JP2002134353A - Film and capacitor suing the same - Google Patents
Film and capacitor suing the sameInfo
- Publication number
- JP2002134353A JP2002134353A JP2000318905A JP2000318905A JP2002134353A JP 2002134353 A JP2002134353 A JP 2002134353A JP 2000318905 A JP2000318905 A JP 2000318905A JP 2000318905 A JP2000318905 A JP 2000318905A JP 2002134353 A JP2002134353 A JP 2002134353A
- Authority
- JP
- Japan
- Prior art keywords
- film
- capacitor
- temperature
- weight
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、コンデンサ用フィ
ルムに関し、更に詳しくはポリエステルとポリエーテル
イミドとからなるフイルムおよびこれを用いたコンデン
サに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film for a capacitor, and more particularly to a film made of polyester and polyetherimide and a capacitor using the same.
【0002】[0002]
【従来の技術】二軸延伸ポリエステルフィルムを誘電層
とし、その表面に形成された金属蒸着を電極とするコン
デンサは広く用いられている。また近年、コンデンサと
しての使用温度を高温化する要求があり、特公平7−2
1070号公報では異種のポリエステルのブレンドから
なるフイルムを使用した、耐熱性に優れるコンデンサ用
ポリエステルフイルムが開示されている。2. Description of the Related Art Capacitors in which a biaxially stretched polyester film is used as a dielectric layer and metal electrodes formed on the surface thereof are used as electrodes are widely used. In recent years, there has been a demand for increasing the operating temperature of a capacitor.
Japanese Patent No. 1070 discloses a polyester film for a capacitor which is excellent in heat resistance and uses a film made of a blend of different kinds of polyesters.
【0003】また、二軸延伸ポリフェニレンスルフィド
を誘電層とし、周波数特性、耐ハンダ性の優れたコンデ
ンサを得ることが、特開昭57−187327号公報に
記載されている。Japanese Patent Application Laid-Open No. 57-187327 discloses that a capacitor having excellent frequency characteristics and soldering resistance is obtained by using biaxially stretched polyphenylene sulfide as a dielectric layer.
【0004】[0004]
【発明が解決しようとする課題】しかしながら従来のポ
リエステルフイルムは、230℃付近の熱収縮が高く素
子の変形により容量のバラツキや絶縁抵抗が低下する。
一方ポリフェニレンスルフィドフイルムは絶縁破壊電圧
が劣る欠点があった。However, the conventional polyester film has a high heat shrinkage at around 230 ° C., and the deformation of the element causes a variation in capacitance and a decrease in insulation resistance.
On the other hand, the polyphenylene sulfide film has a disadvantage that the dielectric breakdown voltage is inferior.
【0005】本発明は、かかる従来のポリエステルフィ
ルム、ポリフェニレンスルフィドフイルムの欠点を改良
し、絶縁破壊電圧が高く、耐ハンダ性の優れたフイルム
を提供することを目的とする。An object of the present invention is to improve the drawbacks of the conventional polyester film and polyphenylene sulfide film, and to provide a film having a high dielectric breakdown voltage and excellent solder resistance.
【0006】[0006]
【課題を解決するための手段】本発明は、ポリエステル
(A)とポリエーテルイミド(B)とからなるフィルム
であって、フィルム中におけるリン成分の量Pに対する
全無機成分の量Mの割合であるM/Pが2.0以下、補
外ガラス転移開始温度が90℃以上、130℃未満であ
り、表面粗さRaが0.02μm以上、0.08μm未
満、230℃−30分での熱収縮率が4%以下であるこ
とを特徴とするコンデンサ用フイルムである。SUMMARY OF THE INVENTION The present invention relates to a film comprising a polyester (A) and a polyetherimide (B), wherein a ratio of the total amount M of the inorganic component to the amount P of the phosphorus component in the film. A certain M / P is 2.0 or less, extrapolation glass transition onset temperature is 90 ° C. or more and less than 130 ° C., surface roughness Ra is 0.02 μm or more, less than 0.08 μm, heat at 230 ° C. for 30 minutes A film for a capacitor, wherein the shrinkage ratio is 4% or less.
【0007】[0007]
【発明の実施の形態】本発明で用いるポリエステル
(A)とは特に制限はないが、好ましくはエチレンテレ
フタレート単位を有するものであり、より好ましくは少
なくとも70モル%以上のエチレンテレフタレート単位
を有するポリエステルである。BEST MODE FOR CARRYING OUT THE INVENTION The polyester (A) used in the present invention is not particularly limited, but preferably has an ethylene terephthalate unit, and more preferably has at least 70 mol% or more of an ethylene terephthalate unit. is there.
【0008】本発明で用いるポリエーテルイミド(B)
とは、脂肪族、脂環族または芳香族系のエーテル単位と
環状イミド基を繰り返し単位として含有するポリマーで
あり、溶融成形性を有するポリマーであれば、特に限定
されない。本発明の効果を阻害しない範囲であれば、ポ
リエーテルイミドの主鎖に環状イミド、エーテル単位以
外の構造単位、例えば、芳香族、脂肪族、脂環族エステ
ル単位、オキシカルボニル単位等が含有されていても良
い。本発明では、ガラス転移温度が350℃以下、より
好ましくは250℃以下のポリエーテルイミドが好まし
く、2,2−ビス[4−(2,3−ジカルボキシフェノ
キシ)フェニル]プロパン二無水化物とm−フェニレン
ジアミンまたはp−フェニレンジアミンとの縮合物が、
ポリエステルとの相溶性、コスト、溶融成形性等の観点
から最も好ましい。このポリエーテルイミドは、Gen
eral Electric社製でウルテム1000シ
リーズの商標名で知られているものである。The polyetherimide (B) used in the present invention
Is a polymer containing an aliphatic, alicyclic or aromatic ether unit and a cyclic imide group as repeating units, and is not particularly limited as long as it is a polymer having melt moldability. As long as the effects of the present invention are not impaired, the main chain of the polyetherimide contains a cyclic imide, a structural unit other than an ether unit, for example, an aromatic, aliphatic, alicyclic ester unit, or an oxycarbonyl unit. May be. In the present invention, a polyetherimide having a glass transition temperature of 350 ° C. or lower, more preferably 250 ° C. or lower is preferable, and 2,2-bis [4- (2,3-dicarboxyphenoxy) phenyl] propane dianhydride and m A condensate with phenylenediamine or p-phenylenediamine is
It is most preferable from the viewpoint of compatibility with polyester, cost, melt moldability and the like. This polyetherimide is
The product is manufactured by eral Electric and is known under the trade name of ULTEM 1000 series.
【0009】本発明におけるポリエステルとポリエーテ
ルイミドの混率比は、好ましくはポリエステル95〜6
5重量%、ポリエーテルイミド5〜35重量%である。
より好ましくはポリエステル90〜80重量%、ポリエ
ーテルイミド10〜20重量%である。ポリエーテルイ
ミドの含有率が5重量%未満であると高温領域下での耐
熱性が劣り、125℃での耐圧が低下することがある。
35重量%を越えるとフイルム破れが多くなり、生産性
の低下や製品価格がアップし製品価値がなくなる可能性
がある。In the present invention, the mixing ratio of the polyester and the polyetherimide is preferably 95 to 6%.
5% by weight and 5-35% by weight of polyetherimide.
More preferably, the content is 90 to 80% by weight of polyester and 10 to 20% by weight of polyetherimide. When the content of the polyetherimide is less than 5% by weight, heat resistance in a high-temperature region is inferior, and the withstand voltage at 125 ° C. may decrease.
If it exceeds 35% by weight, film tearing will increase, which may lead to a decrease in productivity, an increase in product price, and a loss in product value.
【0010】本発明におけるリン成分とは、リンを含む
化合物であって特にリン酸が好ましく用いられる。また
無機成分とは、アルカリ金属またはアルカリ土類金属を
含む無機化合物である。リン成分の量Pや全無機成分の
量Mは後述のとおり蛍光X線分析により定量される。The phosphorus component in the present invention is a compound containing phosphorus, and phosphoric acid is particularly preferably used. The inorganic component is an inorganic compound containing an alkali metal or an alkaline earth metal. The amount P of the phosphorus component and the amount M of all the inorganic components are quantified by X-ray fluorescence analysis as described later.
【0011】M/Pは2.0以下、好ましくは1.5以
下である。M/Pが2.0を越えるとフイルム中の金属
成分に対するリン成分の量が少なく、フイルム中のイオ
ンの影響で漏れ電流が増加し、特に高温での絶縁抵抗を
低下させる。下限は特に限定するものではないが通常
0.5である。0.5未満であると無機成分が少ない傾
向であり、エステル交換反応が劣りポリエステル生成の
効率が悪くなる。M / P is 2.0 or less, preferably 1.5 or less. If the M / P exceeds 2.0, the amount of the phosphorus component with respect to the metal component in the film is small, and the leakage current increases due to the influence of the ions in the film, and the insulation resistance at high temperatures is reduced. The lower limit is not particularly limited, but is usually 0.5. If it is less than 0.5, the amount of the inorganic component tends to be small, and the transesterification reaction is inferior, and the efficiency of polyester production is deteriorated.
【0012】M/Pは無機成分とリン成分との使用量を
調整することによって所望の価とすることができる。例
えば無機成分としてエステル交換触媒である酢酸カルシ
ウムを0.05〜0.12重量%、添加物としてリン酸
を0.02〜0.05重量%用いることによりM/Pを
1.0以下とすることができる。この場合に更にM/P
をコントロールするには、エステル交換反応時の時間を
長く、温度を高く、また重縮合反応時の減圧を高めるこ
とによりすることで調整することも可能である。M / P can be set to a desired value by adjusting the amounts of the inorganic component and the phosphorus component. For example, M / P is controlled to 1.0 or less by using 0.05 to 0.12% by weight of calcium acetate as an ester exchange catalyst as an inorganic component and 0.02 to 0.05% by weight of phosphoric acid as an additive. be able to. In this case, M / P
Can be controlled by lengthening the time during the transesterification reaction, increasing the temperature, and increasing the reduced pressure during the polycondensation reaction.
【0013】本発明のフィルムの補外ガラス転移開始温
度点は90℃以上、130℃未満であり、好ましくは9
5℃以上、120℃未満である。補外ガラス転移開始温
度点が90℃未満であると100℃以上の誘電損失が高
く、高温度での絶縁破壊や素子が変形する問題がある。
一方130℃以上だとフイルムを製膜する上で破れが多
発し安定した生産ができない。The extrapolated glass transition onset point of the film of the present invention is 90 ° C. or higher and lower than 130 ° C., preferably 9 ° C.
5 ° C. or more and less than 120 ° C. If the extrapolated glass transition onset point is less than 90 ° C., the dielectric loss at 100 ° C. or higher is high, and there is a problem that dielectric breakdown and element deformation at high temperatures occur.
On the other hand, when the temperature is higher than 130 ° C., the film is frequently broken during film formation, and stable production cannot be performed.
【0014】本発明のフィルムの表面粗さRaは0.0
2μm以上、0.08μm未満であり、好ましくは0.
03μm以上、0.06μm未満である。粗さが0.0
2μmより小さいとフイルムのスベリが悪く、シワが生
じやすく素子巻きの作業性の低下のみならず、素子での
低圧破壊を引き起こす。0.08μm以上であると表面
が粗く、コンデンサ素子の容量が小さく、バラツキも大
きく、安定してコンデンサ製品を作ることができない。The film of the present invention has a surface roughness Ra of 0.0
2 μm or more and less than 0.08 μm, preferably 0.1 μm or less.
It is not less than 03 μm and less than 0.06 μm. Roughness is 0.0
If the thickness is smaller than 2 μm, the film will not slide smoothly, and wrinkles are likely to occur, causing not only a decrease in workability of winding the element but also a low-pressure breakdown in the element. When the thickness is 0.08 μm or more, the surface is rough, the capacitance of the capacitor element is small, the variation is large, and a capacitor product cannot be manufactured stably.
【0015】本発明のフィルムの230℃−30分にお
ける熱収縮率は4%以下であり,好ましくは2.5%以
下である。熱収縮率が4%よりも大きくなると,リード
線のないチップコンデンサ製品において230℃付近の
高温処理時には素子が変形し、容量がバラツキ問題で基
盤に直にハンダ付けして用いることができない。The heat shrinkage of the film of the present invention at 230 ° C. for 30 minutes is 4% or less, preferably 2.5% or less. If the heat shrinkage ratio is more than 4%, the chip capacitor products without lead wires will be deformed at the time of high temperature treatment around 230 ° C., and cannot be used by directly soldering to the substrate due to a variation in capacity.
【0016】本発明のフィルムには、相溶化剤、無機粒
子や有機粒子、その他の各種添加剤、例えば酸化防止
剤、帯電防止剤、結晶核剤などを本発明の効果が損なわ
れない程度の少量であれば添加することができる。In the film of the present invention, a compatibilizer, inorganic and organic particles, and other various additives such as an antioxidant, an antistatic agent and a crystal nucleating agent are added to such an extent that the effects of the present invention are not impaired. A small amount can be added.
【0017】次に本発明のフィルムの好ましい製造法に
ついて説明する。但しこの製造法に限定されるものでな
いことは言うまでもない。Next, a preferred method for producing the film of the present invention will be described. However, it is needless to say that the present invention is not limited to this production method.
【0018】エチレンテレフタレートを主成分とするポ
リエステル(A)と以下、General Elect
ric社製ウルテム1010からなるフィルムを例とし
て、具体的に説明するが、使用する原料により製造法は
異なる。A polyester (A) containing ethylene terephthalate as a main component and hereinafter referred to as General Elect
This will be specifically described by taking a film made of ULTEM 1010 manufactured by Ric Corporation as an example, but the manufacturing method differs depending on the raw materials used.
【0019】通常の重縮合により得られたポリエチレン
テレフタレート(以下PETと略す)のペレット(A)
(IV=0.85)とウルテム1010(IV=0.6
88)のペレット(B)を、一定の割合で混合して、2
70〜300℃に加熱されたベント式の2軸混練押出機
に供給し、溶融混練してブレンドチップを得る。このと
きの剪断速度は50〜300sec-1が好ましく、より
好ましくは100〜200sec-1である。混練時の剪
断速度はブレンドチップの相溶性には重要な要因であ
る。前述の混練作業におけるPET(A)とウルテム1
010(B)のブレンドの重量分率(A/B)は、5/
95〜95/5であるが、溶融混練性、熱分解の観点か
ら、20/80〜50/50がより好ましい。本発明で
は、ウルテム1010(B)の重量分率を高くしたブレ
ンドチップを最初に作成し、本チップをPET(A)で
希釈する方法が品質の良いフィルムを得る上で有効であ
る。Pellets of polyethylene terephthalate (hereinafter abbreviated as PET) obtained by ordinary polycondensation (A)
(IV = 0.85) and Ultem 1010 (IV = 0.6
88) The pellet (B) is mixed at a certain ratio,
The mixture is supplied to a vent-type twin-screw kneading extruder heated to 70 to 300 ° C. and melt-kneaded to obtain a blend chip. Shear rate at this time is preferably 50~300sec -1, more preferably 100~200sec -1. The shear rate during kneading is an important factor in the compatibility of the blend chips. PET (A) and Ultem 1 in the above-mentioned kneading operation
The weight fraction (A / B) of the 010 (B) blend is 5 /
From 95 to 95/5, from the viewpoint of melt-kneading properties and thermal decomposition, 20/80 to 50/50 is more preferable. In the present invention, a method of first preparing a blend chip with a high weight fraction of Ultem 1010 (B) and diluting the chip with PET (A) is effective in obtaining a high quality film.
【0020】次いで、上記ペレタイズ作業により得たP
ET(A)とウルテム1010(B)からなるブレンド
チップを用いて、PET(A)とウルテム1010
(B)が重量分率で90/10になるように適量混合
し、180℃で3時間以上真空乾燥した。その後、これ
らを押出機に投入し、280〜320℃にて溶融押出
し、繊維焼結ステンレス金属フィルター内を通過させた
後、Tダイよりシート状に吐出し、このシートを表面温
度10〜70℃の冷却ドラム上に密着させて冷却固化
し、40〜160μmの未延伸フィルムを得た。Next, the P obtained by the above pelletizing operation
Using a blend chip composed of ET (A) and Ultem 1010 (B), PET (A) and Ultem 1010
An appropriate amount was mixed so that (B) became 90/10 by weight fraction, and vacuum-dried at 180 ° C. for 3 hours or more. Then, these were put into an extruder, melt-extruded at 280 to 320 ° C., passed through a fiber sintered stainless steel metal filter, and then discharged in a sheet form from a T-die, and the sheet was heated to a surface temperature of 10 to 70 ° C. And cooled and solidified to obtain an unstretched film of 40 to 160 μm.
【0021】次に、この未延伸フィルムをトータル16
倍の面積倍率で二軸延伸・熱処理を行う。延伸の方法と
しては、公知の逐次二軸延伸法または同時二軸延伸法を
用いることができる。また、本発明では、フィルムの縦
方向と横方向に一回づつ延伸する、いわゆる通常の二軸
延伸法をはじめ、再縦延伸法、再縦再横延伸法等の方法
を用いることができる。また、縦延伸、横延伸、同時二
軸延伸等の各延伸において、少なくとも一方向に施す延
伸操作を少なくとも2回以上に分割して延伸する、いわ
ゆる多段延伸法を適用してもかまわない。以下では、通
常の縦延伸後、横延伸を適用してフィルムを得る場合の
例を示す。尚、以下の製造法でいう、Tgとは、未延伸
フィルムのガラス転移温度であり、Tmとは未延伸フィ
ルムの融解温度である。Next, this unstretched film is subjected to a total of 16
Biaxial stretching and heat treatment are performed at double the area magnification. As a stretching method, a known sequential biaxial stretching method or simultaneous biaxial stretching method can be used. In the present invention, a method such as a normal biaxial stretching method in which the film is stretched once in the longitudinal direction and the transverse direction once, a re-longitudinal stretching method, a re-longitudinal re-lateral stretching method, or the like can be used. In each stretching such as longitudinal stretching, transverse stretching, and simultaneous biaxial stretching, a so-called multi-stage stretching method in which a stretching operation performed in at least one direction is divided at least twice or more and stretched may be applied. Hereinafter, an example in which a film is obtained by applying transverse stretching after ordinary longitudinal stretching will be described. In the following production method, Tg is the glass transition temperature of the unstretched film, and Tm is the melting temperature of the unstretched film.
【0022】まず、未延伸フィルムを(Tg−25)〜
(Tg+50)(℃)、さらに好ましくは(Tg−2
0)〜(Tg+30)(℃)の範囲にある加熱ロール群
で加熱し、長手方向に2.0〜5.0倍、好ましくは、
2.5〜3.5倍に 延伸し、20〜50℃の冷却ロー
ル群で冷却する。次いで、フィルムをテンターに導き、
横方向に延伸倍率は2.0〜6.0倍が好ましく、より
好ましくは3.5〜4.5倍で、(Tg−25)〜(T
g+50)(℃)の延伸温度で延伸する。その後、この
二軸延伸フィルムを緊張下または幅方向に1〜20%弛
緩しながら、室温まで冷却して本発明のフィルムを得
る。First, the unstretched film is prepared from (Tg-25)
(Tg + 50) (° C.), more preferably (Tg−2)
0) to (Tg + 30) (° C.), and heated by a group of heating rolls in the range of 2.0 to 5.0 times, preferably in the longitudinal direction,
The film is stretched 2.5 to 3.5 times and cooled with a group of cooling rolls at 20 to 50 ° C. Next, guide the film to the tenter,
The stretching ratio in the transverse direction is preferably 2.0 to 6.0 times, more preferably 3.5 to 4.5 times, and (Tg-25) to (Tg-25).
(g + 50) (° C.). Then, the biaxially stretched film is cooled to room temperature while relaxing under tension or 1 to 20% in the width direction to obtain the film of the present invention.
【0023】本発明のコンデンサを製造するには、まず
上記により得られた二軸配向フィルムを250〜600
mmに裁断し、長さ3000〜10000mの製品ロー
ルを得る。次いで該製品ロールを真空下でフイルム表面
にAl金属を1.5〜3.5Ω/口の膜抵抗になるよう
蒸着を行う。この蒸着フイルムは図1に示すように、片
面にほぼ全面に金属膜1を形成し、且つその一端部に非
金属膜2を形成した金属化フイルム3を、その一端部の
非金属膜2が交互に反対側端部に位置するように積層
し、その両端に電極4を形成して構成されている。In order to manufacture the capacitor of the present invention, first, the biaxially oriented film obtained as described above is prepared in the following manner.
mm to obtain a product roll having a length of 3000 to 10000 m. Next, the metal roll is vapor-deposited on a film surface under vacuum so as to have a film resistance of 1.5 to 3.5 Ω / port. As shown in FIG. 1, a metallized film 3 in which a metal film 1 is formed on almost one side and a non-metal film 2 is formed on one end of the film, and the non-metal film 2 is formed on one end of the film. They are stacked so that they are alternately located at opposite ends, and electrodes 4 are formed at both ends.
【0024】積層型フイルムコンデンサは帯状になった
前述の金属化フイルムをプレスにてヒートプレスした
後、短冊状の積層体をカッターにてチップ状に切断し、
両端にメタリコン等の電極を形成する工程を経て製造す
る。積層型コンデンサは一般的には小型化に有効である
が、プレス工程での熱や切断時の端面のギザギザ等の影
響で絶縁抵抗の低下や絶縁破壊電圧がバラツクことが多
々見られるが、ベースフイルムの熱収縮率の低下とTg
開始温度を高めることで安定したコンデンサを得るに至
った。The laminated film capacitor is prepared by heat-pressing the above-mentioned metallized film in a band shape with a press, and then cutting the strip-shaped laminated body into chips with a cutter.
It is manufactured through a process of forming electrodes such as metallikon on both ends. Multilayer capacitors are generally effective for miniaturization.However, there are many cases where the insulation resistance drops and the breakdown voltage varies due to the effects of heat in the pressing process and jagged edges at the time of cutting. Of heat shrinkage and Tg
By raising the starting temperature, a stable capacitor was obtained.
【0025】該コンデンサは安定した電気特性を有し、
小型化対応もあり、通信機器用にへの展開が広がってい
る。The capacitor has stable electric characteristics,
Due to miniaturization, the application to communication equipment is expanding.
【0026】[物性の測定方法ならびに効果の評価方法]
特性値の測定方法ならびに効果の評価方法は次の通りで
ある。[Method of measuring physical properties and method of evaluating effects]
The method of measuring characteristic values and the method of evaluating effects are as follows.
【0027】(1)M/P 理学電機工業(株)製の自動蛍光X線分析装置(RIX
3000)を用いて試料板の上にフイルムをのせ、3
0mmφの測定面積で各元素の強度を求め、検量線より
その各元素の無機成分量を定量し、次式(1) M / P Automatic fluorescent X-ray analyzer (RIX) manufactured by Rigaku Denki Kogyo
3000), place the film on the sample plate,
The strength of each element is determined from the measurement area of 0 mmφ, and the amount of the inorganic component of each element is quantified from the calibration curve.
【0028】[0028]
【数1】 によりM/Pを求めた。(Equation 1) M / P was determined by the following formula.
【0029】(2)補外ガラス転移開始温度 疑似等温法にて下記装置および条件で比熱測定を行い、
JIS K7121に従って決定した。 装置 :TA Instrument社製温度変調D
SC 測定条件: 加熱温度 :270〜570K(RCS冷却法) 温度校正 :高純度インジウムおよびスズの融点 温度変調振幅:±1K 温度変調周期:60秒 昇温ステップ:5K 試料重量 :5mg 試料容器 :アルミニウム製開放型容器(22mg) 参照容器 :アルミニウム製開放型容器(18m
g)。(2) Extrapolated glass transition onset temperature Specific heat measurement was carried out by a pseudo-isothermal method using the following apparatus and conditions.
It was determined according to JIS K7121. Apparatus: Temperature modulation D manufactured by TA Instrument
SC Measurement conditions: Heating temperature: 270 to 570K (RCS cooling method) Temperature calibration: Melting point of high-purity indium and tin Temperature modulation amplitude: ± 1K Temperature modulation cycle: 60 seconds Heating step: 5K Sample weight: 5mg Sample container: Aluminum Open container made of aluminum (22 mg) Reference container: Open container made of aluminum (18 m
g).
【0030】(3)表面粗さ JIS B0601−1976に準じ、カツトオフは
0.25mmとした。(3) Surface Roughness According to JIS B0601-1976, the cut-off was set to 0.25 mm.
【0031】(4)熱収縮率 JIS C2318に準じ、230℃±5℃の温度で3
0分間での熱変形量を測定し、下記式(4) Heat shrinkage rate According to JIS C2318, a heat shrinkage rate of 3 at a temperature of 230 ° C. ± 5 ° C.
Measure the amount of thermal deformation in 0 minutes and calculate the following equation
【0032】[0032]
【数2】 にて表した。(Equation 2) It was expressed by.
【0033】(5) 素子の容量バラツキ 0.5μFのコンデンサを100個作成し、総研(株)
のシェーリングブリッジを用いて、周波数60Hzで電
圧100vで容量を測定した。それらの平均値Cおよび
標準偏差σを算出し、(σ/C)×100を容量のバラ
ツキと定義した。このバラツキが小さいほど優れている
ことは言うまでもなく、5%以下を実用に供し得るもの
と判定した。(5) Variation in element capacitance 100 capacitors of 0.5 μF were prepared, and were researched by Soken Co., Ltd.
The capacitance was measured at a frequency of 60 Hz and a voltage of 100 V using a Schering bridge of No. The average value C and the standard deviation σ were calculated, and (σ / C) × 100 was defined as the variation in capacity. Needless to say, the smaller the variation, the better it was.
【0034】(6) 絶縁抵抗 0.5μFのコンデンサを東亜電気(株)の超絶縁計を
用いて、電圧100vでの絶縁抵抗を測定した。(6) Insulation Resistance The insulation resistance of a 0.5 μF capacitor at a voltage of 100 V was measured using a super insulation meter manufactured by Toa Electric Corporation.
【0035】(7) 絶縁破壊電圧 容量0.5μFのコンデンサを作成し、100v/se
cの昇圧速度でDCを印加し、コンデンサ素子が破壊し
た時の電圧を絶縁破壊電圧とする。(7) Dielectric breakdown voltage A capacitor having a capacity of 0.5 μF was prepared, and a voltage of 100 v / sec was obtained.
DC is applied at a step-up speed of c, and the voltage when the capacitor element is broken is defined as the breakdown voltage.
【0036】(8) 絶縁破壊電圧のバラツキ 容量0.5μFのコンデンサを100個作成し、100
v/secの昇圧速度でコンデンサ素子の絶縁破壊電圧
を測定する。それらの平均値Vおよび標準偏差σを算出
し、(σ/V)×100を絶縁破壊電圧のバラツキ定義
した。このバラツキが小さいほど優れていることは言う
までもなく、7%以下であると実用に供し得ると判定し
た。(8) Dispersion of dielectric breakdown voltage 100 capacitors having a capacitance of 0.5 μF were prepared, and 100
The dielectric breakdown voltage of the capacitor element is measured at a boosting rate of v / sec. The average value V and the standard deviation σ were calculated, and (σ / V) × 100 was defined as the variation of the dielectric breakdown voltage. Needless to say, the smaller the variation is, the better it is.
【0037】[0037]
【実施例】本発明を実施例、比較例に基づいて説明す
る。EXAMPLES The present invention will be described based on examples and comparative examples.
【0038】実施例1 公知の方法によりジメチルテレフタレートとエチレング
リコールを反応器に入れ酢酸カルシウム0.09重量%
をエステル交換触媒としてエステル交換反応させ、次い
で、添加物として富士デビソン製の凝集シリカを0.0
7重量%、リン酸0.03重量%を添加したPET(P
ET)のペレット(50重量%)とGeneral E
lectric社製のポリエーテルイミドウルテム10
10(50重量%)を、290℃に加熱された同方向回
転タイプのベント式2軸混練押出機に供給して、剪断速
度120sec-1、滞留時間2分にて溶融押出し、ウル
テムを50重量%含有したブレンドチップを得た。次い
で、上記にペレタイズ操作により得たブレンドチップ2
0重量部と固有粘度0.615のPETチップ80重量
部を、180℃で3時間真空乾燥した後、押出機に投入
し、285℃にて溶融押出し、繊維焼結ステンレス金属
フィルター(10μmカ ット)内を剪断速度10秒-1
で通過させた後、Tダイよりシート状に吐出し、該シー
トを表面温度25℃の冷却ドラム上に密着させ冷却固化
させ、56μmの未延伸フィルムを得た。Example 1 Dimethyl terephthalate and ethylene glycol were charged into a reactor by a known method, and 0.09% by weight of calcium acetate was added.
Was subjected to a transesterification reaction as a transesterification catalyst, and then aggregated silica manufactured by Fuji Devison was added as an additive to 0.0
PET (P) containing 7% by weight and 0.03% by weight of phosphoric acid
ET) pellets (50% by weight) and General E
Polyetherimide Ultem 10 manufactured by Electric
10 (50% by weight) was fed to a vented twin-screw kneading extruder of the same direction rotating at 290 ° C. and melt-extruded at a shear rate of 120 sec −1 and a residence time of 2 minutes. % Of a blended chip was obtained. Next, blend chip 2 obtained by the pelletizing operation
0 parts by weight and 80 parts by weight of a PET chip having an intrinsic viscosity of 0.615 were vacuum-dried at 180 ° C. for 3 hours, then put into an extruder, melt-extruded at 285 ° C., and sintered with a fiber sintered stainless metal filter (10 μm filter). G) within 10 seconds -1
, And discharged in a sheet form from a T-die. The sheet was closely adhered to a cooling drum having a surface temperature of 25 ° C. and solidified by cooling to obtain a 56 μm unstretched film.
【0039】続いて、加熱された複数のロール群からな
る縦延伸機を用い、110℃の温度でフィルムの縦方向
に4.0倍の倍率で延伸した。その後、延伸温度100
℃で延伸倍率4.0倍でフィルムの横方向に延伸した。
その後、240℃の温度で5%弛緩しながら熱処理を行
ない厚さ3.5μmの二軸延伸フィルムを得た。Subsequently, the film was stretched at a temperature of 110 ° C. in the longitudinal direction of the film at a magnification of 4.0 times using a longitudinal stretching machine composed of a plurality of heated roll groups. After that, a stretching temperature of 100
The film was stretched in the transverse direction at 4.0 ° C. at a stretching ratio of 4.0.
Thereafter, a heat treatment was performed while relaxing at 5% at a temperature of 240 ° C. to obtain a biaxially stretched film having a thickness of 3.5 μm.
【0040】この二軸延伸フィルムを500mm幅に裁
断し、長さ10000mの製品ロールを採取した。該製
品ロールを真空下でフイルム表面にAl金属を3Ω/口
の膜抵抗になるように蒸着し、金属化フイルムにした。This biaxially stretched film was cut into a width of 500 mm, and a product roll having a length of 10,000 m was collected. The product roll was deposited on a film surface under a vacuum so that Al metal was deposited to a film resistance of 3 Ω / port to form a metallized film.
【0041】このAl金属化フイルムを15mm幅に裁
断して蒸着品を採取した。該蒸着フイルムを2枚合わせ
て295層積層し帯状の積層体とした。温度175℃で
圧力60kg/cm2でヒートプレスを行った。短冊状
の積層体を幅5mmに切断し0.5μFのチップコンデ
ンサを得た。This Al metallized film was cut to a width of 15 mm to obtain a vapor-deposited product. A total of 295 layers of the two deposited films were laminated to form a band-shaped laminate. The heat press was performed at a temperature of 175 ° C. and a pressure of 60 kg / cm 2 . The strip-shaped laminate was cut into a width of 5 mm to obtain a chip capacitor of 0.5 μF.
【0042】該コンデンサ素子を230℃に加熱された
オーブンで15分間熱処理を行った後素子の容量、絶縁
抵抗、絶縁破壊電圧を評価した。表1に示す通り、M/
Pが0.9で、補外ガラス転移開始温度が105℃であ
り、フイルムの表面粗さは0.033μmで、容量バラ
ツキが小さく、絶縁抵抗が3.5×106MΩで耐電圧
は1.44kv高品質のコンデンサであった。The capacitor element was subjected to a heat treatment in an oven heated to 230 ° C. for 15 minutes, and then the capacitance, insulation resistance and breakdown voltage of the element were evaluated. As shown in Table 1, M /
P is 0.9, extrapolated glass transition onset temperature is 105 ° C., film surface roughness is 0.033 μm, capacity variation is small, insulation resistance is 3.5 × 10 6 MΩ, and withstand voltage is 1 .44 kv high quality capacitor.
【0043】実施例2 ブレンドチップ40重量部とPETチップ60重量部を
混合し、ポリエ−テルイミドの含有量を20重量%に増
量した以外は実施例1に準じた。結果は表1に示す通
り、容量バラツキが小さく、絶縁抵抗の高い耐電圧の優
れた高品質のフイルムであった。Example 2 The procedure of Example 1 was followed except that 40 parts by weight of the blended chips and 60 parts by weight of the PET chips were mixed and the content of polyetherimide was increased to 20% by weight. As shown in Table 1, the result was a high quality film with small capacity variation, high insulation resistance and excellent withstand voltage.
【0044】実施例3 フイルムの表面形状を変るため、添加剤として凝集シリ
カを0.15重量%に増量し粗さが0.048μmのフ
イルム用いた以外は実施例1に準じた。結果は表1に示
す通り高品質のコンデンサであった。Example 3 In order to change the surface shape of the film, the same procedure as in Example 1 was carried out except that the amount of the aggregated silica was increased to 0.15% by weight and the film having a roughness of 0.048 μm was used as an additive. The results were high quality capacitors as shown in Table 1.
【0045】比較例1 PET100%の原料を用いた以外は実施例1に準じ
た。結果は表1に示す通り、補外のTg開始温度は低
く、熱収縮率が高く、素子の変形により容量バラツキが
大きく絶縁抵抗、耐電圧は低くかった。Comparative Example 1 The procedure of Example 1 was repeated except that a raw material of 100% PET was used. As shown in Table 1, the extrapolated Tg onset temperature was low, the heat shrinkage was high, the capacity variation was large due to the deformation of the element, and the insulation resistance and withstand voltage were low.
【0046】比較例2 ポリエ−テルイミドの含有量50重量%以外は実施例1
に準じた。結果は表1に示す通り、補外のTg開始温度
は135℃を得ることができたが、フイルム破れが多発
し、安定した製膜ができず生産性が劣る。Comparative Example 2 Example 1 except that the content of polyetherimide was 50% by weight.
According to. As shown in Table 1, the extrapolated Tg onset temperature was 135 ° C., but the film was frequently broken, and a stable film could not be formed, resulting in poor productivity.
【0047】比較例3 添加剤として凝集シリカを0.02重量%に減らし、フ
イルムの表面粗さが0.01μmの表面平滑なフイルム
用いた以外は実施例1に準じた。結果は表1に示す通
り、すべり不良による素子巻き作業性が劣り、シワ起因
による素子の絶縁抵抗が低下し、低電圧での異常破壊が
生じ、耐電圧のバラツキが生じた。Comparative Example 3 The procedure of Example 1 was repeated except that the aggregated silica was reduced to 0.02% by weight as an additive, and a film having a smooth surface having a surface roughness of 0.01 μm was used. As shown in Table 1, the workability of winding the element was poor due to poor slip, the insulation resistance of the element was reduced due to wrinkles, abnormal breakdown at low voltage occurred, and the withstand voltage was varied.
【0048】比較例4 エステル交換触媒に酢酸マグネシウムを0.06重量
%、添加物として、トリメチルリン酸を0.026重量
%を添加したPET以外は実施例1に準じた。結果は表
1に示す通り、M/Pが2.7と大きく、高温時の絶縁
抵抗が低下し素子の耐電圧特性が低くかった。Comparative Example 4 The procedure of Example 1 was followed except that PET was added with 0.06% by weight of magnesium acetate as a transesterification catalyst and 0.026% by weight of trimethylphosphoric acid as an additive. As shown in Table 1, the M / P was as large as 2.7, the insulation resistance at high temperatures was reduced, and the withstand voltage characteristics of the device were low.
【0049】[0049]
【表1】 [Table 1]
【0050】[0050]
【発明の効果】本発明のコンデンサ用フィルムは耐熱性
に優れ、コンデンサ特性の優れたチップコンデンサを得
ることができた。本発明によって製品を小型化すること
が可能となり、工業的価値は極めて高い。The film for a capacitor of the present invention has excellent heat resistance and can obtain a chip capacitor having excellent capacitor characteristics. According to the present invention, a product can be miniaturized, and the industrial value is extremely high.
【図1】金属化フィルムを用いてなる本発明のコンデン
サの一態様を示す。FIG. 1 shows one embodiment of the capacitor of the present invention using a metallized film.
【符号の説明】 1 金属膜 2 非金属膜 3 金属化フィルム 4 電極[Description of Signs] 1 Metal film 2 Non-metal film 3 Metallized film 4 Electrode
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01G 4/18 330 H01G 4/18 330A 4/24 321C Fターム(参考) 4F071 AA43 AA46 AA60 AA86 AF27Y AF61Y AH12 BA01 BB06 BB08 BC01 BC16 4J002 CF001 CF061 CH002 CM042 GQ00 5E082 AA01 AB03 BB05 BB10 BC23 EE07 EE08 EE24 EE37 FG06 FG22 FG36 FG38 FG39 FG48 FG54 LL02 MM22 MM24 PP03 PP04 PP06 PP10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01G 4/18 330 H01G 4/18 330A 4/24 321C F term (Reference) 4F071 AA43 AA46 AA60 AA86 AF27Y AF61Y AH12 BA01 BB06 BB08 BC01 BC16 4J002 CF001 CF061 CH002 CM042 GQ00 5E082 AA01 AB03 BB05 BB10 BC23 EE07 EE08 EE24 EE37 FG06 FG22 FG36 FG38 FG39 FG48 FG54 LL02 MM22 MM24 PP03 PP04 PP06 PP10
Claims (5)
(B)とからなるフィルムであって、フィルム中におけ
るリン成分の量Pに対する全無機成分の量Mの割合であ
るM/Pが2.0以下、補外ガラス転移開始温度が90
℃以上、130℃未満であり、表面粗さRaが0.02
μm以上、0.08μm未満、230℃−30分での熱
収縮率が4%以下であることを特徴とするコンデンサ用
フィルム。1. A film comprising a polyester (A) and a polyetherimide (B), wherein M / P, which is the ratio of the amount M of all inorganic components to the amount P of phosphorus components in the film, is 2.0. Hereinafter, the extrapolated glass transition onset temperature is 90
° C or more and less than 130 ° C, and the surface roughness Ra is 0.02
A film for a capacitor, characterized in that the heat shrinkage at 230 ° C. for 30 minutes is 4% or less.
20℃未満であることを特徴とする請求項1記載のコン
デンサ用フィルム。2. An extrapolated glass transition onset temperature of 95 ° C. or higher,
The film for a capacitor according to claim 1, wherein the temperature is lower than 20 ° C.
とも片面に金属層を設けた金属化フィルムを用いてなる
ことを特徴とするコンデンサ。3. A capacitor comprising a metallized film provided with a metal layer on at least one surface of the film according to claim 1.
るチップ化コンデンサ。4. A chip capacitor using the film according to claim 1.
請求項4記載のチップ化コンデンサ。5. The chip capacitor according to claim 4, which is used for a telephone exchange or a communication device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000318905A JP2002134353A (en) | 2000-10-19 | 2000-10-19 | Film and capacitor suing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000318905A JP2002134353A (en) | 2000-10-19 | 2000-10-19 | Film and capacitor suing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002134353A true JP2002134353A (en) | 2002-05-10 |
Family
ID=18797453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000318905A Pending JP2002134353A (en) | 2000-10-19 | 2000-10-19 | Film and capacitor suing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002134353A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009244040A (en) * | 2008-03-31 | 2009-10-22 | Murata Mfg Co Ltd | Method of measuring insulation breakdown voltage of film-like insulating material |
JP2018510955A (en) * | 2015-02-03 | 2018-04-19 | サビック グローバル テクノロジーズ ビー.ブイ. | Polyetherimide miscible polymer blends for capacitor films |
-
2000
- 2000-10-19 JP JP2000318905A patent/JP2002134353A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009244040A (en) * | 2008-03-31 | 2009-10-22 | Murata Mfg Co Ltd | Method of measuring insulation breakdown voltage of film-like insulating material |
JP2018510955A (en) * | 2015-02-03 | 2018-04-19 | サビック グローバル テクノロジーズ ビー.ブイ. | Polyetherimide miscible polymer blends for capacitor films |
US10669388B2 (en) | 2015-02-03 | 2020-06-02 | Sabic Global Technologies, B.V. | Polyetherimide miscible polymer blends for capacitor films |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6052032B2 (en) | Biaxially stretched polypropylene film | |
CN1193387C (en) | Polyester film for heat-resistant capacitor, metallized film thereof, and heat-resistant film capacitor containing the same | |
WO2008140120A1 (en) | Laminated porous film | |
JP6516002B2 (en) | Capacitor film and method for manufacturing the same | |
JP2008307893A (en) | Laminated porous film | |
JP2014114419A (en) | Biaxially stretched polyolefin film, method for manufacturing the film, metal-deposited polyolefin film, and film capacitor | |
JP2018083415A (en) | Laminate film, and production method thereof | |
WO2014199844A1 (en) | Film laminate and method for producing same | |
WO2014157205A1 (en) | Laminate and method for producing same | |
JP4639422B2 (en) | Biaxially oriented film, metallized film and film capacitor | |
JP2001172482A (en) | Polyester film for capacitor, metalized film for capacitor and film capacitor | |
JP2002134353A (en) | Film and capacitor suing the same | |
JP2009062472A (en) | Polyphenylene sulfide film and capacitor made therefrom | |
JP5423464B2 (en) | Biaxially oriented laminated film | |
JP2001332443A (en) | Capacitor-metallized polyester film and capacitor using the same | |
JPH10156940A (en) | Polypropylene film and capacitor using the same as dielectric | |
WO2022107706A1 (en) | Polypropylene film, polypropylene film integrated with metal layer, and film capacitor | |
JP2001329076A (en) | Polyphenylene sulfide film and capacitor | |
JP2002134354A (en) | Film for capacitor and capacitor | |
JPS63182351A (en) | Polyester film and capacitor prepared therefrom | |
JP2003136658A (en) | Biaxially oriented laminated film and condenser using the same | |
JPH11273991A (en) | Polypropylene film for capacitor and capacitor consisting of the film | |
CN114148003B (en) | Method for preparing multilayer capacitance film modified by plasma | |
JP2004285298A (en) | Polyester film and capacitor by using the same | |
JP2015098577A (en) | Polyphenylene sulfide film for electric insulation |