JP2002134681A - Manufacturing method of hybrid integrated circuit device - Google Patents

Manufacturing method of hybrid integrated circuit device

Info

Publication number
JP2002134681A
JP2002134681A JP2000326300A JP2000326300A JP2002134681A JP 2002134681 A JP2002134681 A JP 2002134681A JP 2000326300 A JP2000326300 A JP 2000326300A JP 2000326300 A JP2000326300 A JP 2000326300A JP 2002134681 A JP2002134681 A JP 2002134681A
Authority
JP
Japan
Prior art keywords
integrated circuit
solder
hybrid integrated
manufacturing
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000326300A
Other languages
Japanese (ja)
Other versions
JP3869643B2 (en
Inventor
Norihiro Sakai
紀泰 酒井
Noriaki Sakamoto
則明 坂本
Eiju Maehara
栄寿 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000326300A priority Critical patent/JP3869643B2/en
Priority to KR1020010055418A priority patent/KR100676353B1/en
Priority to CNB011371994A priority patent/CN1221157C/en
Publication of JP2002134681A publication Critical patent/JP2002134681A/en
Application granted granted Critical
Publication of JP3869643B2 publication Critical patent/JP3869643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Abstract

PROBLEM TO BE SOLVED: To solve the problem that many man-hours are taken because the manufacturing method of the conventional manufacturing method of a hybrid integrated circuit device is arranged in a process for attaching from small-sized parts to large-sized parts in good order. SOLUTION: After chip parts 4 fixed by solder paste, a bump 1 and a power transistor 11 are collectively printed by a solder cream 3, they are collectively mounted, and a simple line making a plurality of the conventional solder melting processes one time is realized by collectively melting it in a N2 reflow solder melting furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、混成集積回路装置
の製造方法に関し、特に工程をシンプルにした混成集積
回路装置の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a hybrid integrated circuit device, and more particularly to a method for manufacturing a hybrid integrated circuit device having a simplified process.

【0002】[0002]

【従来の技術】従来の混成集積回路装置の製造方法を図
13〜図22を参照して説明する。
2. Description of the Related Art A conventional method for manufacturing a hybrid integrated circuit device will be described with reference to FIGS.

【0003】図13は工程フロー図であり、ロット番号
印刷、半田印刷、チップマウント、銀ペーストスタン
プ、小信号トランジスタソルダー、バンプソルダー、半
田溶融、銀ペースト硬化、細線ボンダー、アースボンダ
ー、パワートランジスタソルダー、太線ボンダーの各工
程から構成されている。このフローから明確なように、
小型の部品から順序よく大型の部品を取り付ける工程に
並べられている。また、各工程は単機能の製造装置で構
成されているので、後で明白になるが各工程間には搬送
設備が設けられている。
FIG. 13 is a process flow chart. Lot number printing, solder printing, chip mounting, silver paste stamp, small signal transistor solder, bump solder, solder melting, silver paste curing, fine wire bonder, earth bonder, power transistor solder , And a thick wire bonder. As is clear from this flow,
They are arranged in a process of attaching large components in order from small components. Further, since each step is constituted by a single-function manufacturing apparatus, a transfer facility is provided between each step, as will become clear later.

【0004】図14から図20に、各工程の断面図を示
す。なお、図示しなくても明確な工程は図面を省略して
いる。
FIGS. 14 to 20 show sectional views of respective steps. In addition, even if it is not shown, a clear process is omitted in the drawings.

【0005】ロット番号印刷工程では混成集積回路基板
(以下基板という。)の反対主面に製造管理のためのロ
ット番号をインキで印刷する。
In a lot number printing step, a lot number for manufacturing control is printed on the opposite main surface of a hybrid integrated circuit board (hereinafter referred to as a board) with ink.

【0006】次に、図14に示す如く半田印刷工程で
は、セラミックやガラスエポキシ樹脂の絶縁基板からな
る基板1あるいは金属基板の表面を絶縁処理した基板1
を準備し、この基板1の表面に所望のパターンの銅箔あ
るいは導電性塗料で形成された導電路2が形成され、こ
の導電路2の所定の部分に半田クリーム3をスクリーン
印刷して選択的に半田クリーム3を付着する。
Next, as shown in FIG. 14, in the solder printing step, a substrate 1 made of an insulating substrate made of ceramic or glass epoxy resin or a substrate 1 made by insulating the surface of a metal substrate is used.
A conductive path 2 formed of a copper foil or a conductive paint of a desired pattern is formed on the surface of the substrate 1, and a solder cream 3 is selectively printed on a predetermined portion of the conductive path 2 by screen printing. A solder cream 3 is attached to the substrate.

【0007】更に、図15に示す如くチップマウント工
程では、中速のチップマウンタを用いて定型部品である
チップコンデンサやチップ抵抗等のチップ部品4を半田
クリーム3上に仮接着する。
Further, in the chip mounting step, as shown in FIG. 15, a chip component 4 such as a chip capacitor or a chip resistor, which is a standard component, is temporarily bonded onto the solder cream 3 using a medium speed chip mounter.

【0008】続いて、図16に示す如く銀ペーストスタ
ンプ工程で小信号トランジスタを搭載する導電路2上に
先端に銀ペースト5を付着したスタンプ針で銀ペースト
5を付着する。銀ペーストは有機溶剤で低粘度にしてい
るので、有機溶剤がボンディング時の固着を阻害しない
ように約7時間放置して有機溶剤を蒸発させる必要があ
る。
Subsequently, as shown in FIG. 16, in a silver paste stamping step, the silver paste 5 is adhered to the conductive path 2 on which the small signal transistor is mounted with a stamp needle having the silver paste 5 attached to the tip. Since the silver paste is made to have a low viscosity with an organic solvent, it is necessary to leave the organic solvent for about 7 hours to evaporate the organic solvent so that the organic solvent does not hinder the fixing during bonding.

【0009】続いて、図17に示す如く小信号トランジ
スタソルダー工程では、前工程付着した銀ペースト5上
に小信号トランジスタのチップ6を半導体用チップマウ
ンタを用いて載置する。
Subsequently, in the small signal transistor soldering step as shown in FIG. 17, a small signal transistor chip 6 is mounted on the silver paste 5 adhered to the previous step using a semiconductor chip mounter.

【0010】続いて、図18に示す如くバンプソルダー
工程では予めセミパワーのトランジスタ8を固着した金
属片よりなるバンプ7を異形部品用の多機能チップマウ
ンタを用いて、所定の導電路2に本工程でディスペンサ
ーで付着した銀ペースト5上に載置する。
Subsequently, as shown in FIG. 18, in a bump soldering step, a bump 7 made of a metal piece to which a semi-power transistor 8 is fixed in advance is applied to a predetermined conductive path 2 by using a multifunctional chip mounter for odd-shaped parts. Is placed on the silver paste 5 adhered by a dispenser.

【0011】続いて、図示しないが半田溶融工程では、
半田クリーム3の溶融を行う。すなわち、ホットプレー
ト上に基板1を配置し、210℃で約2〜3分間加熱を
してチップ部品4の固着を行う。
Subsequently, although not shown, in the solder melting step,
The solder cream 3 is melted. That is, the substrate 1 is placed on a hot plate and heated at 210 ° C. for about 2 to 3 minutes to fix the chip component 4.

【0012】続いて、図示しないが銀ペースト硬化工程
では、硬化炉内に多数の基板1を収納して、約150℃
で4〜5時間還元雰囲気中で銀ペースト5の硬化をバッ
チ処理で行う。硬化中に発生する有機溶剤は直ちに炉内
から排気されるので、基板1への付着は防止できる。
Subsequently, in a silver paste hardening step (not shown), a large number of substrates 1 are housed in a hardening furnace at about 150 ° C.
The curing of the silver paste 5 is performed in a reducing atmosphere for 4 to 5 hours in a batch process. Since the organic solvent generated during curing is immediately exhausted from the furnace, it is possible to prevent the organic solvent from adhering to the substrate 1.

【0013】続いて、硬化炉から取り出された基板1は
図19に示す如く細線ボンダー工程に移行する。細線ボ
ンダー工程では小信号トランジスタ6およびバンプ7に
固着されたセミパワーのトランジスタのベースおよびエ
ミッタ電極と対応する導電路2とを約50μmの径のア
ルミニウムのボンディング細線9で超音波ボンダーによ
り接続する。
Subsequently, the substrate 1 taken out of the curing furnace proceeds to a fine wire bonding step as shown in FIG. In the thin wire bonding step, the base and the emitter electrode of the semi-power transistor fixed to the small signal transistor 6 and the bump 7 are connected to the corresponding conductive path 2 by an aluminum bonding thin wire 9 having a diameter of about 50 μm by an ultrasonic bonder.

【0014】続いて、図示しないがアースボンダー工程
は基板1として金属基板を用いた場合の特有の工程であ
り、導電路2と基板1間の絶縁膜に起因する寄生容量を
除去するために導電路2と露出させた金属基板とを接続
するものである。
Subsequently, although not shown, the earth bonder step is a specific step when a metal substrate is used as the substrate 1, and is used to remove a parasitic capacitance caused by an insulating film between the conductive path 2 and the substrate 1. The path 2 is connected to the exposed metal substrate.

【0015】続いて、図20に示す如くパワートランジ
スタソルダー工程では、放熱性の良いヒートシンク10
上にパワートランジスタ11を固着したブロックの取り
付けを行う。導電路2上には予め半田クリームを印刷し
て溶融した半田12を付着しており、このブロック取り
付ける際にホットプレート上で再び半田12を溶融して
巣が発生しないように超音波を加えてブロックを固着す
る。
Subsequently, in the power transistor soldering step, as shown in FIG.
A block to which the power transistor 11 is fixed is mounted. Solder cream printed and melted in advance on the conductive path 2 is soldered. When mounting the block, the solder 12 is melted again on a hot plate and ultrasonic waves are applied so that no burrs are generated. Secure the block.

【0016】最後に、図21に示す如く太線ボンダー工
程では、パワートランジスタ11のベース電極およびエ
ミッタ電極と所定の導電路2との接続を約300μmの
径のアルミニウムのボンディング太線13で超音波ボン
ダーを用いて行う。なお、本工程でクロス配線を必要と
する導電路2間にはジャンパー線を形成する。
Finally, in the thick wire bonding step as shown in FIG. 21, the connection between the base electrode and the emitter electrode of the power transistor 11 and the predetermined conductive path 2 is performed by bonding the ultrasonic bonder with an aluminum bonding thick wire 13 having a diameter of about 300 μm. Perform using In this step, a jumper wire is formed between the conductive paths 2 requiring the cross wiring.

【0017】以上に詳述した従来の混成集積回路装置の
製造方法を実現する製造ラインを図22に示す。
FIG. 22 shows a manufacturing line for realizing the conventional method for manufacturing a hybrid integrated circuit device described in detail above.

【0018】所望のパターンに導電路2を形成された基
板1はマガジンMに収納されて各工程を流れる。
The substrate 1 on which the conductive paths 2 are formed in a desired pattern is accommodated in a magazine M and flows through each process.

【0019】最初に、ロット番号印刷工程の基板を供給
するロード装置LにマガジンMを配置し、印刷が終了し
た基板1はアンロード装置ULで基板をマガジンMに収
納する。
First, the magazine M is placed in the loading device L for supplying the substrate in the lot number printing process, and the substrate 1 after printing is stored in the magazine M by the unloading device UL.

【0020】次に、半田印刷工程では、前工程からマガ
ジンMに収納された形で運ばれてきたものをロード装置
Lにセットし、マガジンM内の基板1を1枚ずつ供給し
て半田クリーム3のスクリーン印刷を行い、アンロード
装置ULにセットしたマガジンMに1枚ずつ収納してい
く。
Next, in the solder printing process, the components carried in the magazine M from the previous process are set in the loading device L, and the substrates 1 in the magazine M are supplied one by one to supply the solder cream. 3 is performed, and the sheets are stored one by one in the magazine M set in the unloading device UL.

【0021】更に、チップマウント工程では、2台のチ
ップマウンタでチップ部品4の装着を行うことで、工程
の処理能力を平準化している。
Further, in the chip mounting step, the chip parts 4 are mounted by two chip mounters, thereby leveling the processing capability of the step.

【0022】同様に、銀ペーストスタンプ工程、約7時
間の常温放置、小信号トランジスタソルダー工程、バン
プソルダー工程、半田溶融工程、銀ペースト硬化工程、
細線ボンダー工程、アースボンダー工程、半田印刷工
程、パワートランジスタソルダー工程、太線ボンダー工
程と順次マガジンMの形でロード装置L、アンロード装
置ULを用いて流すことで混成集積回路装置を完成させ
る。ただ銀ペースト硬化工程では硬化炉を用いるので、
多数のマガジンMを貯めて、バッチ処理で硬化炉に収納
可能な数のマガジンMを収容して処理する。
Similarly, a silver paste stamping step, standing at room temperature for about 7 hours, a small signal transistor soldering step, a bump soldering step, a solder melting step, a silver paste curing step,
The hybrid integrated circuit device is completed by flowing the thin wire bonder process, the earth bonder process, the solder printing process, the power transistor soldering process, and the thick wire bonder process in the form of a magazine M using the load device L and the unload device UL in order. However, since the curing furnace is used in the silver paste curing process,
A large number of magazines M are stored, and the number of magazines M that can be stored in a curing furnace in batch processing is stored and processed.

【0023】図23に混成集積回路装置の上面図を示
す。基板1の上側に並べられたのが外部リードを固着す
る電極であり、この電極から所望のパターンに導電路2
が延在している。チップ部品4は抵抗あるいはコンデン
サの回路記号を付したものが該当する。小信号トランジ
スタ6は導電路2上に大部分が菱形に見えるものが該当
し、ベース電極Bとエミッタ電極Eが付されている。こ
の小信号トランジスタ6からは2本のボンディング細線
9が伸びており、導電路2との接続を行っている。バン
プ7はその上に放熱を必要とするセミパワーのトランジ
スタが固着されている。下側の左側に4個並べられたブ
ロックがヒートシンク10上にパワートランジスタ11
を固着したブロックである。パワートランジスタ11の
ベース電極Bおよびエミッタ電極Eからは2本のボンデ
ィング太線13(図でも太く記載している。)が所定の
導電路2との接続を行っている。このボンディング太線
13では交差導電路のジャンパー線Jやアース線Aも形
成される。
FIG. 23 is a top view of the hybrid integrated circuit device. Arranged on the upper side of the substrate 1 are electrodes for fixing external leads.
Extends. The chip component 4 corresponds to a component with a circuit symbol of a resistor or a capacitor. The small-signal transistor 6 corresponds to the small-signal transistor 6 which is mostly diamond-shaped on the conductive path 2, and is provided with a base electrode B and an emitter electrode E. Two small bonding wires 9 extend from the small signal transistor 6, and are connected to the conductive path 2. On the bump 7, a semi-power transistor requiring heat radiation is fixed. The four blocks arranged on the lower left side are the power transistors 11 on the heat sink 10.
Is a block to which is fixed. From the base electrode B and the emitter electrode E of the power transistor 11, two bonding thick lines 13 (shown thick in the figure) are connected to predetermined conductive paths 2. In this thick bonding wire 13, a jumper wire J and a ground wire A of a crossing conductive path are also formed.

【0024】[0024]

【発明が解決しようとする課題】従来の混成集積回路装
置の製造方法では、小型の部品から順序よく大型の部品
を取り付ける工程に並べられているために各工程間が順
次マガジンMの形でロード装置L、アンロード装置UL
を用いて流す搬送設備を必要とし、各工程の加工設備と
搬送設備で多くの作業面積を必要とする問題点があっ
た。
In the conventional method of manufacturing a hybrid integrated circuit device, since the steps of mounting the large components in order from the small components are arranged in order, the loading device is sequentially arranged in the form of a magazine M between the processes. L, unloading device UL
However, there is a problem that a transport facility for flowing using the method is required, and a large work area is required for the processing facility and the transport facility for each process.

【0025】また、チップマウント工程後の半田溶融工
程とパワートランジスタソルダー工程の2カ所で半田を
溶融するために、半田クリームの印刷工程と半田溶融工
程が重複しており、工程数の増加になり工程日数を長期
化する問題点となっていた。
Further, since the solder is melted in two places, the solder melting step after the chip mounting step and the power transistor soldering step, the solder cream printing step and the solder melting step overlap, which increases the number of steps. This has been a problem of prolonging the number of process days.

【0026】[0026]

【課題を解決するための手段】本発明は、前述した多く
の問題点に鑑みて成され、混成集積回路基板の所望の導
電路に導電性ロウ材を付着する工程と、前記導電路上に
少なくとも前記導電性ロウ材で固着される回路素子を一
括してマウントする工程と、前記混成集積回路基板を溶
融炉内に設けたヒーターブロック上を移動するベルトに
載置し、更に上方から赤外線ランプで加熱し且つN2
スを循環させて、前記導電性ロウ材を一括溶融して、前
記回路素子を前記導電路に固着する工程とを具備するこ
とを特徴とする。特に、半田ペーストで固着するチップ
部品、バンプおよびパワートランジスタを半田クリーム
印刷後に一括してマウントし、直ちに半田溶融炉で一括
して溶融するすることで、従来の複数工程を1ライン化
したシンプルラインを実現するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned many problems, and includes a step of attaching a conductive brazing material to a desired conductive path of a hybrid integrated circuit board; A step of collectively mounting the circuit elements fixed by the conductive brazing material, and placing the hybrid integrated circuit board on a belt moving on a heater block provided in a melting furnace, and further using an infrared lamp from above. Heating and circulating a N 2 gas to collectively melt the conductive brazing material and fix the circuit element to the conductive path. In particular, the chip parts, bumps and power transistors that are fixed with solder paste are mounted collectively after solder cream printing, and are immediately melted collectively in a solder melting furnace. Is realized.

【0027】また、本発明では前記回路素子としてチッ
プ部品等の定型回路素子とヒートシンクに固着されたパ
ワートランジスタ等の非定型回路素子を含み、前記定型
回路素子および非定型回路素子を連続して前記導電路上
にマウントすることに特徴を有し、従来の小型の部品か
ら順序よく大型の部品を取り付ける工程に並べるのでは
なく、回路素子を固着する導電性ロウ材に着目して工程
日数の短縮を図る混成集積回路装置の製造方法を提供す
るものである。
In the present invention, the circuit element includes a fixed circuit element such as a chip component and an atypical circuit element such as a power transistor fixed to a heat sink, and the fixed circuit element and the atypical circuit element are continuously connected to each other. The feature is that it is mounted on the conductive path, and instead of arranging the small parts in the order of the conventional order in the process of attaching the large parts, the number of process days is reduced by focusing on the conductive brazing material that fixes the circuit elements. A method of manufacturing a hybrid integrated circuit device is provided.

【0028】[0028]

【発明の実施の形態】本発明の混成集積回路装置の製造
方法を図1から図12を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a hybrid integrated circuit device according to the present invention will be described with reference to FIGS.

【0029】図1は工程フロー図であり、ロット番号印
刷、半田印刷、チップマウント、多機能マウンタ(バン
プソルダー、パワートランジスタソルダー)、半田溶
融、銀ペーストスタンプ/小信号トランジスタソルダ
ー、銀ペースト硬化、細線ボンダー、アースボンダー、
太線ボンダーの各工程から構成されている。このフロー
から明確なように、半田ペーストで固着する回路素子を
一括してまとめたことで、工程のシンプル化を実現して
いる。
FIG. 1 is a process flow diagram. Lot number printing, solder printing, chip mounting, multifunctional mounter (bump solder, power transistor solder), solder melting, silver paste stamp / small signal transistor solder, silver paste curing, Fine wire bonder, earth bonder,
It consists of each step of the thick wire bonder. As is clear from this flow, the circuit elements fixed by the solder paste are collectively collected, thereby realizing the simplification of the process.

【0030】図2から図9に、各工程の断面図を示す。
なお、図示しなくても明確な工程は図面を省略してい
る。従来と同一構成要素には同一符号を付した。
FIGS. 2 to 9 show sectional views of respective steps.
In addition, even if it is not shown, a clear process is omitted in the drawings. The same components as those in the related art are denoted by the same reference numerals.

【0031】ロット番号印刷工程では混成集積回路基板
(以下基板という。)の反対主面に製造管理のためのロ
ット番号をレーザーで印刷する。
In the lot number printing step, a lot number for manufacturing control is printed on the opposite main surface of the hybrid integrated circuit substrate (hereinafter, referred to as a substrate) by laser.

【0032】次に、図2に示す如く半田印刷工程では、
セラミックやガラスエポキシ樹脂の絶縁基板からなる基
板1あるいは金属基板の表面を絶縁処理した基板1を準
備し、この基板1の表面に所望のパターンの銅箔あるい
は導電性塗料で形成された導電路2が形成され、この導
電路2のチップ部品、バンプおよびパワートランジスタ
を載置する所定の部分に半田クリーム3をスクリーン印
刷して選択的に半田クリーム3を付着する。本工程の特
徴は半田クリーム5で固着する回路素子はすべてこの工
程で半田クリーム5の印刷を行う点である。
Next, in the solder printing process as shown in FIG.
A substrate 1 made of an insulating substrate made of ceramic or glass epoxy resin or a substrate 1 having a surface of a metal substrate insulated is prepared, and a conductive path 2 formed on the surface of the substrate 1 with a copper foil or a conductive paint of a desired pattern. Is formed, and the solder cream 3 is selectively printed on a predetermined portion of the conductive path 2 where chip components, bumps and power transistors are to be placed by screen printing. The feature of this step is that all the circuit elements fixed by the solder cream 5 are printed with the solder cream 5 in this step.

【0033】更に、図3に示す如くチップマウント工程
では、中速のチップマウンタを用いて定型部品であるチ
ップコンデンサやチップ抵抗等のチップ部品4を半田ク
リーム3上に仮接着する。
Further, in the chip mounting step, as shown in FIG. 3, a chip component 4 such as a chip capacitor or a chip resistor, which is a standard component, is temporarily bonded onto the solder cream 3 using a medium speed chip mounter.

【0034】続いて、図4に示す如く多機能マウンター
工程の前半では、予めセミパワーのトランジスタ8を固
着した金属片よりなるバンプ7を準備し、異形部品用の
多機能チップマウンタを用いて、所定の導電路2上の半
田クリーム3に仮接着する。
Subsequently, as shown in FIG. 4, in the first half of the multi-function mounting process, a bump 7 made of a metal piece to which a semi-power transistor 8 is fixed in advance is prepared, and a predetermined multi-function chip mounter for a deformed part is used. Is temporarily bonded to the solder cream 3 on the conductive path 2.

【0035】続いて、図5に示す如く多機能マウンター
工程の後半では、放熱性の良いヒートシンク10上にパ
ワートランジスタ11を固着したブロックを準備し、同
様に異形部品用の多機能チップマウンタを用いて、所定
の導電路2上の半田クリーム3に仮接着する。この際、
半田クリーム3は溶融されない状態である。
Subsequently, in the latter half of the multi-function mounting process as shown in FIG. 5, a block in which the power transistor 11 is fixed on a heat sink 10 having good heat dissipation is prepared, and a multi-function chip mounter for odd-shaped components is similarly used. Then, it is temporarily bonded to the solder cream 3 on the predetermined conductive path 2. On this occasion,
The solder cream 3 is not melted.

【0036】続いて、図6に示す如く半田溶融工程で
は、半田クリーム3の一括溶融を行い、チップ部品4、
バンプ7およびヒートシンク10の導電路2への固着を
行う。
Subsequently, in the solder melting step as shown in FIG.
The bump 7 and the heat sink 10 are fixed to the conductive path 2.

【0037】本工程は、N2リフロー半田溶融炉内で半
田クリーム3を加熱溶融処理されることが特徴である。
このN2リフロー半田溶融炉は基板1を載置して定速で
移動する金属メッシュのベルト21と、このベルト21
の下に設けたヒーターブロック22と、基板1の上面に
2ガスのリフローを行う交互に配置した排出管23と
吸入管24と、上面から基板1を加熱する赤外線ランプ
25から構成されている。赤外線ランプ25とヒーター
ブロック22とで両面から基板1を均一に早く加熱し、
ヒートシンク10上にパワートランジスタ11を固着し
たブロックの最適な固着ができるリフロー条件下(投入
時常温→溶融時約210℃で4〜5秒間→冷却時100
℃以下)で4〜5分間で半田クリーム3を一括して加熱
溶融する。またN2ガスのリフローを矢印で示すように
近接した排出管23と吸入管24とで行うので、フラッ
クスの飛散も無く、半田ボールの発生も無く、銅箔等の
導電路2表面の酸化も防止できる。本工程で用いる半田
溶融炉は後で図12を参照して説明する。
This step is characterized in that the solder cream 3 is heated and melted in an N 2 reflow solder melting furnace.
The N 2 reflow solder melting furnace includes a metal mesh belt 21 on which the substrate 1 is placed and moves at a constant speed.
, A discharge block 23 and a suction pipe 24 alternately arranged to reflow N 2 gas on the upper surface of the substrate 1, and an infrared lamp 25 for heating the substrate 1 from the upper surface. . The substrate 1 is uniformly and quickly heated from both sides by the infrared lamp 25 and the heater block 22,
A reflow condition under which the block in which the power transistor 11 is fixed on the heat sink 10 can be optimally fixed (normal temperature at the time of input → 4 to 5 seconds at about 210 ° C. at the time of melting → 100 times at the time of cooling)
(Below 10 ° C.), the solder cream 3 is heated and melted at a time for 4 to 5 minutes. Further, since the reflow of the N 2 gas is performed by the discharge pipe 23 and the suction pipe 24 which are close to each other as shown by arrows, there is no scattering of flux, no generation of solder balls, and oxidation of the surface of the conductive path 2 such as copper foil. Can be prevented. The solder melting furnace used in this step will be described later with reference to FIG.

【0038】続いて、図7および図8に示す如く銀ペー
ストスタンプ/小信号トランジスタソルダー工程で小信
号トランジスタを搭載する導電路2上に先端に銀ペース
ト5を付着したスタンプ針で銀ペースト5を付着し、付
着した銀ペースト5上に小信号トランジスタのチップ6
を半導体用チップマウンタを用いて載置する。
Subsequently, as shown in FIGS. 7 and 8, the silver paste 5 is applied to the conductive path 2 on which the small signal transistor is mounted in the silver paste stamp / small signal transistor soldering process with a stamp needle having the silver paste 5 attached to the tip. A chip 6 of a small signal transistor is attached on the attached silver paste 5.
Is mounted using a semiconductor chip mounter.

【0039】本工程では、銀ペーストは有機溶剤で低粘
度にしているが、銀ペースト硬化工程まで加熱工程が無
いので有機溶剤が飛散する恐れはないので、従来のよう
に約7時間放置なしに直ちに小信号トランジスタのチッ
プ6を載置して、次工程に送る。なお、この工程は銀ペ
ースト5の常温乾燥をしないので、半導体用チップマウ
ンタ内で連続して処理されることで処理のスピード化を
図れる。
In this step, the silver paste is made to have a low viscosity with an organic solvent, but since there is no heating step until the silver paste hardening step, there is no danger of the organic solvent being scattered. Immediately, the small signal transistor chip 6 is mounted and sent to the next step. In this step, since the silver paste 5 is not dried at normal temperature, the processing can be speeded up by being continuously processed in the semiconductor chip mounter.

【0040】続いて、図示しないが銀ペースト硬化工程
では、硬化炉内に多数の基板1を収納して、約150℃
で4〜5時間還元雰囲気中で銀ペースト5の硬化をバッ
チ処理で行う。硬化中に発生する有機溶剤は直ちに炉内
から排気されるので、基板1への付着は防止できる。
Subsequently, in a silver paste curing step (not shown), a large number of substrates 1 are housed in a curing furnace,
The curing of the silver paste 5 is performed in a reducing atmosphere for 4 to 5 hours in a batch process. Since the organic solvent generated during curing is immediately exhausted from the furnace, it is possible to prevent the organic solvent from adhering to the substrate 1.

【0041】続いて、硬化炉から取り出された基板1は
図9に示す如く細線ボンダー工程に移行する。細線ボン
ダー工程では小信号トランジスタ6およびバンプ7に固
着されたセミパワーのトランジスタのベースおよびエミ
ッタ電極と対応する導電路2とを約50μmの径のアル
ミニウムのボンディング細線9で超音波ボンダーにより
接続する。
Subsequently, the substrate 1 taken out of the curing furnace shifts to a fine wire bonding step as shown in FIG. In the thin wire bonding step, the base and the emitter electrode of the semi-power transistor fixed to the small signal transistor 6 and the bump 7 are connected to the corresponding conductive path 2 by an aluminum bonding thin wire 9 having a diameter of about 50 μm by an ultrasonic bonder.

【0042】続いて、図示しないがアースボンダー工程
は基板1として金属基板を用いた場合の特有の工程であ
り、導電路2と基板1間の絶縁膜に起因する寄生容量を
除去するために導電路2と露出させた金属基板とを接続
するものである。
Subsequently, although not shown, the earth bonder process is a unique process when a metal substrate is used as the substrate 1, and is used to remove a parasitic capacitance caused by an insulating film between the conductive path 2 and the substrate 1. The path 2 is connected to the exposed metal substrate.

【0043】最後に、図10に示す如く太線ボンダー工
程では、パワートランジスタ11のベース電極およびエ
ミッタ電極と所定の導電路2との接続を約300μmの
径のアルミニウムのボンディング太線13で超音波ボン
ダーを用いて行う。なお、本工程でクロス配線を必要と
する導電路2間にはジャンパー線を形成する。
Finally, in the thick wire bonding step as shown in FIG. 10, the connection between the base electrode and the emitter electrode of the power transistor 11 and the predetermined conductive path 2 is performed by bonding the ultrasonic bonder with a thick aluminum bonding wire 13 having a diameter of about 300 μm. Perform using In this step, a jumper wire is formed between the conductive paths 2 requiring the cross wiring.

【0044】以上に詳述した本発明の混成集積回路装置
の製造方法を実現する製造ラインを図11に示す。
FIG. 11 shows a manufacturing line for realizing the method for manufacturing the hybrid integrated circuit device of the present invention described in detail above.

【0045】所望のパターンに導電路2を形成された基
板1はマガジンMに収納されて各工程を流れる。
The substrate 1 on which the conductive paths 2 are formed in a desired pattern is accommodated in a magazine M and flows through each process.

【0046】本発明の特徴は、ロット番号印刷工程、半
田印刷工程、チップマウント工程、多機能マウンター工
程(バンプソルダー、パワートランジスタソルダー)お
よび半田溶融工程を1ライン化したことにある。これら
の工程では基板1は連続して流れ、搬送設備は設けな
い。
The feature of the present invention resides in that the lot number printing step, the solder printing step, the chip mounting step, the multifunctional mounter step (bump solder, power transistor solder) and the solder melting step are integrated into one line. In these steps, the substrate 1 flows continuously and no transfer equipment is provided.

【0047】最初に、基板1を供給するロード装置Lに
マガジンMを配置し、ロット番号印刷工程へ基板1を送
る。この工程ではレーザー印刷により基板1の裏面にロ
ット番号を印刷して、次工程の半田印刷工程からの送り
信号待っている。送り信号が来ると次工程に基板1を送
り、次の基板1にロット番号を印刷して待機する。
First, the magazine M is placed in the load device L for supplying the substrate 1, and the substrate 1 is sent to a lot number printing process. In this step, the lot number is printed on the back surface of the substrate 1 by laser printing, and a sending signal from the subsequent solder printing step is awaited. When the sending signal is received, the substrate 1 is sent to the next process, the lot number is printed on the next substrate 1, and the process waits.

【0048】次に、半田印刷工程では、前工程から1枚
ずつ基板1が供給されて半田クリーム3のスクリーン印
刷を行い待機する。
Next, in the solder printing step, the substrates 1 are supplied one by one from the previous step, and the screen printing of the solder cream 3 is performed and the process is on standby.

【0049】更に、チップマウント工程では、中速のチ
ップマウンタでチップ部品4の装着を行い待機する。そ
の後多機能マウンター工程では異形部品用の多機能チッ
プマウンタを用いて、前半でバンプソルダー、後半でパ
ワートランジスタソルダーを行い、直ちに半田溶融工程
に送られ、N2リフロー半田溶融炉内で半田クリーム3
を加熱溶融処理される。アンロード装置ULのマガジン
Mに1枚ずつ収容される。
Further, in the chip mounting step, the chip parts 4 are mounted by a medium-speed chip mounter and the apparatus stands by. Then using a multi-function chip mounter for deformed parts multifunctional mounter step, bump solder in the first half, performs power transistors solder later, immediately sent to the solder melting step, the solder cream with N 2 reflow solder melting furnace 3
Is heated and melted. One sheet is stored in each magazine M of the unloading device UL.

【0050】その後は、銀ペーストスタンプ/小信号ト
ランジスタソルダー工程、銀ペースト硬化工程、細線ボ
ンダー工程、アースボンダー工程、太線ボンダー工程と
順次マガジンMの形でロード装置L、アンロード装置U
Lを用いて流すことで混成集積回路装置を完成させる。
ただ銀ペースト硬化工程では硬化炉を用いるので、従来
同様に多数のマガジンMを貯めて、バッチ処理で硬化炉
に収納可能な数のマガジンMを収容して処理する。
Thereafter, a loading device L and an unloading device U are sequentially formed in the form of a magazine M in the order of a silver paste stamp / small signal transistor soldering process, a silver paste curing process, a thin wire bonding process, an earth bonding process, and a thick wire bonding process.
The hybrid integrated circuit device is completed by flowing using L.
However, since a curing furnace is used in the silver paste curing step, a large number of magazines M are stored in the same manner as in the related art, and the number of magazines M that can be stored in the curing furnace is accommodated and processed by batch processing.

【0051】図12に、本発明に用いる半田溶融炉を示
す。
FIG. 12 shows a solder melting furnace used in the present invention.

【0052】金属メッシュのベルト21はエンドレス構
造で、モータで駆動されて一方向に定速で動く。従って
半田溶融に必要な時間4〜5分で基板1が炉内から出る
スピードに設定される。
The metal mesh belt 21 has an endless structure and is driven by a motor to move in one direction at a constant speed. Therefore, the speed at which the substrate 1 comes out of the furnace is set to 4 to 5 minutes required for melting the solder.

【0053】このベルト21の下にはヒーターブロック
22が設けられ、上には一定の間隔で赤外線ランプ25
が設けられている。赤外線ランプ25とヒーターブロッ
ク22とで両面から基板1を均一に早く加熱し、ヒート
シンク10上にパワートランジスタ11を固着したブロ
ックの最適な固着ができるリフロー条件下(投入時常温
→溶融時約210℃で4〜5秒間→冷却時100℃以
下)で4〜5分間で半田クリーム3を一括して加熱溶融
できる。
A heater block 22 is provided below the belt 21, and an infrared lamp 25 is provided above the belt 21 at regular intervals.
Is provided. The substrate 1 is uniformly and quickly heated from both sides by the infrared lamp 25 and the heater block 22, and the block in which the power transistor 11 is fixed on the heat sink 10 can be optimally fixed. (4 to 5 seconds → 100 ° C. or less during cooling), and the solder cream 3 can be heated and melted at a time in 4 to 5 minutes.

【0054】またベルト21の上には近接してN2ガス
のリフローを行う交互に配置した排出管23と吸入管2
4とが設けられている。すなわち、ベルト21の上方に
2ガスを貯めたリフロー室26が5個連続して配置さ
れ、各リフロー室26の天井に設けたファン27で排出
管23からN2ガスを送り出している。吸入管24は排
出管23と交互に配列され、各吸入管24にはファン2
8が設けられ排出管23から送り出されたN2ガスを直
ちに回収することでリフローを実現している。
The discharge pipe 23 and the suction pipe 2 which are alternately arranged on the belt 21 for reflowing N 2 gas in close proximity to each other.
4 are provided. That is, five reflow chambers 26 storing N 2 gas are arranged continuously above the belt 21, and the N 2 gas is sent out from the discharge pipe 23 by a fan 27 provided on the ceiling of each reflow chamber 26. The suction pipes 24 are alternately arranged with the discharge pipes 23, and each suction pipe 24 has a fan 2.
A reflow is realized by immediately recovering the N 2 gas sent out from the discharge pipe 23.

【0055】上述した本発明に用いる半田溶融炉では、
半田クリーム3を印刷後に直ちにチップ部品4、バンプ
7およびヒートシンク10の導電路2への固着を行い、
ヒートシンク10の半田溶融を行える条件で流せる特徴
がある。特に、N2リフローによりフラックスの飛散も
無く、半田ボールの発生も無く、銅箔等の導電路2表面
の酸化も防止できる。また、本発明に用いる半田溶融炉
では、従来のN2リフロー装置に比べて銅箔等の導電路
2表面の酸化も防止する酸素濃度500ppm以下の還
元雰囲気を作るために消費するN2消費量が500L/
minからN2ガスを循環させることで250L/mi
nと半分で済む。
In the solder melting furnace used in the present invention described above,
Immediately after printing the solder cream 3, the chip component 4, bump 7 and heat sink 10 are fixed to the conductive path 2,
There is a feature that the heat sink 10 can be flowed under conditions where the solder can be melted. In particular, no flux is scattered by N 2 reflow, no solder balls are generated, and oxidation of the surface of the conductive path 2 such as a copper foil can be prevented. Further, in the solder melting furnace used in the present invention, compared with the conventional N 2 reflow apparatus, the amount of N 2 consumed to create a reducing atmosphere having an oxygen concentration of 500 ppm or less which prevents oxidation of the surface of the conductive path 2 such as a copper foil. Is 500L /
250 L / mi by circulating N 2 gas from min
n and half.

【0056】完成された混成集積回路装置は図23に示
すものと同じであるが、その製造ラインは従来より大幅
に短縮されている。
The completed hybrid integrated circuit device is the same as that shown in FIG. 23, but its manufacturing line is greatly shortened from the conventional one.

【0057】[0057]

【発明の効果】本発明に依れば、第1に、半田ペースト
で固着するチップ部品、バンプおよびパワートランジス
タを半田クリーム印刷後に一括してマウントし、半田溶
融炉で一括して溶融するすることで、従来の複数工程を
1ライン化したシンプルラインを実現するので、ロット
番号印刷工程から半田溶融工程までを連続して処理で
き、処理日数を0.5日に短縮できる。また、最初から
銀ペースト硬化工程まででも1日から1.5日で処理で
き、従来の4日から約1/3以下に短縮できる。
According to the present invention, first, chip components, bumps, and power transistors to be fixed with a solder paste are collectively mounted after solder cream printing, and are collectively melted in a solder melting furnace. Thus, since a simple line in which the conventional multiple processes are integrated into one line is realized, the processes from the lot number printing process to the solder melting process can be continuously performed, and the number of processing days can be reduced to 0.5 days. In addition, the process can be performed in 1 to 1.5 days from the beginning to the silver paste curing step, and can be reduced to about 1/3 or less from the conventional 4 days.

【0058】第2に、ロット番号印刷工程から半田溶融
工程までを1ライン化するので、各工程の前後に設けた
ロード装置L、アンロード装置UL等の搬送設備が不要
となり、設備面積を大幅に削減でき、設備投資額を抑え
ることができる。
Second, since the lot number printing process to the solder melting process are integrated into one line, transport equipment such as a loading device L and an unloading device UL provided before and after each process is not required, and the equipment area is greatly increased. And the amount of capital investment can be reduced.

【0059】第3に、N2リフロー半田溶融炉内で半田
クリームを一括して加熱溶融処理されるので、チップ部
品、バンプおよびヒートシンクの固着が同時に行え、し
かもフラックスの飛散も無く、半田ボールの発生も無
く、銅箔等の導電路表面の酸化も防止できる。
Third, since the solder cream is heated and melted in a batch in an N 2 reflow solder melting furnace, the chip parts, bumps and heat sink can be fixed at the same time. There is no generation, and oxidation of the conductive path surface such as copper foil can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の混成集積回路装置の製造方法を説明す
る図である。
FIG. 1 is a diagram illustrating a method of manufacturing a hybrid integrated circuit device according to the present invention.

【図2】本発明の混成集積回路装置の製造方法を説明す
る図である。
FIG. 2 is a diagram illustrating a method of manufacturing a hybrid integrated circuit device according to the present invention.

【図3】本発明の混成集積回路装置の製造方法を説明す
る図である。
FIG. 3 is a diagram illustrating a method of manufacturing a hybrid integrated circuit device according to the present invention.

【図4】本発明の混成集積回路装置の製造方法を説明す
る図である。
FIG. 4 is a diagram illustrating a method of manufacturing a hybrid integrated circuit device according to the present invention.

【図5】本発明の混成集積回路装置の製造方法を説明す
る図である。
FIG. 5 is a diagram illustrating a method of manufacturing a hybrid integrated circuit device according to the present invention.

【図6】本発明の混成集積回路装置の製造方法を説明す
る図である。
FIG. 6 is a diagram illustrating a method of manufacturing a hybrid integrated circuit device according to the present invention.

【図7】本発明の混成集積回路装置の製造方法を説明す
る図である。
FIG. 7 is a diagram illustrating a method of manufacturing a hybrid integrated circuit device according to the present invention.

【図8】本発明の混成集積回路装置の製造方法を説明す
る図である。
FIG. 8 is a diagram illustrating a method of manufacturing a hybrid integrated circuit device according to the present invention.

【図9】本発明の混成集積回路装置の製造方法を説明す
る図である。
FIG. 9 is a diagram illustrating a method of manufacturing a hybrid integrated circuit device according to the present invention.

【図10】本発明の混成集積回路装置の製造方法を説明
する図である。
FIG. 10 is a diagram illustrating a method of manufacturing a hybrid integrated circuit device according to the present invention.

【図11】本発明の混成集積回路装置の製造方法を説明
する図である。
FIG. 11 is a diagram illustrating a method of manufacturing a hybrid integrated circuit device according to the present invention.

【図12】本発明の混成集積回路装置の製造方法に用い
る半田溶融炉を説明する図である。
FIG. 12 is a diagram illustrating a solder melting furnace used in the method for manufacturing a hybrid integrated circuit device of the present invention.

【図13】従来の混成集積回路装置の製造方法を説明す
る図である。
FIG. 13 is a diagram illustrating a method of manufacturing a conventional hybrid integrated circuit device.

【図14】従来の混成集積回路装置の製造方法を説明す
る図である。
FIG. 14 is a diagram illustrating a method for manufacturing a conventional hybrid integrated circuit device.

【図15】従来の混成集積回路装置の製造方法を説明す
る図である。
FIG. 15 is a diagram illustrating a method of manufacturing a conventional hybrid integrated circuit device.

【図16】従来の混成集積回路装置の製造方法を説明す
る図である。
FIG. 16 is a diagram illustrating a method of manufacturing a conventional hybrid integrated circuit device.

【図17】従来の混成集積回路装置の製造方法を説明す
る図である。
FIG. 17 is a diagram illustrating a method of manufacturing a conventional hybrid integrated circuit device.

【図18】従来の混成集積回路装置の製造方法を説明す
る図である。
FIG. 18 is a diagram illustrating a method of manufacturing a conventional hybrid integrated circuit device.

【図19】従来の混成集積回路装置の製造方法を説明す
る図である。
FIG. 19 is a diagram illustrating a method of manufacturing a conventional hybrid integrated circuit device.

【図20】従来の混成集積回路装置の製造方法を説明す
る図である。
FIG. 20 is a diagram illustrating a method of manufacturing a conventional hybrid integrated circuit device.

【図21】従来の混成集積回路装置の製造方法を説明す
る図である。
FIG. 21 is a diagram illustrating a method of manufacturing a conventional hybrid integrated circuit device.

【図22】従来の混成集積回路装置の製造方法を説明す
る図である。
FIG. 22 is a diagram illustrating a method of manufacturing a conventional hybrid integrated circuit device.

【図23】本発明および従来の混成集積回路装置を説明
する図である。
FIG. 23 is a diagram illustrating the present invention and a conventional hybrid integrated circuit device.

【符号の説明】[Explanation of symbols]

1 混成集積回路基板 2 導電路 3 半田ペースト 4 チップ部品 5 銀ペースト 6 小信号トランジスタ 7 バンプ 10 ヒートシンク 11 パワートランジスタ DESCRIPTION OF SYMBOLS 1 Hybrid integrated circuit board 2 Conductive path 3 Solder paste 4 Chip component 5 Silver paste 6 Small signal transistor 7 Bump 10 Heat sink 11 Power transistor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前原 栄寿 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5E319 AA03 AC01 BB05 CC33 CC45 CD29 CD35 GG15  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiji Maehara 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. F-term (reference) 5E319 AA03 AC01 BB05 CC33 CC45 CD29 CD35 GG15

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 混成集積回路基板の所望の導電路に導電
性ロウ材を付着する工程と、 前記導電路上に少なくとも前記導電性ロウ材で固着され
る回路素子を一括してマウントする工程と、 前記混成集積回路基板を溶融炉内に設けたヒーターブロ
ック上を移動するベルトに載置し、更に上方から赤外線
ランプで加熱し且つN2ガスを循環させて、前記導電性
ロウ材を一括溶融して、前記回路素子を前記導電路に固
着する工程とを具備することを特徴とする混成集積回路
装置の製造方法。
A step of attaching a conductive brazing material to a desired conductive path of a hybrid integrated circuit board; and a step of mounting at least a circuit element fixed on the conductive path with the conductive brazing material. The hybrid integrated circuit board is placed on a belt moving on a heater block provided in a melting furnace, and further heated from above by an infrared lamp and N 2 gas is circulated to melt the conductive brazing material at once. Fixing the circuit element to the conductive path.
【請求項2】 前記導電性ロウ材として半田ペーストを
用いることを特徴とする請求項1記載の混成集積回路装
置の製造方法。
2. The method for manufacturing a hybrid integrated circuit device according to claim 1, wherein a solder paste is used as said conductive brazing material.
【請求項3】 前記半田ペーストをスクリーン印刷して
前記所望の導電路に付着することを特徴とする請求項2
記載の混成集積回路装置の製造方法。
3. The method according to claim 2, wherein the solder paste is screen-printed and attached to the desired conductive path.
A manufacturing method of the hybrid integrated circuit device according to the above.
【請求項4】 前記溶融炉内で排気管からN2ガスを流
入させ、隣接した吸気管でN2ガスを吸い出して、前記
混成集積回路基板上でN2ガスを循環させて前記導電性
ロウ材を一括リフローすることを特徴とする請求項1か
ら請求項3のいずれかに記載された混成集積回路装置の
製造方法。
4. An N 2 gas is introduced from an exhaust pipe in the melting furnace, N 2 gas is sucked out by an adjacent intake pipe, and the N 2 gas is circulated on the hybrid integrated circuit board to form the conductive solder. The method for manufacturing a hybrid integrated circuit device according to any one of claims 1 to 3, wherein the material is collectively reflowed.
JP2000326300A 2000-10-26 2000-10-26 Method for manufacturing hybrid integrated circuit device Expired - Fee Related JP3869643B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000326300A JP3869643B2 (en) 2000-10-26 2000-10-26 Method for manufacturing hybrid integrated circuit device
KR1020010055418A KR100676353B1 (en) 2000-10-26 2001-09-10 Method for manufacturing hybrid integrated circuit device
CNB011371994A CN1221157C (en) 2000-10-26 2001-10-25 Manufacture of mixed integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000326300A JP3869643B2 (en) 2000-10-26 2000-10-26 Method for manufacturing hybrid integrated circuit device

Publications (2)

Publication Number Publication Date
JP2002134681A true JP2002134681A (en) 2002-05-10
JP3869643B2 JP3869643B2 (en) 2007-01-17

Family

ID=18803514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000326300A Expired - Fee Related JP3869643B2 (en) 2000-10-26 2000-10-26 Method for manufacturing hybrid integrated circuit device

Country Status (1)

Country Link
JP (1) JP3869643B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097134A1 (en) * 2006-02-23 2007-08-30 Sharp Kabushiki Kaisha Process for manufacturing soldering mounted structure and apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097134A1 (en) * 2006-02-23 2007-08-30 Sharp Kabushiki Kaisha Process for manufacturing soldering mounted structure and apparatus therefor

Also Published As

Publication number Publication date
JP3869643B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
JP2004172211A (en) Power module
EP0998175B1 (en) Method for soldering Dpak-type electronic components to circuit boards
US8624129B2 (en) Method of attaching a high power surface mount transistor to a printed circuit board
KR100676353B1 (en) Method for manufacturing hybrid integrated circuit device
JP2002134681A (en) Manufacturing method of hybrid integrated circuit device
JP2002134682A (en) Manufacturing method of hybrid integrated circuit device
JP2002134901A (en) Manufacturing method of hybrid integrated circuit device
JP2002134683A (en) Manufacturing method of hybrid integrated circuit device
JP4062191B2 (en) Semiconductor device and manufacturing method thereof
JP2002134680A (en) Manufacturing method of hybrid integrated circuit device
JP2002134902A (en) Manufacturing method of hybrid integrated circuit device
JPH118474A (en) Manufacture of multilevel board
JP2002134687A (en) Manufacturing method of hybrid integrated circuit device
JP3965795B2 (en) Electronic component soldering method
JPS5996759A (en) Semiconductor device
JP3902037B2 (en) Manufacturing method of semiconductor device
JP4909283B2 (en) Electronic circuit manufacturing method
JPH0955392A (en) Soldering method for semiconductor device
JP2003297881A (en) Optical processing method for ball grid array
JPH05259631A (en) Surface mounting of printed wiring board
JP2674336B2 (en) Method for manufacturing hybrid integrated circuit for power
JP2007142146A (en) Electronic circuit board and mounting method
JP2002134893A (en) Method for manufacturing hybrid integrated circuit device
JPS5921093A (en) Method of mounting leadless chip carrier
JP2013247361A (en) Substrate joining method and substrate reflow treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040906

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060512

A131 Notification of reasons for refusal

Effective date: 20060523

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060720

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Effective date: 20061013

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20111020

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees