condenser 1 until the temperature of the condenser 3 becomes higher than usual.
Since the rotation of the compressor 1 is started after the start of the compressor 1 is delayed, it is possible to prevent the compressor 1 from being repeatedly operated and stopped even when the outside temperature is low in a cold region in winter. It becomes possible. As a result, it is possible to prevent inconvenience that cooling failure occurs in winter when the outside air temperature AT is low.

【0024】尚、凝縮器用送風機11の速度調整装置1
8を冷凍機の冷媒回路に用いたがこれに限らず、冷蔵冷
凍庫、冷却冷凍庫などに凝縮器用送風機11の速度調整
装置18を用いても差し支えない。
The speed adjusting device 1 of the blower 11 for the condenser
Although 8 is used in the refrigerant circuit of the refrigerator, the invention is not limited to this, and the speed adjusting device 18 of the condenser blower 11 may be used in a refrigerated freezer, a cooled freezer, or the like.

【0025】[0025]

【発明の効果】以上詳述した如く本発明によれば、凝縮
器の温度を検出する凝縮器温度センサと、該凝縮器温度
センサの出力に基づき、所定の標準的パターンにて凝縮
器用送風機の運転を制御する制御装置と、外気温度を検
出する外気温度センサとを備えており、制御装置は、外
気温度センサの出力に基づき、所定の低外気温時には、
標準的パターンよりも凝縮器の温度上昇を促すパターン
にて凝縮器用送風機を始動させるようにしているので、
例えば、請求項2の如く制御装置は、外気温度センサの
出力に基づき、所定の低外気温時には、凝縮器の温度が
通常よりも高い値となるまで遅延させて凝縮器用送風機
を始動するようにしているので、例えば、冬期の寒冷地
などにおける外気温が低い場合などでも、冷凍サイクル
を構成する冷凍機の始動後、凝縮器の温度が通常よりも
高い値となるまで凝縮器用送風機を停止させて置き、そ
こから凝縮器用送風機を低速で回転させることが可能と
なる。これにより、凝縮器用送風機の停止時からの運転
の回転数を徐々に上げていくことができるので、凝縮圧
力と蒸発圧力を極めて安定させることが可能となる。従
って、外気温度が低い冬期に冷却不良が発生する不都合
を未然に阻止することができるようになるものである。
As described above in detail, according to the present invention, a condenser temperature sensor for detecting the temperature of the condenser and a blower for the condenser in a predetermined standard pattern based on the output of the condenser temperature sensor are provided. A control device for controlling operation and an outside air temperature sensor for detecting an outside air temperature are provided.The control device is based on an output of the outside air temperature sensor and at a predetermined low outside air temperature,
Since the blower for the condenser is started in a pattern that promotes the temperature rise of the condenser than the standard pattern,
For example, based on the output of the outside air temperature sensor, the control device delays the condenser temperature to a higher value than usual and starts the condenser blower at a predetermined low outside air temperature based on the output of the outside air temperature sensor. Therefore, for example, even when the outside air temperature is low in a cold region in winter, etc., after the start of the refrigerator constituting the refrigeration cycle, the blower for the condenser is stopped until the temperature of the condenser becomes higher than usual. From which the blower for the condenser can be rotated at low speed. Thereby, the rotation speed of the operation from the stop of the condenser blower can be gradually increased, so that the condensation pressure and the evaporation pressure can be extremely stabilized. Therefore, it is possible to prevent the inconvenience of poor cooling in winter when the outside air temperature is low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の凝縮器用送風機の速度調整装置を適用
した冷凍機の冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram of a refrigerator to which a speed adjusting device for a blower for a condenser according to the present invention is applied.

【図2】本発明の速度調整装置の凝縮圧力と凝縮温度と
凝縮器用送風機の回転数の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the condensing pressure and the condensing temperature of the speed adjusting device of the present invention and the number of revolutions of the blower for the condenser.

【図3】本発明の速度調整装置を構成する制御装置のプ
ログラムのフローチャートである。
FIG. 3 is a flowchart of a program of a control device constituting the speed adjusting device of the present invention.

【図4】従来の速度調整装置の凝縮圧力と凝縮温度と凝
縮器用送風機の回転数の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the condensing pressure and the condensing temperature of the conventional speed adjusting device and the rotation speed of the blower for the condenser.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 凝縮器 7 膨張弁 8 蒸発器 11 凝縮器用送風機 12 モーター 14 凝縮器温度センサ 16 制御装置 17 外気温度センサ 18 速度調整装置 M1 高モード M2 中モード M3 低モード M4 寒冷地モード DESCRIPTION OF SYMBOLS 1 Compressor 3 Condenser 7 Expansion valve 8 Evaporator 11 Condenser blower 12 Motor 14 Condenser temperature sensor 16 Control device 17 Outside air temperature sensor 18 Speed control device M1 High mode M2 Medium mode M3 Low mode M4 Cold district mode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、減圧装置及び蒸発器を
順次環状に接続して冷凍サイクルを構成すると共に、前
記凝縮器を空冷するための凝縮器用送風機を設けたもの
において、 前記凝縮器の温度を検出する凝縮器温度センサと、該凝
縮器温度センサの出力に基づき、所定の標準的パターン
にて前記凝縮器用送風機の運転を制御する制御装置と、
外気温度を検出する外気温度センサとを備え、 前記制御装置は、前記外気温度センサの出力に基づき、
所定の低外気温時には、前記標準的パターンよりも前記
凝縮器の温度上昇を促すパターンにて前記凝縮器用送風
機を始動させることを特徴とする凝縮器用送風機の速度
調整装置。
1. A refrigeration cycle comprising a compressor, a condenser, a decompression device, and an evaporator sequentially connected in a ring, and a condenser blower for air-cooling the condenser. A condenser temperature sensor that detects the temperature of the condenser, based on the output of the condenser temperature sensor, a control device that controls the operation of the condenser blower in a predetermined standard pattern,
An outside air temperature sensor for detecting an outside air temperature, wherein the control device is configured to output the outside air temperature sensor based on an output of the outside air temperature sensor.
A speed adjusting device for a blower for a condenser, wherein the blower for the condenser is started in a pattern that promotes a rise in the temperature of the condenser more than the standard pattern at a predetermined low outside temperature.
【請求項2】 圧縮機、凝縮器、減圧装置及び蒸発器を
順次環状に接続して冷凍サイクルを構成すると共に、前
記凝縮器を空冷するための凝縮器用送風機を設けたもの
において、 前記凝縮器の温度を検出する凝縮器温度センサと、この
凝縮器温度センサの出力に基づいて前記凝縮器用送風機
の運転を制御する制御装置と、外気温度を検出する外気
温度センサとを備え、 前記制御装置は、前記外気温度センサの出力に基づき、
所定の低外気温時には、前記凝縮器の温度が通常よりも
高い値となるまで遅延させて前記凝縮器用送風機を始動
することを特徴とする凝縮器用送風機の速度調整装置。
2. A compressor comprising: a compressor, a condenser, a decompression device, and an evaporator, which are sequentially connected in a ring to form a refrigeration cycle, and further comprising a condenser blower for air-cooling the condenser. A condenser temperature sensor that detects the temperature of the condenser, a control device that controls the operation of the condenser blower based on the output of the condenser temperature sensor, and an outside air temperature sensor that detects the outside air temperature. Based on the output of the outside air temperature sensor,
A speed adjusting device for a condenser blower, wherein at a predetermined low outside temperature, the condenser blower is started with a delay until the temperature of the condenser becomes higher than usual.
JP2000336056A 2000-11-02 2000-11-02 Speed adjusting device for condenser blower Expired - Lifetime JP3668121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000336056A JP3668121B2 (en) 2000-11-02 2000-11-02 Speed adjusting device for condenser blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000336056A JP3668121B2 (en) 2000-11-02 2000-11-02 Speed adjusting device for condenser blower

Publications (2)

Publication Number Publication Date
JP2002139260A true JP2002139260A (en) 2002-05-17
JP3668121B2 JP3668121B2 (en) 2005-07-06

Family

ID=18811696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000336056A Expired - Lifetime JP3668121B2 (en) 2000-11-02 2000-11-02 Speed adjusting device for condenser blower

Country Status (1)

Country Link
JP (1) JP3668121B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329540A (en) * 2005-05-27 2006-12-07 Valeo Thermal Systems Japan Corp Control device for refrigerating cycle
JP2007187345A (en) * 2006-01-11 2007-07-26 Kobe Steel Ltd Heat pump system
JP2008285029A (en) * 2007-05-18 2008-11-27 Mitsubishi Heavy Ind Ltd Vehicular air conditioner
CN103016382A (en) * 2012-12-21 2013-04-03 海信(北京)电器有限公司 Refrigerator and speed control system and method of condenser fan of refrigerator
KR20170051847A (en) * 2015-11-02 2017-05-12 한온시스템 주식회사 Air conditioning system for automotive vehicles
CN107238148A (en) * 2017-07-20 2017-10-10 广东美的暖通设备有限公司 Air-conditioner outdoor unit, air-conditioning and air-conditioner outdoor unit control method
CN107339746A (en) * 2017-07-20 2017-11-10 广东美的暖通设备有限公司 Apparatus and method, air-conditioning for auxiliary air conditioner refrigeration
CN108377628A (en) * 2018-01-26 2018-08-07 青岛海尔空调电子有限公司 A kind of control method and device of the radiator fan of handpiece Water Chilling Units power control cabinet
WO2019215846A1 (en) * 2018-05-09 2019-11-14 三菱電機株式会社 Showcase
CN112594884A (en) * 2020-12-10 2021-04-02 珠海格力电器股份有限公司 Air conditioning unit and condenser fan control method and device thereof and storage medium
CN113757844A (en) * 2021-08-23 2021-12-07 浙江中广电器股份有限公司 Heat pump unit suitable for air source and refrigeration control method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628630B (en) * 2012-03-15 2014-04-09 青岛海尔空调电子有限公司 Control method of air-cooling water chiller unit
CN106440241B (en) * 2016-10-25 2019-03-01 青岛海信电子设备股份有限公司 A kind of method for controlling speed regulation of outdoor fan of air-conditioner
CN107367012B (en) * 2017-06-06 2020-02-11 珠海格力电器股份有限公司 High-temperature-resistant protection method, protection device and protection system for air conditioning system
CN107906682B (en) * 2017-11-03 2020-07-14 广东美的暖通设备有限公司 Control method and device of air conditioning system and air conditioner
CN111947280A (en) * 2020-07-16 2020-11-17 海信(山东)空调有限公司 Air conditioning system and control method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329540A (en) * 2005-05-27 2006-12-07 Valeo Thermal Systems Japan Corp Control device for refrigerating cycle
JP2007187345A (en) * 2006-01-11 2007-07-26 Kobe Steel Ltd Heat pump system
JP2008285029A (en) * 2007-05-18 2008-11-27 Mitsubishi Heavy Ind Ltd Vehicular air conditioner
CN103016382A (en) * 2012-12-21 2013-04-03 海信(北京)电器有限公司 Refrigerator and speed control system and method of condenser fan of refrigerator
KR20170051847A (en) * 2015-11-02 2017-05-12 한온시스템 주식회사 Air conditioning system for automotive vehicles
KR102413681B1 (en) * 2015-11-02 2022-06-28 한온시스템 주식회사 Air conditioning system for automotive vehicles
CN107339746A (en) * 2017-07-20 2017-11-10 广东美的暖通设备有限公司 Apparatus and method, air-conditioning for auxiliary air conditioner refrigeration
CN107238148A (en) * 2017-07-20 2017-10-10 广东美的暖通设备有限公司 Air-conditioner outdoor unit, air-conditioning and air-conditioner outdoor unit control method
CN108377628A (en) * 2018-01-26 2018-08-07 青岛海尔空调电子有限公司 A kind of control method and device of the radiator fan of handpiece Water Chilling Units power control cabinet
CN108377628B (en) * 2018-01-26 2020-07-07 青岛海尔空调电子有限公司 Control method and device for cooling fan of water chilling unit electric control cabinet
WO2019215846A1 (en) * 2018-05-09 2019-11-14 三菱電機株式会社 Showcase
JPWO2019215846A1 (en) * 2018-05-09 2021-03-18 三菱電機株式会社 Showcase
CN112594884A (en) * 2020-12-10 2021-04-02 珠海格力电器股份有限公司 Air conditioning unit and condenser fan control method and device thereof and storage medium
CN112594884B (en) * 2020-12-10 2022-02-18 珠海格力电器股份有限公司 Air conditioning unit and condenser fan control method and device thereof and storage medium
CN113757844A (en) * 2021-08-23 2021-12-07 浙江中广电器股份有限公司 Heat pump unit suitable for air source and refrigeration control method thereof

Also Published As

Publication number Publication date
JP3668121B2 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
JP2002139260A (en) Velocity regulator of blower for condenser
US20130111933A1 (en) Refrigerator using non-azeotropic refrigerant mixture and control method thereof
WO2017061010A1 (en) Refrigeration cycle device
KR101620430B1 (en) Refrigerator and control method of the same
JP2012072920A (en) Refrigeration apparatus
JP2007218460A (en) Refrigerating cycle device and cool box
JPH09119736A (en) Multi-chamber type cooling and heating apparatus and operating method therefor
JP4178646B2 (en) refrigerator
JP2004170023A (en) Control method for multicellular air-conditioner
JP2009138973A (en) Heat pump and its operation method
JP3668750B2 (en) Air conditioner
JPH11344265A (en) Turbo freezer of multistage compression system
JP2010175203A (en) Refrigeration system
JPH102625A (en) Refrigerator
JP3311432B2 (en) Speed control device for blower for condenser
JP2007170706A (en) Refrigeration system
JP3462551B2 (en) Speed control device for blower for condenser
JPH11201563A (en) Cooling device
JP2004293870A (en) Refrigerating cycle device
JP7227103B2 (en) air conditioner
JP4726658B2 (en) Refrigeration system
JP4318369B2 (en) Screw type refrigerator
JP4726657B2 (en) Refrigeration system
JP2891576B2 (en) Heat pump type air conditioner
JP2000249384A (en) Freezer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9