JP4639422B2 - Biaxially oriented film, metallized film and film capacitor - Google Patents

Biaxially oriented film, metallized film and film capacitor Download PDF

Info

Publication number
JP4639422B2
JP4639422B2 JP2000077718A JP2000077718A JP4639422B2 JP 4639422 B2 JP4639422 B2 JP 4639422B2 JP 2000077718 A JP2000077718 A JP 2000077718A JP 2000077718 A JP2000077718 A JP 2000077718A JP 4639422 B2 JP4639422 B2 JP 4639422B2
Authority
JP
Japan
Prior art keywords
film
pps
capacitor
biaxially oriented
polyetherimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000077718A
Other languages
Japanese (ja)
Other versions
JP2001261959A (en
Inventor
哲也 恒川
茂俊 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000077718A priority Critical patent/JP4639422B2/en
Publication of JP2001261959A publication Critical patent/JP2001261959A/en
Application granted granted Critical
Publication of JP4639422B2 publication Critical patent/JP4639422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physical Vapour Deposition (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐電圧、電気特性に優れ、コンデンサーの小型化・大容量化に適した二軸配向フィルム、金属化フィルムおよびフィルムコンデンサーに関する。
【0002】
【従来の技術】
フィルムコンデンサーは、一般に二軸配向ポリエチレンテレフタレートフィルム、二軸配向ポリプロピレンフィルム等のフィルムとアルミニウム箔等の金属箔膜とを重ね合わせて巻回する方法や、あるいは前記フィルムの表面にアルミニウム、亜鉛等の蒸着膜を形成させた後に巻回したり積層する方法により製造されている。
【0003】
最近では、電気あるいは電子回路の小型化要求に伴い、コンデンサーについてもその小型化や面実装化が進められており、耐熱性向上や薄物化が進められているが、薄物化に対応する際に必要となる耐電圧が高く、耐熱性や加工性に優れたフィルムが得られていない。このため、実用性の観点で満足できる小型・高容量のフィルムコンデンサーが必ずしも得られていないのが当該分野の現状である。
【0004】
本発明に関係するポリフェニレンスルフィド(PPS)フィルムはその耐熱性、誘電特性に優れていることから、ポリエステルフィルムやポリプロピレンフィルムでは対応できない使用保証温度が高い高性能回路に使用されており、近年、電話交換機や液晶バックライト用電源回路等で需要が高まっている。
【0005】
しかし、PPSフィルムは、耐電圧が低く、絶縁破壊時の自己修復特性に欠ける等の問題があり、またコストも高いことから、コンデンサー用フィルムとしての使用が制限されており、本来の誘電特性や耐熱性による大きな市場は築けていないのが現状である。
【0006】
【発明が解決しようとする課題】
本発明は、かかる問題点を克服し、耐電圧、誘電特性に優れ、小型・高容量の高性能コンデンサーを製造するに適した二軸配向フィルム、金属化フィルムおよびフィルムコンデンサーを提供せんとするものである。
【0007】
【課題を解決するための手段】
本発明は、かかる課題を解決するために、次のような手段を採用する。すなわち、本発明の二軸配向フィルムは、繰り返し単位がp−フェニレンスルフィド単位のみからなるポリ−p−フェニレンスルフィドをポリフェニレンスルフィドを主成分とする樹脂組成物からなり、フィルムに占めるポリエーテルイミドを3重量%以上、35重量%以下含有する、ガラス転移温度が100℃以上、125℃以下であることを特徴とするものであり、また、本発明の金属化フィルムは、かかる二軸配向フィルムの少なくとも片面に金属層を形成してなることを特徴とするものである。さらにまた、本発明のフィルムコンデンサーは、かかる金属化フィルムを用いてなることを特徴とするものである。
【0008】
【発明の実施の形態】
本発明は、前記課題、つまり耐電圧、誘電特性に優れ、小型・高容量の高性能コンデンサーを製造するに適した二軸配向フィルムについて、さらには金属化フィルムおよびフィルムコンデンサーについて、鋭意検討し、ポリフェニレンスルフィドとポリエーテルイミド、ポリイミド、ポリスルフォン等の耐熱性ポリマーは、混練条件を工夫してみたところ、相溶化させることができることを究明し、しかも、PPS単独よりも高いガラス転移温度を有する二軸配向フィルムでは、耐電圧、電気特性に優れ、小型・高容量のコンデンサー用のフィルムとして極めて優れていることを見出し、本発明を完成させた。
【0009】
本発明でいうポリフェニレンスルフィドとは、ポリーp−フェニレンスルフィドであり、ポリーp−フェニレンスルフィドを70重量%以上含む組成物は本発明の範囲である。ポリーp−フェニレンスルフィドが70重量%未満では、該組成物から成るフィルムの特徴である耐熱性、誘電特性等が損なわれる。30重量%未満であれば他の樹脂組成物や種々の添加剤等を含むことができる。ここで、ポリーp−フェニレンスルフィド(以下、PPSと略称する)とは繰り返し単位がp−フェニレンスルフィド単位のみからなる重合体をいう
【0010】
本発明のPPSの溶融粘度は、305℃、200秒ー1の剪断速度で50〜10000Pa・秒の範囲がフィルムの耐熱性、寸法安定性、機械特性および厚みムラが良好となるので好ましい。より好ましい溶融粘度は、100〜2000Pa・秒であり、さらに好ましくは200〜1500Pa・秒である。ポリフェニレンスルフィドの溶融粘度が大きいと、溶融押出工程での剪断発熱が大きくなり、このためポリマーの劣化、架橋反応が促進されてフィルムの製膜性、品質低下を招くので注意すべきである。
【0011】
かかるPPSは、例えば(1)ハロゲン置換芳香族化合物と硫化アルカリとの反応(米国特許第2513188号明細書、特公昭44ー27671号および特公昭45ー3368号参照)、(2)チオフェノール類のアルカリ触媒または銅塩等の共存下における縮合反応(米国特許第3274165号明細書、英国特許第1160660参照)、(3)芳香族化合物を塩化硫黄とのルイス酸触媒共存下における縮合反応(特公昭46ー27255号公報、ベルギー特許第29437号参照)等により、合成されるものであり、目的に応じ任意に選択して使用することができる。
【0012】
PPSと相溶化させる耐熱ポリマーとしては、上述したようにポリエーテルイミド、ポリエーテルスルフォン、ポリスルフォン等を使用することができるが、中でもポリエーテルイミドが好ましい。本発明でいうポリエーテルイミドとは、脂肪族、脂環族または芳香族系のエーテル単位と環状イミド基を繰り返し単位として含有するポリマーであり、溶融成形性を有するポリマーであれば、特に限定されない。例えば、米国特許第4141927号明細書、特許第2622678号、特許第2606912号、特許第2606914号、特許第2596565号、特許第2596566号、特許第2598478号各公報に記載のポリエーテルイミド、特許第2598536号、特許第2599171号各公報、特開平9−48852公報、特許第2565556号、特許第2564636号、特許第2564637号、特許第2563548号、特許第2563547号、特許第2558341号、特許第2558339号、特許第2834580号各公報に記載のポリマー等を使用することができる。また、本発明の効果を阻害しない範囲であれば、ポリエーテルイミドの主鎖に環状イミド、エーテル単位以外の構造単位、例えば、芳香族、脂肪族、脂環族エステル単位、オキシカルボニル単位等が含有されていても良い。
【0013】
具体的なポリエーテルイミドとしては、下記一般式で示されるポリマーが好ましく使用される。
【0014】
【化1】

Figure 0004639422
【0015】
(ただし、上記式中R1 は、6〜30個の炭素原子を有する2価の芳香族または脂肪族残基;R2 は6〜30個の炭素原子を有する2価の芳香族残基、2〜20個の炭素原子を有するアルキレン基、2〜20個の炭素原子を有するシクロアルキレン基、及び2〜8個の炭素原子を有するアルキレン基で連鎖停止されたポリジオルガノシロキサン基からなる群より選択された2価の有機基である。)
上記R1 、R2 としては、例えば、下記式群に示される芳香族残基を有するものが好ましく使用される。
【0016】
【化2】
Figure 0004639422
【0017】
本発明では、ポリエステル(A)との相溶性、コスト、溶融成形性等の観点から、下記式で示される構造単位を有する、2,2−ビス[4−(2,3−ジカルボキシフェノキシ)フェニル]プロパン二無水物とm−フェニレンジアミン、またはp−フェニレンジアミンとの縮合物が好ましく使用される。このポリエーテルイミドは、“ウルテム”(登録商標)の商標名で、ジーイープラスチックス社より入手可能である。
【0018】
【化3】
Figure 0004639422
【0019】
または
【0020】
【化4】
Figure 0004639422
【0021】
本発明では、ガラス転移温度が好ましくは350℃以下、より好ましくは250℃以下のポリエーテルイミドが好ましく、2,2−ビス[4−(2,3−ジカルボキシフェノキシ)フェニル]プロパン二無水物とm−フェニレンジアミンまたはp−フェニレンジアミンとの縮合物が、ポリエステルとの相溶性、コスト、溶融成形性等の観点から最も好ましい。このポリエーテルイミドは、General Electric社製で「Ultem1000または5000シリーズ」の商標名で知られているものである。
【0022】
本発明では、フィルムのガラス転移温度が95℃以上、130℃以下であることが、耐電圧向上および製膜性の観点から必須である。ガラス転移温度が95℃未満では、本発明で目的とするフィルムの耐電圧向上効果は実質的に認められない。また、これとは逆にガラス転移温度が130℃を越えるとフィルムの溶融押出および二軸延伸性が不良で製膜時にフィルム破れが多発するので好ましくない。より好ましいガラス転移温度は、電気特性、製膜性、コストの観点から、100℃以上、125℃以下であり、さらに好ましくは102℃以上、120℃以下である。
【0023】
本発明の二軸配向フィルムは単一のガラス転移温度(Tg)を有することが好ましい。単一のTgを有すると、PPSと耐熱ポリマーが十分に相溶しており、本発明の目的が達成され易くなるからである。フィルムが単一のTgを有するか否かは、示差走査熱分析、動的粘弾性測定等の各種分析を用いて適宜判断することができる。固体物性による方法のみで判定しにくい場合には、顕微鏡観察などの形態学的方法を併用しても良い。本発明では、フィルムが2つ以上のガラス転移温度を有する場合、低温側のガラス転移点により、ガラス転移温度を定義する。
【0024】
本発明で好ましく使用するポリエーテルイミドのフィルムに占める含有量は、誘電損失、耐電圧などの電気特性、耐ハンダ性の観点から、3重量%以上、35重量%以下である。より好ましいポリエーテルイミドの重量分率は5重量%以上、30重量%以下であり、さらに好ましくは10重量%以上、25重量%以下である。本発明では、無論、前記ポリエーテルイミドが、実質的にポリエステルと完全相溶状態にあることが好ましいが、本発明で開示するガラス転移温度の範囲内であれば、ポリフェニレンスルフィド中でポリエーテルイミドが部分相溶状態にあっても良い。この場合、ポリエーテルイミドの平均分散径は、製膜性、電気特性の観点から、1μm未満であることが好ましい。部分相溶状態の場合のより好ましいポリエーテルイミドの平均分散径は、0.5μm未満であり、さらに好ましくは0.1μm未満である。
【0025】
フィルムを構成するPPS、耐熱ポリマーの重量分率は、当該分野の公知の手法により適宜決定できる。本発明では、高温プローブを使用して溶融状態でNMRスペクトルを採取し、PPSおよび耐熱ポリマーに起因するピークの積算値から重量分率を決定する方法が好ましい。フィルムの赤外吸収スペクトルを測定し、フィルムを構成するポリマー種がPPSとポリエーテルイミドであることが判明した場合には、元素分析によってイオウと窒素の量を求め、この結果をもとにPPSとポリエーテルイミドの量を算出する方法も好ましく用いることができる。
【0026】
フィルムに滑り性を付与したり、加工適性を向上するために、例えば酸化チタン、炭酸カルシウム、シリカ、アルミナやジルコニアなどの無機粒子やシリコン粒子、架橋アクリル粒子や架橋ポリスチレン粒子などの有機粒子などの不活性粒子をフィルムに添加したり、またポリマの重合時に酢酸カルシウムや酢酸リチウムなどを使用し、ポリマーの重合過程で粒子を析出させることも好ましく行うことができる。この場合、使用される粒子の平均径や添加量は後述するフィルムの表面粗さの観点から選択されるが、好ましくは平均粒子径が0.01〜3μmの範囲であり、フィルムに対し0.05〜2重量%の範囲が好ましい。また、粗大粒子は絶縁欠点などの原因になり、耐電圧を低下させるため平均粒径が3μmを越える粗大粒子をフィルム中に含有しないことが好ましい。このため、無機粒子や有機粒子などの不活性粒子はPPS重合時の溶媒中でスラリーとしサンドグラインダーなどの媒体撹拌型分散装置や超音波分散装置で分散し、その後湿式分級装置で分級したりフィルター出濾過し粗大粒子を除去するのが好ましい。
【0027】
尚、本発明のフィルム中には、本発明の効果を阻害しない範囲であれば、可塑剤、耐候剤、酸化防止剤、熱安定剤、紫外線安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤防錆剤などを添加してもかまわない。
【0028】
本発明で使用するフィルムの平均表面粗さRaは5nm以上、120nm以下であることが好ましい。表面粗さRaは、10nm以上、90nm以下がより好ましく、20nm以上、80nm以下がさらに好ましい。Raが120nmを越えると、空気介在による誘電特性の不安定化、耐電圧の低下を招いたり、また使用時に電界集中が発生したり、フィルムおよび金属薄膜層の溶失または焼失が起こり、コンデンサー用フィルムとして使用した場合にコンデンサーの高性能化が難しくなる。また、これとは逆に5nm未満の場合では、コンデンサーの誘電体として用いる場合の作業性、コンデンサー加工が難しくなる。本発明では、上記フィルムに公知のコロナ放電処理を施してもよいし、接着性、ヒートシール性、耐湿性、滑性、表面平滑性等を付与する目的で他種ポリマーを積層した構成や、有機または/及び無機組成物で被覆した構成で使用しても良い。
【0029】
本発明のフィルムの厚みは、特に制限はなく、コンデンサーを使用する用途に応じて適宜決定できるが、小型化、大容量化の観点から、0.5μm以上、10μm以下であることが好ましい。フィルムの厚みは0.7μm以上、4μm以下がより好ましく、1μm以上、2μm以下がさらに好ましい。0.5μm未満の厚みのフィルムは作業性が乏しく、また、コンデンサーの高容量化に有効であるが、実用上の必須要件ではない。
【0030】
本発明の二軸配向フィルムは、公知の延伸方法によって得られ、その製造に際しては、逐次二軸延伸方式および同時二軸延伸方式のいずれの方式も好ましく用いられる。
【0031】
次に、本発明の二軸配向フィルムを製造する方法について説明するが、かかる例に限定されるものではない。尚、ここでは、耐熱性ポリマーとして、ジェネラル・エレクトリック社のポリエーテルイミドであるウルテム1010を使用した例を以下に示す。
【0032】
前記のように、ポリフェニレンスルフィドポリマー自体の製造方法は、この分野において周知であり、いずれの方法も採用できるが、本発明では硫化アルカリとp−ジハロベンゼンを極性溶媒中で高温高圧下に反応させる方法が好ましい。特に硫化ナトリウムとp−ジクロロベンゼンをNーメチルー2ーピロリドン等のアミド系極性溶媒中で反応させるのが好ましい。この場合、重合度を調整するために、苛性アルカリ、カルボン酸アルカリ金属等のいわゆる重合助剤を添加して230〜280℃で反応させるのが最も好ましい。重合系内の圧力および重合時間は、使用する助剤の種類や量および所望の重合度等によって適宜決定できる。重合終了後は、系を徐冷し、ポリマーを析出させた後、水中に投入してできるスラリーを濾別後、水洗、乾燥してPPS粉末を得る。
【0033】
ここで得たPPSとポリエーテルイミドを用いて二軸配向フィルムを製造する。本発明では、PPSをポリエーテルイミドと共に二軸混練押出機に投入し、PPSとポリエーテルイミドの重量分率(PPS/ポリエーテルイミド)が30/70〜65/35であるブレンド原料を予め作成し、該ブレンド原料を、PPSおよび必要に応じてこれらの回収原料と共に押出機に投入して、ポリエーテルイミドの重量分率を下げて、目的とする組成の二軸配向フィルムを製膜するのが、本発明の目的を達成する上で好ましい。このように、耐熱性ポリマーを高濃度に添加したブレンド原料を予め作成して、その後、PPSで希釈して使用すると、分散または分配混合が効果的に進行してPPSと耐熱性ポリマーが相溶化し易くなり、その結果、フィルム中に残存する分散不良物を激減させて両ポリマーを完全相溶状態に導き易くなるので有効である。ブレンドチップ作成時のPPSと耐熱ポリマーの重量分率(PPS/耐熱ポリマー)は、使用するポリマーの粘度および溶融押出条件にもよるが、40/60〜60/40がより好ましい。
【0034】
PPSのペレットとウルテム1010のペレットを、一定の割合で混合して、290〜320℃に加熱されたベント式の2軸混練押出機に供給し、溶融混練してブレンドチップを得る。このときの剪断速度は50〜300sec-1が好ましく、より好ましくは100〜200sec-1であり、また滞留時間は1.5分〜20分が好ましく、より好ましくは2〜7分である。
【0035】
その後、上記ペレタイズ作業により得たPPSとウルテム1010からなるブレンドチップ、PPSの原料チップ、および必要に応じて製膜後の回収原料をPPSとウルテム1010が重量分率で90/10になるように適量混合し、180℃で3時間以上真空乾燥する。その後、これらを押出機に投入し、290〜330℃にて溶融押出し、繊維焼結ステンレス金属フィルター内を通過させた後、ドラフト比2〜30にて、Tダイよりシート状に吐出し、このシートを表面温度10〜70℃の冷却ドラム上に密着させて冷却固化し、実質的に無配向状態の未延伸フィルムを得る。
【0036】
次いで、ここで得たシート状のキャストフィルムを100〜170℃の加熱ロール群で加熱し、縦方向に2〜7倍に1段もしくは2段以上の多段で延伸する。続いて、公知のテンターに導いて、該フィルムの両端をクリップで把持しながら、100〜170℃に加熱された熱風雰囲気中で加熱し、横方向に2〜6倍延伸する。続いて、該フィルムに180℃以上、融点以下の温度で熱固定を施す。熱固定は緊張下で行ってもよく、また熱寸法安定性をさらに向上させるために、幅方向に弛緩することも好ましく行なわれる。また、必要に応じ、熱固定前に、再縦延伸および/または再横延伸を行うことも行うことができる。また、熱固定を行った後、50〜140℃で10秒ないし10日間、再度熱固定することも好ましく行うことができる。
【0037】
本発明の金属化フィルムは、かかる二軸配向フィルムの少なくとも片面に金属層を形成したものであって、たとえば真空蒸着やスパッタリング法等の方法で金属薄膜を形成せしめたものを使用することができる。かかる金属としては、アルミニウム、亜鉛、錫、チタン、ニッケル、或いはそれらの合金などがあるが、これらに限定されるものではない。
【0038】
本発明のフィルムコンデンサーは、巻回法または積層法等の公知の方法で製造することができる。かかるコンデンサーの導電体としては、上記金属化フィルムを使用することができる。
【0039】
また、本発明のコンデンサーの形状は問わないが、通常のリード線を有するタイプ、あるいはリード線を有さず、基板表面に直接ハンダ付けするタイプ、すなわち面実装可能なチップ状コンデンサーのいずれであっても良い。また、本発明のコンデンサーは交流および直流のいずれの用途にも展開可能である。
【0040】
【実施例】
以下、本発明を実施例により具体的に説明するが、その主旨を越えない限り本発明はこれらの実施例に限定されるものではない。尚、本発明に記載の物性値の測定は下記の方法による。
(1)溶融粘度
高化式フローテスターを用いて、305℃、剪断速度200秒−1の時の値を測定する。単位は[Pa・秒]で表す。
(2)ガラス転移温度
JIS K−7121の規定に基づいて、下記の装置と条件で測定した。
【0041】
測定装置:セイコー電子工業(株)製“ロボットDSC−RDC220”示差熱量計
試料重量:5mg
昇温速度:20℃/分
(3)耐熱ポリマーの平均分散径
フィルムを縦方向、横方向および厚さ方向に切断し、その切断面を透過型電子顕微鏡で観察する。これらの切断面に現れたドメイン100個の円相当径を求め、その平均値を平均分散径とした。
(4)表面粗さ(Ra)
(株)小坂研究所製高精度薄膜段差計ET−10を用いて測定し、JIS−B−0601に準じて中心線平均表面粗さ(Ra)を求めた。触針先端半径0.5μm、針圧5mg、測定長1mm、カットオフ0.08mmとした。
(5)フィルムの破れ頻度
72時間製膜して、製膜に伴うフィルム破れを観察して、次の基準で判定した。
【0042】
○:フィルム破れが皆無または極まれに生じる場合(1〜2回/72時間)
△:フィルム破れが時々生じる場合(3〜5回)
×:フィルム破れが頻発する場合(5回以上)
(6)フィルムの耐電圧、誘電損失(tanδ)
JIS−C−2151に規定された方法に準じて、室温条件で測定した。耐電圧の測定では、陰極に厚さ100μm、10cm角のアルミ箔電極、陽極に、径25mm、重さ500gの真鍮製の電極を用い、この間にフィルムを挟み、春日製高電圧直流電源を用いて100V/秒の速度で昇圧し、10mA以上流れたときに絶縁破壊したと見なした。この測定を30回測定した値の平均値をフィルムの耐電圧とした。
(7)コンデンサーの耐電圧、誘電損失(tanδ)
JIS C−5102に記載の方法により測定した。測定は室温条件で行い、耐電圧は、直流電圧を用いて測定した。
実施例1
公知の方法で重合したPPS(重量平均分子量が約60000、溶融粘度400Pa・秒)100重量部とポリエーテルイミド(General Electric社製”ウルテム”1010)を100重量部を、180℃で3時間真空乾燥した後、310℃に加熱された同方向回転タイプのペレタイザー(ダルメージ型スクリュー、スクリューの長さLと直径Dの比率L/D=35)に供給して、滞留時間3分にて溶融押出し、ブレンドチップを作成した。
【0043】
次いで、上記ペレタイズ操作により得られたブレンドチップ20重量部とPPSチップ(重量平均分子量60000、溶融粘度400Pa・秒、平均一次粒径1.0μmの炭酸カルシウム粒子を0.15重量%、平均2次粒径が0.5μmの凝集シリカ粒子を0.1重量%含有)80重量部を、180℃で3時間真空乾燥した後、タンデム押出機(L/D=40)に投入し、305℃にて溶融押出し、繊維焼結ステンレス金属フィルター(10μmカット)内を剪断速度10秒−1で通過させた後、Tダイよりシート状に吐出し、該シートを表面温度25℃の冷却ドラム上に、ドラフト比10で密着固化させ冷却し、未延伸フィルムを得た。
【0044】
続いて、この未延伸ポリエステルフィルムを、加熱された複数のロール群からなる縦延伸機を用い、ロールの周速差を利用して、110℃の温度でフィルムの縦方向に3.6倍の倍率で延伸した。その後、このフィルムの両端部をクリップで把持して、テンターに導き、延伸温度115℃、延伸倍率3.5倍でフィルムの幅方向に延伸を行ない、引き続いて270℃の温度で2秒間熱処理を行なった後、200℃にコントロールされた冷却ゾーンで横方向に3%の弛緩処理を行なって室温まで冷却した後、フィルムエッジを除去し、厚さ1.2μmの二軸配向フィルム(Ra=40nm)を10000m巻き取った。
【0045】
ここで得られたフィルムは、PPS単独からなる比較例1のフィルムよりもガラス転移温度が高く、耐電圧の高いフィルムであり、コンデンサー用フィルムとして優れていた。本フィルム中のPPSとポリエーテルイミドは良好な相溶状態にあり、ポリエーテルイミドの分散相は認められなかった。
比較例1
PPSチップ(平均一次粒径1.0μmの炭酸カルシウム粒子を0.12重量%、平均2次粒径が0.5μmの凝集シリカ粒子を0.08重量%含有)を、180℃で3時間真空乾燥した後、タンデム押出機(L/D=40)に投入し、305℃にて溶融押出し、繊維焼結ステンレス金属フィルター(10μmカット)内を剪断速度10秒-1で通過させた後、Tダイよりシート状に吐出し、該シートを表面温度25℃の冷却ドラム上に、ドラフト比10で密着固化させ冷却し、未延伸フィルムを得た。
【0046】
続いて、この未延伸ポリエステルフィルムを、加熱された複数のロール群からなる縦延伸機を用い、ロールの周速差を利用して、100℃の温度でフィルムの縦方向に3.6倍の倍率で延伸した。その後、このフィルムの両端部をクリップで把持して、テンターに導き、延伸温度110℃、延伸倍率3.5倍でフィルムの幅方向に延伸を行ない、引き続いて270℃の温度で2秒間熱処理を行なった後、200℃にコントロールされた冷却ゾーンで横方向に3%の弛緩処理を行なって室温まで冷却した後、フィルムエッジを除去し、厚さ1.2μmの二軸配向フィルム(Ra=40nm)を10000m巻き取った。
【0047】
得られたフィルムの特性を表1に示す。
実施例2〜5、比較例2
ポリエーテルイミドの添加量と延伸条件および粒子の含有量を変更する以外は実施例1同様に製膜し、厚さ1.2μmの二軸配向フィルムを得た。
【0048】
得られたフィルムの特性を表1に示す。
【0049】
実施例2では、ブレンドチップと共に投入する際のPPS原料として、平均一次粒径1.0μmの炭酸カルシウム粒子を0.22重量%、平均2次粒径が0.5μmの凝集シリカ粒子を0.15重量%含有させたPPSを使用し、120℃の温度でフィルムの縦方向に3.6倍の倍率で延伸し、その後、延伸温度125℃、延伸倍率3.5倍でフィルムの幅方向に延伸を行なった。
【0050】
実施例3では、ブレンドチップと共に投入する際のPPS原料として、平均一次粒径1.0μmの炭酸カルシウム粒子を0.30重量%、平均2次粒径が0.5μmの凝集シリカ粒子を0.20重量%含有させたPPSを使用し、128℃の温度でフィルムの縦方向に3.6倍の倍率で延伸し、その後、延伸温度133℃、延伸倍率3.5倍でフィルムの幅方向に延伸を行なった。
【0051】
実施例4では、ブレンドチップと共に投入する際のPPS原料として、平均一次粒径1.0μmの炭酸カルシウム粒子を0.40重量%、平均2次粒径が0.5μmの凝集シリカ粒子を0.3重量%含有させたPPSを使用した。
【0052】
実施例5では、ブレンドチップと共に投入する際のPPS原料として、平均2次粒径が0.5μmの凝集シリカ粒子を0.1重量%含有させたPPSを使用した。
【0053】
比較例2では、ブレンドチップと共に投入する際のPPS原料として、平均一次粒径1.0μmの炭酸カルシウム粒子を0.6重量%、平均2次粒径が0.5μmの凝集シリカ粒子を0.40重量%含有させたPPSを使用し、148℃の温度でフィルムの縦方向に3.2倍の倍率で延伸し、その後、延伸温度145℃、延伸倍率3.4倍でフィルムの幅方向に延伸を行なった。
【0054】
実施例2,3で得られたフィルムは本発明で開示する好ましいガラス転移温度を有しており、コンデンサー用フィルムとして優れた特性を有していたが、比較例2では製膜破れが多発し、得られたフィルムのコンデンサー特性も実施例1のフィルムよりもかなり劣っていた。また、表面粗さのみを変更した実施例4および5では、表面粗さが本発明の特に好ましい範囲から外れているため、耐電圧が実施例1のフィルムよりも低下した。
比較例3
ブレンドチップを作成せずに、製膜する以外は実施例1と同様に製膜して、ポリエーテルイミドを10重量%含有する二軸配向フィルムを製膜した。ここで得たフィルムのガラス転移温度はPPS単独のフィルムとほぼ同等で、耐電圧も低かった。また、本フィルム中のポリエーテルイミドは平均分散径が3.4μmで分散不良の状態にあり、製膜中にフィルム破れが多発した。
比較例4
PPSとポリエーテルイミドの重量分率(PPS/ポリエーテルイミド)を80/20とし、滞留時間を1分に設定して、ブレンドチップを作成する以外は、実施例1と同様に二軸配向フィルムを製膜した。
【0055】
ここで得られたブレンドチップには分散不良物が多数存在し(ポリエーテルイミドの平均分散径は2μm)、得られた二軸配向フィルムのガラス転移温度、耐電圧共にPPS単独からなるフィルムと大差なかった。また、比較例3同様、製膜中にフィルム破れも多発した。
【0056】
【表1】
Figure 0004639422
【0057】
実施例6、比較例5
ここでは、実施例1、比較例1の二軸配向フィルムを使用してチップ状のフィルムコンデンサーを作成した例を示す。また、実施例4では、実施例1のフィルムを、比較例5では比較例1の二軸配向フィルムを使用してコンデンサーを作成した。
【0058】
実施例1または比較例1で得た長尺のフィルムを蒸着漕の中に設置し、アルミニウムを蒸発させてフィルム表面に内部電極を0.01μmの厚みで形成させた。次いで、この金属化フィルムを巻き出して、レーザーにより、内部電極の一部を除去しながら、フィルムを広幅状態で巻き取り、積層板状集合体を作成した。このとき、内部電極を除去する幅は0.5mmとなるようにレーザー光を調節し、積層時に電極マージンを一層毎に切り替えた。次いで、ここで得た積層板状集合体をスリットし、棒状集合体のコンデンサー条に分割し、その後、コンデンサー条に分割したスリット面の両サイドに金属溶射を施して外部電極を形成させた。この外部電極に溶融ハンダメッキを施した後、ハンダメッキを施したコンデンサー条を個別素子に切断分割して、容量が0.045μFの積層型のチップ状フィルムコンデンサーを得た。
【0059】
得られたコンデンサーの特性を表2に示す。本発明のチップ状フィルムコンデンサーは、比較例1のPPS単独からなるコンデンサーよりも、耐電圧が優れており、小型・軽量のチップ状フィルムコンデンサーとして優れた特性を有していた。
【0060】
【表2】
Figure 0004639422
【0061】
【発明の効果】
本発明によれば、耐電圧が高く、製膜性も良好であるコンデンサーおよび電気絶縁用途に適した二軸配向フィルムが得られる。本発明の二軸配向フィルムは、耐熱性と誘電特性に優れるばかりでなく、コンデンサーの小型・高容量化に適しているので、特にチップコンデンサー用途において広く活用可能であり、その工業的価値は極めて高い。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biaxially oriented film, a metallized film, and a film capacitor that have excellent withstand voltage and electrical characteristics and are suitable for downsizing and increasing the capacity of a capacitor.
[0002]
[Prior art]
A film capacitor is generally a method of winding a film such as a biaxially oriented polyethylene terephthalate film or a biaxially oriented polypropylene film and a metal foil film such as an aluminum foil, or a surface of the film such as aluminum or zinc. It is manufactured by a method of winding or laminating after forming a deposited film.
[0003]
Recently, along with demands for miniaturization of electrical or electronic circuits, miniaturization and surface mounting of capacitors have been promoted, and heat resistance and thinning have been promoted. The required withstand voltage is high, and a film excellent in heat resistance and workability has not been obtained. For this reason, the present state of the art is that a small-sized and high-capacity film capacitor that can be satisfied from the viewpoint of practicality is not necessarily obtained.
[0004]
Since the polyphenylene sulfide (PPS) film related to the present invention is excellent in heat resistance and dielectric properties, it has been used for high-performance circuits having a high guaranteed operating temperature that cannot be handled by a polyester film or polypropylene film. Demand is increasing for switchboards and power supply circuits for LCD backlights.
[0005]
However, PPS films have problems such as low withstand voltage, lack of self-healing characteristics at the time of dielectric breakdown, and high cost. Therefore, the use as a film for capacitors is limited, and the original dielectric characteristics and At present, there is no large market for heat resistance.
[0006]
[Problems to be solved by the invention]
The present invention is intended to overcome such problems and provide a biaxially oriented film, a metallized film, and a film capacitor that are excellent in withstand voltage and dielectric properties, and suitable for manufacturing a small-sized and high-capacity high-performance capacitor. It is.
[0007]
[Means for Solving the Problems]
  The present invention employs the following means in order to solve such problems. That is, the biaxially oriented film of the present invention is a simpleRankp-phenylene sulfide unitConsist only ofPoly-p-phenylene sulfide is composed of a resin composition containing polyphenylene sulfide as a main component, and contains 3% by weight to 35% by weight of polyetherimide in the film. The glass transition temperature is 100 ° C. or higher and 125 ° C. or lower. In addition, the metallized film of the present invention is characterized in that a metal layer is formed on at least one surface of the biaxially oriented film. Furthermore, the film capacitor of the present invention is characterized by using such a metallized film.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention has been intensively studied on the above-mentioned problems, that is, a biaxially oriented film suitable for producing a small-sized and high-capacity high-performance capacitor having excellent withstand voltage and dielectric characteristics, and further, a metallized film and a film capacitor. The heat-resistant polymers such as polyphenylene sulfide and polyetherimide, polyimide, and polysulfone have been devised for kneading conditions, and have been found that they can be compatibilized and have a glass transition temperature higher than that of PPS alone. The present inventors have found that an axially oriented film is excellent as a film for a small-sized and high-capacitance capacitor having excellent withstand voltage and electrical characteristics, and completed the present invention.
[0009]
  The polyphenylene sulfide referred to in the present invention is poly-p-phenylene sulfide, and a composition containing 70% by weight or more of poly-p-phenylene sulfide is within the scope of the present invention. If the poly-p-phenylene sulfide is less than 70% by weight, the heat resistance, dielectric properties, etc., which are characteristic of the film made of the composition, are impaired. If it is less than 30% by weight, other resin compositions, various additives and the like can be contained. Here, poly-p-phenylene sulfide (hereinafter abbreviated as PPS) is a simple unit.Rankp-phenylene sulfide unitonlyA polymer consisting of.
[0010]
The melt viscosity of the PPS of the present invention is preferably in the range of 50 to 10,000 Pa · sec at a shear rate of 305 ° C. and 200 seconds−1, since the heat resistance, dimensional stability, mechanical properties and thickness unevenness of the film are improved. The melt viscosity is more preferably 100 to 2000 Pa · sec, and further preferably 200 to 1500 Pa · sec. When the melt viscosity of polyphenylene sulfide is large, shear heat generation in the melt extrusion process increases, and therefore, deterioration of the polymer and cross-linking reaction are promoted, resulting in deterioration of film forming properties and quality.
[0011]
Such PPS is, for example, (1) a reaction of a halogen-substituted aromatic compound and an alkali sulfide (see US Pat. No. 2,513,188, Japanese Patent Publication Nos. 44-27671 and 45-3368), (2) Thiophenols (3) Condensation reaction in the presence of Lewis acid catalyst with sulfur chloride in the presence of an aromatic compound (see US Pat. No. 3,274,165 and British Patent 1160660). (See Japanese Patent Publication No. 46-27255, Belgian Patent No. 29437) etc., and can be arbitrarily selected and used according to the purpose.
[0012]
As the heat resistant polymer to be compatibilized with PPS, polyetherimide, polyether sulfone, polysulfone and the like can be used as described above, and among them, polyetherimide is preferable. The polyetherimide referred to in the present invention is a polymer containing an aliphatic, alicyclic or aromatic ether unit and a cyclic imide group as a repeating unit, and is not particularly limited as long as it is a polymer having melt moldability. . For example, polyetherimides described in U.S. Pat. Nos. 4,141,927, 2,262,678, 2,606,912, 2,606,914, 2,596,565, 2,596,656, and 2,598,478 are disclosed. No. 2598536, Japanese Patent No. 2599171, Japanese Patent Application Laid-Open No. 9-48852, Japanese Patent No. 2565556, Japanese Patent No. 2564636, Japanese Patent No. 2564537, Japanese Patent No. 2563548, Japanese Patent No. 2563547, Japanese Patent No. 2558341, Japanese Patent No. 2558339 No. 2 and Japanese Patent No. 2833580, and the polymers described therein can be used. Moreover, as long as the effect of the present invention is not impaired, the main chain of the polyetherimide has a cyclic imide, a structural unit other than the ether unit, such as an aromatic, aliphatic, alicyclic ester unit, oxycarbonyl unit, etc. It may be contained.
[0013]
As a specific polyetherimide, a polymer represented by the following general formula is preferably used.
[0014]
[Chemical 1]
Figure 0004639422
[0015]
(Wherein R1 is a divalent aromatic or aliphatic residue having 6 to 30 carbon atoms; R2 is a divalent aromatic residue having 6 to 30 carbon atoms; Selected from the group consisting of alkylene groups having 20 carbon atoms, cycloalkylene groups having 2 to 20 carbon atoms, and polydiorganosiloxane groups chain-terminated with alkylene groups having 2 to 8 carbon atoms. A divalent organic group.)
As said R1, R2, what has an aromatic residue shown by the following formula group is used preferably, for example.
[0016]
[Chemical formula 2]
Figure 0004639422
[0017]
In the present invention, 2,2-bis [4- (2,3-dicarboxyphenoxy) having a structural unit represented by the following formula from the viewpoints of compatibility with polyester (A), cost, melt moldability and the like. A condensate of phenyl] propane dianhydride and m-phenylenediamine or p-phenylenediamine is preferably used. This polyetherimide is available from GE Plastics under the trade name “Ultem” (registered trademark).
[0018]
[Chemical 3]
Figure 0004639422
[0019]
Or
[0020]
[Formula 4]
Figure 0004639422
[0021]
In the present invention, a polyetherimide having a glass transition temperature of preferably 350 ° C. or lower, more preferably 250 ° C. or lower is preferable, and 2,2-bis [4- (2,3-dicarboxyphenoxy) phenyl] propane dianhydride is preferable. A condensate of m-phenylenediamine or p-phenylenediamine is most preferred from the viewpoints of compatibility with polyester, cost, melt moldability and the like. This polyetherimide is a product of General Electric and known under the trade name “Ultem 1000 or 5000 series”.
[0022]
In the present invention, the glass transition temperature of the film is 95 ° C. or higher and 130 ° C. or lower from the viewpoint of improving the withstand voltage and film forming properties. If the glass transition temperature is less than 95 ° C, the effect of improving the withstand voltage of the target film in the present invention is not substantially observed. On the other hand, if the glass transition temperature exceeds 130 ° C., the film is poorly melt-extruded and biaxially stretched, and film tearing frequently occurs during film formation. A more preferable glass transition temperature is 100 ° C. or higher and 125 ° C. or lower, and more preferably 102 ° C. or higher and 120 ° C. or lower, from the viewpoints of electrical characteristics, film forming properties, and cost.
[0023]
The biaxially oriented film of the present invention preferably has a single glass transition temperature (Tg). This is because, when having a single Tg, PPS and the heat-resistant polymer are sufficiently compatible with each other, and the object of the present invention is easily achieved. Whether or not the film has a single Tg can be appropriately determined using various analyzes such as differential scanning calorimetry and dynamic viscoelasticity measurement. When it is difficult to determine only by the method based on solid physical properties, a morphological method such as microscopic observation may be used in combination. In the present invention, when the film has two or more glass transition temperatures, the glass transition temperature is defined by the glass transition point on the low temperature side.
[0024]
Of the polyetherimide preferably used in the present inventionOccupy filmThe content is 3% by weight or more and 35% by weight or less from the viewpoint of electrical characteristics such as dielectric loss, withstand voltage, and solder resistance. The weight fraction of the polyetherimide is more preferably 5% by weight or more and 30% by weight or less, and further preferably 10% by weight or more and 25% by weight or less. Of course, in the present invention, it is preferable that the polyetherimide is substantially in a completely compatible state with the polyester, but the polyetherimide in the polyphenylene sulfide is within the range of the glass transition temperature disclosed in the present invention. May be in a partially compatible state. In this case, the average dispersion diameter of the polyetherimide is preferably less than 1 μm from the viewpoint of film forming properties and electrical characteristics. The average dispersion diameter of the polyetherimide more preferably in the partially compatible state is less than 0.5 μm, more preferably less than 0.1 μm.
[0025]
The weight fraction of the PPS and heat-resistant polymer constituting the film can be appropriately determined by a known method in the field. In the present invention, a method in which an NMR spectrum is collected in a molten state using a high temperature probe, and a weight fraction is determined from an integrated value of peaks caused by PPS and a heat-resistant polymer is preferable. When the infrared absorption spectrum of the film was measured and it was found that the polymer species constituting the film were PPS and polyetherimide, the amounts of sulfur and nitrogen were determined by elemental analysis. And a method for calculating the amount of polyetherimide can also be preferably used.
[0026]
In order to impart slipperiness to the film or improve processability, for example, inorganic particles such as titanium oxide, calcium carbonate, silica, alumina and zirconia, silicon particles, organic particles such as crosslinked acrylic particles and crosslinked polystyrene particles, etc. It is also preferable to add inert particles to the film, or use calcium acetate or lithium acetate at the time of polymer polymerization to precipitate the particles during the polymerization of the polymer. In this case, the average particle diameter and the amount added are selected from the viewpoint of the surface roughness of the film, which will be described later, but the average particle diameter is preferably in the range of 0.01 to 3 μm, and is preferably from 0.1 to 3 μm. A range of 05 to 2% by weight is preferred. In addition, the coarse particles cause insulation defects and the like, and in order to reduce the withstand voltage, it is preferable not to contain coarse particles having an average particle size exceeding 3 μm in the film. For this reason, inert particles such as inorganic particles and organic particles are made into a slurry in a solvent at the time of PPS polymerization and dispersed with a medium stirring type dispersion device such as a sand grinder or an ultrasonic dispersion device, and then classified with a wet classification device or a filter. It is preferable to filter out and remove coarse particles.
[0027]
In the film of the present invention, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, a UV stabilizer, a lubricant, an antistatic agent, a whitening agent, as long as the effects of the present invention are not impaired. Coloring agents, conductive agents, rust preventives, etc. may be added.
[0028]
The average surface roughness Ra of the film used in the present invention is preferably 5 nm or more and 120 nm or less. The surface roughness Ra is more preferably 10 nm or more and 90 nm or less, and further preferably 20 nm or more and 80 nm or less. When Ra exceeds 120 nm, the dielectric properties become unstable due to air intervention, the withstand voltage decreases, electric field concentration occurs during use, and the film and metal thin film layer may be melted or burnt out. When used as a film, it is difficult to improve the performance of the capacitor. On the other hand, when the thickness is less than 5 nm, workability and capacitor processing when used as a capacitor dielectric are difficult. In the present invention, a known corona discharge treatment may be applied to the film, or a structure in which other types of polymers are laminated for the purpose of imparting adhesiveness, heat sealability, moisture resistance, lubricity, surface smoothness, You may use by the structure coat | covered with the organic or / and inorganic composition.
[0029]
The thickness of the film of the present invention is not particularly limited and can be appropriately determined according to the use of the capacitor. From the viewpoint of miniaturization and large capacity, it is preferably 0.5 μm or more and 10 μm or less. The thickness of the film is more preferably 0.7 μm or more and 4 μm or less, and further preferably 1 μm or more and 2 μm or less. A film having a thickness of less than 0.5 μm has poor workability and is effective for increasing the capacity of the capacitor, but is not an essential requirement for practical use.
[0030]
The biaxially oriented film of the present invention is obtained by a known stretching method, and in the production thereof, any of a sequential biaxial stretching method and a simultaneous biaxial stretching method is preferably used.
[0031]
Next, although the method of manufacturing the biaxially oriented film of the present invention will be described, it is not limited to such an example. Here, an example in which Ultem 1010, which is a polyetherimide of General Electric Co., is used as the heat-resistant polymer is shown below.
[0032]
As described above, the method for producing the polyphenylene sulfide polymer itself is well known in this field, and any method can be adopted. In the present invention, however, a method of reacting alkali sulfide and p-dihalobenzene in a polar solvent under high temperature and high pressure. Is preferred. It is particularly preferable to react sodium sulfide and p-dichlorobenzene in an amide polar solvent such as N-methyl-2-pyrrolidone. In this case, in order to adjust the degree of polymerization, it is most preferable to add a so-called polymerization aid such as caustic alkali or alkali metal carboxylate and react at 230 to 280 ° C. The pressure in the polymerization system and the polymerization time can be appropriately determined depending on the type and amount of the auxiliary agent used and the desired degree of polymerization. After completion of the polymerization, the system is gradually cooled to precipitate the polymer, and then the slurry formed in water is filtered, washed with water and dried to obtain PPS powder.
[0033]
A biaxially oriented film is produced using the PPS and polyetherimide obtained here. In the present invention, PPS is introduced into a twin-screw kneading extruder together with polyetherimide, and a blend raw material having a weight fraction of PPS and polyetherimide (PPS / polyetherimide) of 30/70 to 65/35 is prepared in advance. Then, the blend raw material is put into an extruder together with PPS and, if necessary, these recovered raw materials to reduce the weight fraction of the polyetherimide to form a biaxially oriented film having the desired composition. Is preferable for achieving the object of the present invention. In this way, if a blend raw material with a high concentration of heat resistant polymer is prepared in advance and then diluted with PPS and used, dispersion or distribution mixing proceeds effectively so that PPS and the heat resistant polymer become compatible. As a result, it is effective because it is easy to lead the two polymers into a completely compatible state by drastically reducing the poor dispersion remaining in the film. The weight fraction of PPS and heat-resistant polymer (PPS / heat-resistant polymer) at the time of preparing the blend chip is more preferably 40/60 to 60/40, although it depends on the viscosity of the polymer used and the melt extrusion conditions.
[0034]
PPS pellets and Ultem 1010 pellets are mixed at a constant ratio, supplied to a vented twin-screw kneading extruder heated to 290 to 320 ° C., and melt-kneaded to obtain blended chips. The shear rate at this time is 50 to 300 sec.-1Is preferable, more preferably 100 to 200 sec.-1The residence time is preferably 1.5 to 20 minutes, more preferably 2 to 7 minutes.
[0035]
After that, the blend chip made of PPS and Ultem 1010 obtained by the above pelletizing operation, the raw material chip of PPS, and the recovered raw material after film formation are adjusted so that the weight fraction of PPS and Ultem 1010 is 90/10. A suitable amount is mixed and vacuum-dried at 180 ° C. for 3 hours or more. Then, these are put into an extruder, melt extruded at 290 to 330 ° C., passed through a fiber sintered stainless steel metal filter, and discharged in a sheet form from a T die at a draft ratio of 2 to 30, The sheet is brought into close contact with a cooling drum having a surface temperature of 10 to 70 ° C. to be cooled and solidified to obtain a substantially non-oriented unstretched film.
[0036]
Next, the sheet-like cast film obtained here is heated with a heating roll group at 100 to 170 ° C., and stretched in a single stage or two or more stages in a vertical direction 2 to 7 times. Subsequently, the film is guided to a known tenter and heated in a hot air atmosphere heated to 100 to 170 ° C. while holding both ends of the film with clips, and stretched 2 to 6 times in the transverse direction. Subsequently, the film is heat-set at a temperature of 180 ° C. or higher and a melting point or lower. The heat setting may be performed under tension, and in order to further improve the thermal dimensional stability, relaxation in the width direction is also preferably performed. Further, if necessary, re-longitudinal stretching and / or re-lateral stretching can be performed before heat setting. Moreover, after performing heat setting, it is also preferable to heat-set again at 50 to 140 ° C. for 10 seconds to 10 days.
[0037]
The metallized film of the present invention is a biaxially oriented film in which a metal layer is formed on at least one surface, and a metal thin film formed by a method such as vacuum deposition or sputtering can be used. . Such metals include, but are not limited to, aluminum, zinc, tin, titanium, nickel, or alloys thereof.
[0038]
The film capacitor of the present invention can be produced by a known method such as a winding method or a lamination method. As the conductor of such a capacitor, the above metallized film can be used.
[0039]
Further, the shape of the capacitor of the present invention is not limited, but it is either a type having a normal lead wire or a type having no lead wire and directly soldered to the substrate surface, that is, a chip-type capacitor that can be surface mounted. May be. Further, the capacitor of the present invention can be developed for both AC and DC applications.
[0040]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples unless the gist of the present invention is exceeded. In addition, the measurement of the physical-property value as described in this invention is based on the following method.
(1) Melt viscosity
Using a Koka flow tester, the value at 305 ° C. and a shear rate of 200 seconds −1 is measured. The unit is represented by [Pa · second].
(2) Glass transition temperature
Based on the provisions of JIS K-7121, the measurement was performed with the following apparatus and conditions.
[0041]
Measuring device: “Robot DSC-RDC220” differential calorimeter manufactured by Seiko Electronics Co., Ltd.
Sample weight: 5mg
Temperature increase rate: 20 ° C / min
(3) Average dispersion diameter of heat-resistant polymer
The film is cut in the vertical direction, the horizontal direction and the thickness direction, and the cut surface is observed with a transmission electron microscope. The equivalent circle diameter of 100 domains appearing on these cut surfaces was determined, and the average value was taken as the average dispersion diameter.
(4) Surface roughness (Ra)
Measurement was performed using a high-precision thin film level difference meter ET-10 manufactured by Kosaka Laboratory Ltd., and the centerline average surface roughness (Ra) was determined according to JIS-B-0601. The radius of the stylus tip was 0.5 μm, the needle pressure was 5 mg, the measurement length was 1 mm, and the cutoff was 0.08 mm.
(5) Film tear frequency
The film was formed for 72 hours, and the film breakage accompanying the film formation was observed and judged according to the following criteria.
[0042]
○: No film breakage or rare occurrence (1 to 2 times / 72 hours)
Δ: When film tear occurs occasionally (3-5 times)
×: When film tears occur frequently (5 times or more)
(6) Withstand voltage of film, dielectric loss (tan δ)
According to the method prescribed | regulated to JIS-C-2151, it measured on room temperature conditions. In the measurement of withstand voltage, an aluminum foil electrode having a thickness of 100 μm and a 10 cm square is used for the cathode, a brass electrode having a diameter of 25 mm and a weight of 500 g is used for the anode, a film is sandwiched between them, and a high voltage DC power source made by Kasuga is used. The pressure was increased at a rate of 100 V / sec, and the dielectric breakdown was considered when 10 mA or more flowed. The average value of the values measured 30 times was taken as the withstand voltage of the film.
(7) Capacitor withstand voltage, dielectric loss (tan δ)
It was measured by the method described in JIS C-5102. The measurement was performed at room temperature, and the withstand voltage was measured using a DC voltage.
Example 1
100 parts by weight of PPS (weight average molecular weight of about 60,000, melt viscosity of 400 Pa · second) polymerized by a known method and 100 parts by weight of polyetherimide (“Ultem” manufactured by General Electric Co., Ltd.) at 180 ° C. for 3 hours. After drying, it is fed to a co-rotating pelletizer heated to 310 ° C. (Dalmage type screw, screw length L to diameter D ratio L / D = 35) and melt extruded in a residence time of 3 minutes. , Created a blend chip.
[0043]
Next, 20 parts by weight of blend chip obtained by the above pelletizing operation and PPS chip (0.15% by weight of calcium carbonate particles having a weight average molecular weight of 60000, a melt viscosity of 400 Pa · sec, and an average primary particle size of 1.0 μm, an average of secondary 80 parts by weight (containing 0.1% by weight of agglomerated silica particles having a particle size of 0.5 μm) were vacuum-dried at 180 ° C. for 3 hours, and then charged into a tandem extruder (L / D = 40). Extruded, and passed through a fiber sintered stainless metal filter (10 μm cut) at a shear rate of 10 seconds −1 and then discharged into a sheet form from a T die. The sheet was placed on a cooling drum having a surface temperature of 25 ° C. The film was solidified with a draft ratio of 10 and cooled to obtain an unstretched film.
[0044]
Subsequently, this unstretched polyester film was 3.6 times in the longitudinal direction of the film at a temperature of 110 ° C. using a peripheral speed difference of the roll using a longitudinal stretching machine composed of a plurality of heated roll groups. Stretched at a magnification. Thereafter, both ends of the film are gripped with clips and guided to a tenter, stretched in the width direction of the film at a stretching temperature of 115 ° C. and a stretching ratio of 3.5 times, and subsequently heat treated at a temperature of 270 ° C. for 2 seconds. Then, the film was cooled to room temperature by performing a 3% relaxation treatment in a cooling zone controlled at 200 ° C., and then the film edge was removed to obtain a biaxially oriented film having a thickness of 1.2 μm (Ra = 40 nm). ) Was wound up 10,000 m.
[0045]
The film obtained here had a higher glass transition temperature and a higher withstand voltage than the film of Comparative Example 1 made of PPS alone, and was excellent as a capacitor film. PPS and polyetherimide in this film were in a good compatible state, and no dispersed phase of polyetherimide was observed.
Comparative Example 1
PPS chip (containing 0.12% by weight of calcium carbonate particles having an average primary particle size of 1.0 μm and 0.08% by weight of aggregated silica particles having an average secondary particle size of 0.5 μm) is vacuumed at 180 ° C. for 3 hours. After drying, it is put into a tandem extruder (L / D = 40), melt-extruded at 305 ° C., and the inside of a fiber sintered stainless steel metal filter (10 μm cut) has a shear rate of 10 seconds.-1Then, the sheet was discharged in a sheet form from a T-die, and the sheet was tightly solidified on a cooling drum having a surface temperature of 25 ° C. with a draft ratio of 10 and cooled to obtain an unstretched film.
[0046]
Subsequently, this unstretched polyester film was 3.6 times in the longitudinal direction of the film at a temperature of 100 ° C. using a difference in peripheral speed of the roll by using a longitudinal stretching machine composed of a plurality of heated roll groups. Stretched at a magnification. Thereafter, the both ends of this film are gripped with clips and guided to a tenter, stretched in the width direction of the film at a stretching temperature of 110 ° C. and a stretching ratio of 3.5 times, and subsequently heat treated at a temperature of 270 ° C. for 2 seconds. Then, the film was cooled to room temperature by performing a 3% relaxation treatment in a cooling zone controlled at 200 ° C., and then the film edge was removed to obtain a biaxially oriented film having a thickness of 1.2 μm (Ra = 40 nm). ) Was wound up 10,000 m.
[0047]
The properties of the obtained film are shown in Table 1.
Examples 2-5, Comparative Example 2
A biaxially oriented film having a thickness of 1.2 μm was obtained in the same manner as in Example 1 except that the addition amount of polyetherimide, the stretching conditions, and the content of particles were changed.
[0048]
The properties of the obtained film are shown in Table 1.
[0049]
In Example 2, 0.22% by weight of calcium carbonate particles having an average primary particle size of 1.0 μm and 0.02 μg of aggregated silica particles having an average secondary particle size of 0.5 μm were used as PPS raw materials when charged together with the blend chip. Using PPS containing 15 wt%, the film was stretched at a magnification of 3.6 times in the longitudinal direction of the film at a temperature of 120 ° C., and then stretched in the width direction of the film at a stretching temperature of 125 ° C. and a stretching ratio of 3.5 times. Drawing was performed.
[0050]
In Example 3, 0.30% by weight of calcium carbonate particles having an average primary particle size of 1.0 μm and 0.02% of aggregated silica particles having an average secondary particle size of 0.5 μm were used as PPS raw materials when being charged together with the blend chip. Using 20 wt% PPS, the film was stretched at a magnification of 3.6 times in the longitudinal direction of the film at a temperature of 128 ° C. and then stretched in the width direction of the film at a stretching temperature of 133 ° C. and a stretching ratio of 3.5 times. Drawing was performed.
[0051]
In Example 4, 0.40% by weight of calcium carbonate particles having an average primary particle size of 1.0 μm and 0.02% of aggregated silica particles having an average secondary particle size of 0.5 μm were used as PPS raw materials when charged together with the blend chip. PPS containing 3% by weight was used.
[0052]
In Example 5, PPS containing 0.1% by weight of agglomerated silica particles having an average secondary particle size of 0.5 μm was used as a PPS raw material when charged together with the blend chip.
[0053]
In Comparative Example 2, 0.6% by weight of calcium carbonate particles having an average primary particle size of 1.0 μm and 0.02% of aggregated silica particles having an average secondary particle size of 0.5 μm were used as PPS raw materials when charged together with the blend chip. Using PPS containing 40% by weight, the film was stretched at a magnification of 3.2 times in the longitudinal direction of the film at a temperature of 148 ° C., and then stretched in the width direction of the film at a stretching temperature of 145 ° C. and a stretching ratio of 3.4 times. Drawing was performed.
[0054]
The films obtained in Examples 2 and 3 had the preferable glass transition temperature disclosed in the present invention and had excellent characteristics as a film for capacitors. In Comparative Example 2, however, film formation was frequently broken. The capacitor characteristics of the obtained film were also considerably inferior to those of the film of Example 1. In Examples 4 and 5 in which only the surface roughness was changed, the withstand voltage was lower than that of the film of Example 1 because the surface roughness was outside the particularly preferred range of the present invention.
Comparative Example 3
A biaxially oriented film containing 10% by weight of polyetherimide was formed in the same manner as in Example 1 except that the blend chip was not formed and the film was formed. The glass transition temperature of the film obtained here was almost the same as that of the PPS alone film, and the withstand voltage was also low. Moreover, the polyetherimide in this film was in a poorly dispersed state with an average dispersion diameter of 3.4 μm, and film tearing occurred frequently during film formation.
Comparative Example 4
Biaxially oriented film as in Example 1, except that the weight fraction of PPS and polyetherimide (PPS / polyetherimide) is 80/20, the residence time is set to 1 minute, and a blend chip is prepared. Was formed.
[0055]
The blend chip obtained here has a large number of poorly dispersed products (average dispersion diameter of polyetherimide is 2 μm), and the resulting biaxially oriented film has a glass transition temperature and withstand voltage that are very different from those of a film made of PPS alone. There wasn't. Further, as in Comparative Example 3, film tearing frequently occurred during film formation.
[0056]
[Table 1]
Figure 0004639422
[0057]
Example 6 and Comparative Example 5
Here, the example which created the chip-shaped film capacitor using the biaxially oriented film of Example 1 and the comparative example 1 is shown. In Example 4, a capacitor was prepared using the film of Example 1 and Comparative Example 5 using the biaxially oriented film of Comparative Example 1.
[0058]
The long film obtained in Example 1 or Comparative Example 1 was placed in a vapor deposition vessel, and aluminum was evaporated to form an internal electrode with a thickness of 0.01 μm on the film surface. Next, the metallized film was unwound, and the film was wound up in a wide state while removing a part of the internal electrode with a laser, to prepare a laminated plate-like assembly. At this time, the laser beam was adjusted so that the width for removing the internal electrode was 0.5 mm, and the electrode margin was switched layer by layer during lamination. Next, the laminated plate-like assembly obtained here was slit and divided into capacitor strips of rod-shaped assemblies, and then metal spraying was performed on both sides of the slit surface divided into capacitor strips to form external electrodes. After this external electrode was subjected to molten solder plating, the capacitor strip subjected to solder plating was cut and divided into individual elements to obtain a laminated chip film capacitor having a capacity of 0.045 μF.
[0059]
The characteristics of the obtained capacitor are shown in Table 2. The chip-shaped film capacitor of the present invention had a higher withstand voltage than the capacitor made of PPS alone in Comparative Example 1, and had excellent characteristics as a small and lightweight chip-shaped film capacitor.
[0060]
[Table 2]
Figure 0004639422
[0061]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the biaxially oriented film suitable for the capacitor | condenser with high withstand voltage and favorable film forming property and an electrical insulation use is obtained. The biaxially oriented film of the present invention is not only excellent in heat resistance and dielectric properties, but also suitable for downsizing and increasing the capacity of capacitors, so it can be widely used especially in chip capacitor applications, and its industrial value is extremely high. high.

Claims (4)

繰り返し単位がp−フェニレンスルフィド単位のみからなるポリ−p−フェニレンスルフィドを主成分とする樹脂組成物からなり、フィルムに占めるポリエーテルイミドを3重量%以上、35重量%以下含有する、ガラス転移温度が100℃以上、125℃以下であることを特徴とする二軸配向フィルム。Consists repeating units of the p- polyphenylene only sulfide units of poly -p- phenylene sulfide resin composition as a main component, a polyetherimide occupied in the film 3 wt% or more, containing 35 wt% or less, the glass transition A biaxially oriented film having a temperature of 100 ° C. or higher and 125 ° C. or lower. 該フィルムの表面粗さが5nm以上、120nm未満であることを特徴とする請求項1記載の二軸配向フィルム。The biaxially oriented film according to claim 1, wherein the film has a surface roughness of 5 nm or more and less than 120 nm. 請求項1または2のいずれかに記載の二軸配向フィルムの少なくとも片面に金属層を形成してなることを特徴とする金属化フィルム。A metallized film comprising a metal layer formed on at least one surface of the biaxially oriented film according to claim 1. 請求項3に記載の金属化フィルムを用いてなることを特徴とするフィルムコンデンサー。A film capacitor comprising the metallized film according to claim 3.
JP2000077718A 2000-03-21 2000-03-21 Biaxially oriented film, metallized film and film capacitor Expired - Fee Related JP4639422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000077718A JP4639422B2 (en) 2000-03-21 2000-03-21 Biaxially oriented film, metallized film and film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000077718A JP4639422B2 (en) 2000-03-21 2000-03-21 Biaxially oriented film, metallized film and film capacitor

Publications (2)

Publication Number Publication Date
JP2001261959A JP2001261959A (en) 2001-09-26
JP4639422B2 true JP4639422B2 (en) 2011-02-23

Family

ID=18595236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000077718A Expired - Fee Related JP4639422B2 (en) 2000-03-21 2000-03-21 Biaxially oriented film, metallized film and film capacitor

Country Status (1)

Country Link
JP (1) JP4639422B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070299219A1 (en) 2004-11-12 2007-12-27 Takuji Higashioji Biaxially Oriented Polyarylene Sulfide Film and Laminated Polyarylene Sulfide Sheets Comprising the Same
US20090142566A1 (en) 2005-10-27 2009-06-04 Tetsuya Machida Polyarylene Sulfide Film
JP4973097B2 (en) * 2005-12-16 2012-07-11 東レ株式会社 Polyphenylene sulfide resin composition and molded article
JP4844559B2 (en) * 2006-03-16 2011-12-28 東レ株式会社 Polyphenylene sulfide resin composition, production method thereof and molded product
JP5239855B2 (en) * 2006-05-10 2013-07-17 東レ株式会社 Biaxially oriented polyarylene sulfide film
KR101331465B1 (en) 2006-05-10 2013-11-20 도레이 카부시키가이샤 Biaxially oriented polyarylene sulfide film
JP5283350B2 (en) * 2007-04-25 2013-09-04 Sabicイノベーティブプラスチックスジャパン合同会社 Polyetherimide film for capacitors
JP5246256B2 (en) 2008-03-19 2013-07-24 ダイキン工業株式会社 COATING COMPOSITION FOR FORMING HIGH DIELECTRIC FILM AND HIGH DIELECTRIC FILM
JP5286400B2 (en) * 2011-12-06 2013-09-11 Sabicイノベーティブプラスチックスジャパン合同会社 Polyetherimide film for capacitors
WO2020138426A1 (en) * 2018-12-27 2020-07-02 王子ホールディングス株式会社 Amorphous thermoplastic resin film, capacitor metalized film, film roll, and capacitor
JP7467902B2 (en) * 2018-12-27 2024-04-16 王子ホールディングス株式会社 Amorphous thermoplastic resin film, metallized film for capacitor, film roll, and capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234663A (en) * 1988-07-22 1990-02-05 Diafoil Co Ltd Polyphenylene sulfide film
JPH02229857A (en) * 1988-11-15 1990-09-12 Kureha Chem Ind Co Ltd Heat-resistant thermoplastic resin composition
JPH0427110A (en) * 1990-05-22 1992-01-30 Toray Ind Inc Heat-resistant capacitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984004753A1 (en) * 1983-05-23 1984-12-06 Gen Electric Polyetherimide-polysulfide blends
JP2888835B2 (en) * 1988-02-22 1999-05-10 旭化成工業株式会社 Polyphenylene sulfide polymer alloy
JP3506065B2 (en) * 1998-09-11 2004-03-15 東レ株式会社 Biaxially oriented polyester film and method for producing the same
JP2001172482A (en) * 1999-10-08 2001-06-26 Toray Ind Inc Polyester film for capacitor, metalized film for capacitor and film capacitor
JP2001237141A (en) * 2000-02-25 2001-08-31 Toray Ind Inc Chip-shaped film capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234663A (en) * 1988-07-22 1990-02-05 Diafoil Co Ltd Polyphenylene sulfide film
JPH02229857A (en) * 1988-11-15 1990-09-12 Kureha Chem Ind Co Ltd Heat-resistant thermoplastic resin composition
JPH0427110A (en) * 1990-05-22 1992-01-30 Toray Ind Inc Heat-resistant capacitor

Also Published As

Publication number Publication date
JP2001261959A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
JP5088322B2 (en) Biaxially oriented polyarylene sulfide film and method for producing the same
JP2009132874A (en) Biaxially oriented polyarylene sulfide film, metallized film, and capacitor
CN1193387C (en) Polyester film for heat-resistant capacitor, metallized film thereof, and heat-resistant film capacitor containing the same
JP4639422B2 (en) Biaxially oriented film, metallized film and film capacitor
JP2008280508A (en) Biaxially oriented polyarylene sulfide film, metallized film and capacitor
JP2018083415A (en) Laminate film, and production method thereof
JP5239855B2 (en) Biaxially oriented polyarylene sulfide film
JP7272263B2 (en) polyarylene sulfide film
JP2008201926A (en) Biaxialy oriented polyarylene sulfide film and method for producing the same
JP2011089111A (en) Biaxially oriented polyarylene sulfide film
JP2008266600A (en) Biaxially oriented film
JP2009292902A (en) Biaxially oriented polyarylene sulfide film and adhesive material using the same
JP2009249492A (en) Polyarylene sulfide resin composition, and polyarylene sulfide film
JP2001172482A (en) Polyester film for capacitor, metalized film for capacitor and film capacitor
JP5423464B2 (en) Biaxially oriented laminated film
JP2009062472A (en) Polyphenylene sulfide film and capacitor made therefrom
JPWO2016190183A1 (en) Laminated film and method for producing the same
JP2008280507A (en) Biaxially oriented polyarylene sulfide film, metallized film and capacitor
JP2014189718A (en) Biaxially stretched polyarylene sulfide film
JP5607378B2 (en) Biaxially stretched film
JP2001237141A (en) Chip-shaped film capacitor
JP2003136658A (en) Biaxially oriented laminated film and condenser using the same
JP2001329076A (en) Polyphenylene sulfide film and capacitor
JP2012097147A (en) Biaxially oriented film
JP4259086B2 (en) Biaxially oriented polyphenylene sulfide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees