JP2002124253A - Nickel-hydrogen storage battery and its manufacturing method - Google Patents

Nickel-hydrogen storage battery and its manufacturing method

Info

Publication number
JP2002124253A
JP2002124253A JP2000319012A JP2000319012A JP2002124253A JP 2002124253 A JP2002124253 A JP 2002124253A JP 2000319012 A JP2000319012 A JP 2000319012A JP 2000319012 A JP2000319012 A JP 2000319012A JP 2002124253 A JP2002124253 A JP 2002124253A
Authority
JP
Japan
Prior art keywords
negative electrode
nickel
storage battery
electrode plate
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000319012A
Other languages
Japanese (ja)
Inventor
Toru Yamamoto
徹 山本
Satoshi Kuranaka
聡 倉中
Hiroshi Sato
廣 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000319012A priority Critical patent/JP2002124253A/en
Publication of JP2002124253A publication Critical patent/JP2002124253A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To further enhance initial service capacity, a high-rate discharging characteristic, and cycle life, in the case of a nickel-hydrogen storage battery. SOLUTION: A negative electrode is formed of a negative electrode core made of a ferromagnetic substance and/or a negative electrode paste (a hydrogen storage alloy powder or with an addition of a ferromagnetic powder). The negative electrode is given magnetism of 2 Ga or more by magnetizing it in the width or thickness direction of the electrode to strengthen a current collecting network between the core and the alloy powder, thereby improving charging/discharging characteristics. A method wherein a previously magnetized core is used or a method wherein the core is magnetized in a subsequent process can be employed as the magnetizing process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は正極として主に水酸
化ニッケル、負極として電気化学的に水素の吸蔵・放出
が可逆的に行える水素吸蔵合金を用いたニッケル・水素
蓄電池およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-hydrogen storage battery using mainly a nickel hydroxide as a positive electrode and a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen as a negative electrode and a method of manufacturing the same. It is.

【0002】[0002]

【従来の技術】近年、ポータブル機器、コードレス機器
の発展に伴い、その電源である電池には、より一層の高
エネルギ−密度・高性能が要求される。この要求に対し
てリチウムイオン電池とほぼ同等の体積エネルギー密度
を持ち、コスト的にも安価である水素吸蔵合金を負極に
持つニッケル・水素蓄電池が多くの機器で使用されてい
る。
2. Description of the Related Art In recent years, with the development of portable devices and cordless devices, batteries as power sources thereof are required to have higher energy density and higher performance. To meet this demand, nickel-metal hydride storage batteries having a negative electrode of a hydrogen storage alloy, which has a volume energy density substantially equal to that of a lithium ion battery and is inexpensive, are used in many devices.

【0003】このようなニッケル・水素蓄電池用負極極
板は集電体である負極芯材上に水素吸蔵合金粉末と結着
剤、増粘剤等からなるペーストを塗着、乾燥、プレスし
て作製される。負極芯材としてはニッケルの多孔体であ
る発泡メタル芯材(SME)と鉄製のパンチングメタル
薄板表面にニッケルメッキしたパンチングメタル芯材
(PME)の2種類が主に用いられている。
[0003] Such a negative electrode plate for a nickel-hydrogen storage battery is prepared by applying a paste comprising a hydrogen storage alloy powder, a binder, a thickener, etc. on a negative electrode core material as a current collector, drying and pressing. It is made. As the negative electrode core material, two types of foamed metal core material (SME), which is a porous body of nickel, and a punched metal core material (PME) obtained by plating nickel on the surface of a thin punched metal sheet made of iron are mainly used.

【0004】水素吸蔵合金としてはニッケルを主成分と
するMmNi5系の多元系合金が主流である。機器の高
性能化にともない、より高容量で高率放電特性に優れ、
かつ長寿命のニッケル・水素蓄電池が望まれている。
[0004] As the hydrogen storage alloy is a mainstream multicomponent alloy of MmNi 5 system based on nickel. With higher performance of equipment, higher capacity and superior high rate discharge characteristics,
A long-life nickel-metal hydride storage battery is desired.

【0005】[0005]

【発明が解決しようとする課題】これに対して、大きな
水素吸蔵量を持つ体心立方格子(bcc)型のTiV系
水素吸蔵合金、例えばTixyNiz合金(特開平6−
228699号公報)などの水素吸蔵合金自体の開発が
主に行われてきた。
On the other hand, a body-centered cubic lattice (bcc) type TiV-based hydrogen storage alloy having a large hydrogen storage amount, for example, a Ti x V y Ni z alloy (Japanese Unexamined Patent Publication No.
228699) has been mainly developed.

【0006】しかし、これらの水素吸蔵合金を用いた場
合、上記のいずれかの特性を向上できる反面、他の特性
の低下を招いたり、コストの上昇をもたらす課題があっ
た。
However, when these hydrogen storage alloys are used, any one of the above-mentioned characteristics can be improved, but there is a problem that other characteristics are reduced or the cost is increased.

【0007】我々は鋭意検討を重ねた結果、電池構成面
から負極極板を磁化させ、磁気吸引力で強固な集電ネッ
トワークを構築することで高容量の高率放電特性に優れ
た、安価な長寿命ニッケル・水素蓄電池を実現した。
As a result of extensive studies, we have magnetized the negative electrode plate from the battery construction side and constructed a strong current collection network by magnetic attraction, thereby providing a high-capacity, high-rate discharge characteristic and an inexpensive. A long-life nickel-metal hydride storage battery has been realized.

【0008】[0008]

【課題を解決するための手段】本発明は、負極極板に磁
気(好ましくは2Ga以上)を持たせることで水素吸蔵
合金粉末間および負極芯材と水素吸蔵合金粉末の間に磁
気吸引力が働き、集電ネットワークをより一層強固にす
ることができ、高容量かつ高率放電特性に優れた長寿命
のニッケル・水素蓄電池を提供するものである。
According to the present invention, the magnetic attraction force between the hydrogen storage alloy powder and between the negative electrode core material and the hydrogen storage alloy powder is increased by imparting magnetism (preferably 2 Ga or more) to the negative electrode plate. It is an object of the present invention to provide a long-life nickel-metal hydride storage battery that can work and strengthen the current collection network, and has high capacity and excellent high-rate discharge characteristics.

【0009】負極芯材と負極ペースト(水素吸蔵合金粉
末、結着剤、増粘剤等で構成)で構成される負極極板に
おいて、負極芯材あるいは/および負極ペーストを磁化
することで磁気吸引力を発生させ、負極極板の集電性を
改善する。負極極板が磁気を有するためには負極芯材あ
るいは/および負極ペーストが強磁性体を有し、着磁を
行う必要がある。負極ペーストに磁気を持たせるには、
水素吸蔵合金粉末自体が強磁性体であるか、水素吸蔵合
金粉末とは別に水素吸蔵能を持たない強磁性体粉末を添
加するかの方法が可能である。但し、後者の場合、強磁
性体粉末の添加量としては放電容量との兼ね合いから1
重量%以上5重量%以下が有効である。
In a negative electrode plate composed of a negative electrode core material and a negative electrode paste (comprising a hydrogen storage alloy powder, a binder, a thickener, etc.), the negative electrode core material and / or the negative electrode paste are magnetized to be magnetically attracted. A force is generated to improve the current collection of the negative electrode plate. In order for the negative electrode plate to have magnetism, the negative electrode core material and / or the negative electrode paste must have a ferromagnetic material and be magnetized. To make the negative electrode paste magnetic,
A method is possible in which the hydrogen storage alloy powder itself is a ferromagnetic substance or a ferromagnetic powder having no hydrogen storage ability is added separately from the hydrogen storage alloy powder. However, in the latter case, the addition amount of the ferromagnetic powder should be 1 in consideration of the discharge capacity.
More than 5% by weight is effective.

【0010】負極極板の着磁の時期としては、(1)負
極芯材を予め着磁しておき、その後負極ペーストを前記
負極芯材に塗着、乾燥、プレスして負極極板を作製す
る、(2)負極芯材に負極ペーストを塗着する際に、磁
場をかけて塗着を行い、その後乾燥、プレスして負極を
作製する、(3)負極芯材に負極ペーストを塗着後、ペ
ーストの乾燥前あるいは乾燥時に着磁する、(4)負極
芯材に負極ペーストを塗着、乾燥、プレスし負極極板を
作製後に着磁する、(5)負極、正極とセパレータより
電極ユニットを作製した後、この電極ユニットを着磁す
るなどが有効である。着磁の際の磁場印加方向として
は、負極極板の幅方向に沿ってあるいは厚さ方向が漏れ
磁界の大きさの点で望ましい。
The timing of the magnetization of the negative electrode plate is as follows: (1) The negative electrode core material is preliminarily magnetized, and then the negative electrode paste is applied to the negative electrode core material, dried and pressed to produce the negative electrode plate. (2) When applying the negative electrode paste to the negative electrode core material, a magnetic field is applied to the negative electrode paste, followed by drying and pressing to produce a negative electrode. (3) Applying the negative electrode paste to the negative electrode core material Thereafter, the paste is magnetized before or during drying of the paste. (4) The paste is applied to the anode core material, dried and pressed to produce the anode plate, and then magnetized. (5) The electrode is formed from the anode, the cathode and the separator. After the unit is manufactured, it is effective to magnetize the electrode unit. The direction of application of the magnetic field at the time of magnetization is preferably along the width direction or the thickness direction of the negative electrode plate in terms of the magnitude of the leakage magnetic field.

【0011】水素吸蔵合金粉末自体は大きな残留磁化を
持つものが少なく、表面にニッケル層を持たせることで
着磁することができる。負極極板の残留磁化による磁場
の強さとしては、有効な集電ネットワーク形成のために
は2Ga以上が望ましい。
Few hydrogen storage alloy powders themselves have large remanent magnetization, and can be magnetized by providing a nickel layer on the surface. The strength of the magnetic field due to the residual magnetization of the negative electrode plate is desirably 2 Ga or more in order to form an effective current collection network.

【0012】[0012]

【発明の実施の形態】ニッケル・水素蓄電池において、
サイクル寿命はサイクル末期での負極の容量低下(劣
化)によって引き起こされる。サイクル初期は正極容量
が電池容量を支配しているが、充放電サイクルを繰り返
すうちに、水素吸蔵合金が微粉化を起こし、一部集電ネ
ットワークから外れる。このような電池反応に寄与しな
い粉末が徐々に増加して実質的な負極容量が低下し、電
池容量を負極容量が支配し始める。この時点から負極に
かかる負荷が一層大きくなるため、益々水素吸蔵合金粉
末の微粉化が進み、電池容量が急激に減少し、サイクル
寿命をむかえるものと考えられる。そこで磁気吸引力で
水素吸蔵合金粉末を集電ネットワーク内に拘束すること
で、放電容量の低下を抑制することができる。また、集
電ネットワークが強いため、高率放電特性も大きく向上
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a nickel-metal hydride storage battery,
The cycle life is caused by a decrease in capacity (deterioration) of the negative electrode at the end of the cycle. At the beginning of the cycle, the capacity of the positive electrode dominate the battery capacity, but as the charge / discharge cycle is repeated, the hydrogen storage alloy is pulverized and partially departs from the current collection network. The powder that does not contribute to the battery reaction gradually increases, and the actual negative electrode capacity decreases, and the negative electrode capacity starts to dominate the battery capacity. It is considered that since the load on the negative electrode is further increased from this point, the hydrogen storage alloy powder is further reduced in size, the battery capacity is rapidly reduced, and the cycle life is extended. Therefore, by restraining the hydrogen storage alloy powder in the current collecting network by the magnetic attraction force, it is possible to suppress a decrease in the discharge capacity. In addition, since the current collection network is strong, the high-rate discharge characteristics are greatly improved.

【0013】以下に本発明の実施例を詳しく説明する。Hereinafter, embodiments of the present invention will be described in detail.

【0014】(実施例1)所定量のMm(混合希土),
Mn,Al,Co,Niより高周波溶解炉を用いて、組
成MmMn0.4Al0.3Co0.8Ni3.9合金を作製した。
これを1000℃で4時間真空中アニールした後、機械
粉砕と分級により平均粒径25μmの合金粉末を得た。
この粉末をさらに、110℃5規定の水酸化カリウム溶
液に1時間浸漬(アルカリ処理)し、水洗、乾燥して負
極水素吸蔵合金粉末を得た。
(Embodiment 1) A predetermined amount of Mm (mixed rare earth),
An Mmmn 0.4 Al 0.3 Co 0.8 Ni 3.9 alloy was prepared from Mn, Al, Co, and Ni using a high-frequency melting furnace.
After annealing in vacuum at 1000 ° C. for 4 hours, alloy powder having an average particle size of 25 μm was obtained by mechanical pulverization and classification.
This powder was further immersed (alkali treatment) in 110 ° C. 5N potassium hydroxide solution for 1 hour, washed with water and dried to obtain a negative electrode hydrogen storage alloy powder.

【0015】次に、この合金粉末100重量部に対して
結着剤としてカルボキシメチルセルロース(CMC)
0.2重量部、増粘剤としてSBR1重量部を添加し、
少量の水を加えてペースト状にし、着磁されたパンチン
グメタル芯材(PME)の両面に塗着し、乾燥、プレス
して負極を作製した。ここでPMEとしてはキュニコ
(合金組成:29Co・21Ni・50Cu)を用い、
厚さ60μm、パンチ孔径2mm、パンチ孔間隔6mm
に加工し、幅方向(捲回時の軸方向)に沿って電磁石を
用いて着磁したものを用いた。作製したこの負極極板の
磁気をガウスメーターで測定したところ、場所によって
ばらつきがあったが、最も弱いところで3.2Gaを示
した。
Next, carboxymethyl cellulose (CMC) was used as a binder for 100 parts by weight of the alloy powder.
0.2 parts by weight, 1 part by weight of SBR as a thickener is added,
A small amount of water was added to form a paste, which was applied to both surfaces of a magnetized punched metal core (PME), dried and pressed to produce a negative electrode. Here, Cunico (alloy composition: 29Co.21Ni.50Cu) was used as the PME.
Thickness 60μm, punch hole diameter 2mm, punch hole interval 6mm
And magnetized using an electromagnet along the width direction (axial direction at the time of winding). When the magnetism of the produced negative electrode plate was measured with a Gauss meter, it varied depending on the location, but showed 3.2 Ga at the weakest point.

【0016】正極には発泡メタル芯材(SME)にオキ
シ水酸化コバルトを被覆した球状の水酸化ニッケルを充
填したものを用いた。スルフォン化したオレフィン系セ
パレータを介して正極と負極を捲回し、電極ユニットを
作製し、これを円筒形電槽内に組み込み、電解液を真空
注液して正極規制(正、負極容量比1:1.5)の密閉
型ニッケル・水素蓄電池(計算容量1500mAh)を
作製した。
As the positive electrode, a foamed metal core material (SME) filled with spherical nickel hydroxide coated with cobalt oxyhydroxide was used. A positive electrode and a negative electrode are wound through a sulfonated olefin-based separator to produce an electrode unit, which is incorporated in a cylindrical battery case, and an electrolyte is injected under vacuum to regulate the positive electrode (positive / negative electrode capacity ratio 1: 1). 1.5) A sealed nickel-metal hydride battery (calculated capacity 1500 mAh) was produced.

【0017】次に1回目の充電を電流300mAで、5
時間30分行い、放電は300mA(0.2C放電、
C:時間率放電電流)、1.0Vカットで行い、初期放
電容量を測定した。2回目の充電は1回目と同じ条件で
行い、放電を3A(2C)、1Vカットで行い、1回目
の放電容量に対する2回目の放電容量の比(%)を高率
放電特性とした。3回目以降は750mA、2時間15
分充電、750mA、1Vカットの充放電サイクルを繰
り返し、3回目放電容量の70%の放電容量となった回
数を、その電池のサイクル寿命とした。表1に本実施例
の初期放電容量、高率放電特性およびサイクル寿命を示
す。比較のために通常の鉄製パンチングメタルにニッケ
ルめっきした無着磁のPMEを用いた場合(比較例1)
の結果も示す。この負極極板の磁気を測定したところ
0.1Ga以下であった。本実施例においては、いずれ
の特性も従来のものより向上し、その効果が認められ
た。この理由としては、芯材が着磁されているため強磁
性を示す水素吸蔵合金粉末(アルカリ処理で生成した合
金表面のニッケル成分が強磁性体)が芯材に磁気吸引さ
れるとともに水素吸蔵合金粉末間でも磁気吸引力が働
き、集電性が向上したためと考えられる。電池において
充放電の繰り返しを行うことで、水素吸蔵合金粉末の微
粉化は進むが、磁場による強固な集電ネットワークがあ
るため、遊離し電池反応に寄与しない水素吸蔵合金粉末
の生成が抑制され、サイクル寿命も向上したものと思わ
れる。円筒形電池に用いる負極芯材としては捲回するた
め延性のあるものが望ましい。
Next, the first charge is performed at a current of 300 mA for 5 minutes.
Performed for 30 minutes and discharged at 300 mA (0.2 C discharge,
C: time rate discharge current), and a 1.0 V cut was performed, and the initial discharge capacity was measured. The second charging was performed under the same conditions as the first, the discharging was performed at 3 A (2 C), and the voltage was cut at 1 V. The ratio (%) of the second discharging capacity to the first discharging capacity was defined as high-rate discharging characteristics. 750 mA for the third and subsequent times, 2 hours 15
The charge / discharge cycle of minute charging, 750 mA, and 1 V cut was repeated, and the number of times the discharge capacity reached 70% of the third discharge capacity was defined as the cycle life of the battery. Table 1 shows the initial discharge capacity, high-rate discharge characteristics, and cycle life of this example. For comparison, a case where non-magnetized PME plated with nickel on a normal iron punching metal was used (Comparative Example 1)
The results are also shown. When the magnetism of the negative electrode plate was measured, it was 0.1 Ga or less. In this example, all the characteristics were improved as compared with the conventional one, and the effect was recognized. The reason for this is that, because the core material is magnetized, the hydrogen storage alloy powder (ferromagnetic nickel component on the alloy surface generated by the alkali treatment) that exhibits ferromagnetism is magnetically attracted to the core material and the hydrogen storage alloy It is considered that the magnetic attraction force acted between the powders and the current collecting property was improved. By repeating the charge and discharge in the battery, the pulverization of the hydrogen storage alloy powder proceeds, but since there is a strong current collection network by the magnetic field, the generation of the hydrogen storage alloy powder that is free and does not contribute to the battery reaction is suppressed, It is thought that the cycle life was also improved. As the negative electrode core material used in the cylindrical battery, a material having ductility to be wound is desirable.

【0018】[0018]

【表1】 [Table 1]

【0019】(実施例2)実施例1と同一材料構成で、
未着磁の負極芯材上に負極ペーストを両側より塗着し
た。塗着の際、塗着用の吐出ノズル間に磁場をかけ、厚
さ方向に負極極板を着磁した。その後、乾燥、プレスし
て負極極板を作製し、実施例1と同様の方法で密閉型ニ
ッケル・水素蓄電池を組み立てた。この負極極板の磁気
を測定したところ、最も弱いところで4.0Gaを示し
た。
(Embodiment 2) With the same material composition as in Embodiment 1,
A negative electrode paste was applied on both sides of the unpolarized negative electrode core material. During coating, a magnetic field was applied between discharge nozzles for coating to magnetize the negative electrode plate in the thickness direction. Thereafter, the battery was dried and pressed to produce a negative electrode plate, and a sealed nickel-hydrogen storage battery was assembled in the same manner as in Example 1. When the magnetism of this negative electrode plate was measured, it showed 4.0 Ga at the weakest point.

【0020】表1に実施例1と同一条件での充放電試験
を行った結果を示すが、いずれの特性も従来のもの(比
較例1)より向上した。
Table 1 shows the results of a charge / discharge test performed under the same conditions as in Example 1. All the characteristics were improved as compared with the conventional one (Comparative Example 1).

【0021】負極極板の長手方向への着磁は、磁極間が
広いため印加磁場の強度が低く、さらに着磁後の負極極
板からの漏れ磁界も小さく、強固な集電ネットワーク形
成には適さなかった。
The magnetization in the longitudinal direction of the negative electrode plate has a low applied magnetic field strength due to the large gap between the magnetic poles, and further has a small leakage magnetic field from the negative electrode plate after the magnetization. Not suitable.

【0022】(実施例3)実施例1と同じ水素吸蔵合金
粉末を用い、この合金粉末100重量部に対して結着剤
としてカルボキシメチルセルロース(CMC)0.2重
量部、増粘剤としてSBR1重量部、さらには強磁性体
であるコバルト鋼粉末(粒径20μm)を2重量部(重
量分率で1.9重量%)添加し、少量の水を加えてペー
スト状にし、通常の鉄上にニッケルメッキしたPMEに
塗着し、乾燥前に塗着極板の両側から厚さ方向に磁場を
かけ着磁を行った。その後、乾燥、プレスして負極極板
を作製した。負極極板の磁気を測定したところ、最も弱
いところで5.4Gaを示した。次に実施例1と同様に
作製した正極およびセパレータを用いて、円筒形の密閉
型ニッケル・水素蓄電池を作製した。
Example 3 The same hydrogen storage alloy powder as in Example 1 was used. 0.2 parts by weight of carboxymethyl cellulose (CMC) as a binder and 1 part by weight of SBR as a thickener were used for 100 parts by weight of the alloy powder. Parts, and 2 parts by weight (1.9% by weight in weight fraction) of cobalt steel powder (particle size: 20 μm), which is a ferromagnetic substance, is added to form a paste by adding a small amount of water. It was applied to nickel-plated PME, and before drying, a magnetic field was applied from both sides of the coated electrode plate in the thickness direction to perform magnetization. Thereafter, drying and pressing were performed to produce a negative electrode plate. When the magnetism of the negative electrode plate was measured, it showed 5.4 Ga at the weakest point. Next, a cylindrical sealed nickel-metal hydride storage battery was manufactured using the positive electrode and the separator manufactured in the same manner as in Example 1.

【0023】表1に実施例1と同様の充放電試験を行っ
た結果を示す。比較例1に比べて初期放電容量は同等で
あったが、他の特性は大幅に向上した。
Table 1 shows the results of the same charge / discharge test as in Example 1. Although the initial discharge capacity was equal to that of Comparative Example 1, other characteristics were significantly improved.

【0024】(実施例4)実施例3と同じ構成において
コバルト鋼粉末を1.1重量部(1.1重量%)添加し
て、ペースト状にし、実施例3と同様に通常のPMEに
塗着し、乾燥、プレスして負極極板を作製した。この負
極極板の厚さ方向に磁場を印加し着磁を行った。負極極
板の磁気を測定したところ、最も弱いところで2.0G
aを示した。
(Example 4) In the same configuration as in Example 3, 1.1 parts by weight (1.1% by weight) of cobalt steel powder was added to form a paste, which was applied to a normal PME as in Example 3. It was then dried and pressed to produce a negative electrode plate. Magnetization was performed by applying a magnetic field in the thickness direction of the negative electrode plate. When the magnetism of the negative electrode plate was measured, the weakest point was 2.0 G
a.

【0025】次に実施例1と同様に作製した正極および
セパレータを用いて、密閉型ニッケル・水素蓄電池を作
製した。比較のためにコバルト鋼粉末を0.9重量部
(0.9重量%)および6重量部(5.6重量%)添加
した負極極板(磁場の強さはそれぞれ1.8Ga、19
Ga)を用い、本実施例と同様の密閉型ニッケル・水素
蓄電池(比較例2および比較例3)を作製した。表1に
実施例1と同様の充放電試験を行った結果を示す。比較
例2では、いずれの電池特性もあまり向上せず、比較例
3では初期放電容量が大きく低下した。一方、本実施例
では初期放電容量、高率放電特性は余り向上しなかった
が、サイクル寿命は大きく向上した。
Next, a sealed nickel-metal hydride storage battery was manufactured using the positive electrode and the separator manufactured in the same manner as in Example 1. For comparison, a negative electrode plate to which 0.9 parts by weight (0.9% by weight) and 6 parts by weight (5.6% by weight) of cobalt steel powder were added (magnetic field strengths of 1.8 Ga and 19 Ga, respectively)
Ga) was used to produce a sealed nickel-metal hydride battery (Comparative Example 2 and Comparative Example 3) similar to that of this example. Table 1 shows the results of the same charge / discharge test as in Example 1. In Comparative Example 2, none of the battery characteristics was significantly improved, and in Comparative Example 3, the initial discharge capacity was significantly reduced. On the other hand, in this example, the initial discharge capacity and the high-rate discharge characteristics were not significantly improved, but the cycle life was greatly improved.

【0026】このことよりコバルト鋼粉末の添加量とし
ては、高率放電特性およびサイクル寿命の点から1重量
%以上、初期放電容量の点から5重量%以下が有効であ
ることがわかった。
From this, it was found that the addition amount of the cobalt steel powder is effective at 1% by weight or more from the viewpoint of high rate discharge characteristics and cycle life and at most 5% by weight from the viewpoint of initial discharge capacity.

【0027】(実施例5)実施例3と同様に組成MmM
0.4Al0.3Co0.8Ni3.9合金粉末100重量部に対
して結着剤としてカルボキシメチルセルロース(CM
C)0.2重量部、増粘剤としてSBR1重量部、さら
には強磁性体であるコバルト鋼粉末(粒径20μm)を
5重量部(4.7重量%)添加し、少量の水を加えてペ
ースト状にし、負極極板を作製した。この負極極板を用
いて実施例1と同様に電極ユニットを構成した後、幅方
向(円筒形の軸方向)に磁場を印加し着磁を行った。最
外周部で磁気を測定したところ、最小値で8.0Gaを
示した。
(Example 5) Composition MmM as in Example 3.
Carboxymethylcellulose (CM) was used as a binder with respect to 100 parts by weight of n 0.4 Al 0.3 Co 0.8 Ni 3.9 alloy powder.
C) 0.2 parts by weight, 1 part by weight of SBR as a thickener, and 5 parts by weight (4.7% by weight) of cobalt steel powder (particle diameter: 20 μm) which is a ferromagnetic substance were added, and a small amount of water was added. To form a negative electrode plate. After using the negative electrode plate to form an electrode unit in the same manner as in Example 1, a magnetic field was applied in the width direction (axial direction of the cylinder) to perform magnetization. When the magnetism was measured at the outermost periphery, the minimum value showed 8.0 Ga.

【0028】実施例1と同様に作製した正極およびセパ
レータを用いて、密閉型ニッケル・水素蓄電池を作製し
た。表1に実施例1と同様の充放電試験を行った結果を
示す。比較例1に比べて初期放電容量は同等であった
が、高率放電特性とサイクル寿命特性が向上した。
Using the positive electrode and the separator produced in the same manner as in Example 1, a sealed nickel-metal hydride storage battery was produced. Table 1 shows the results of the same charge / discharge test as in Example 1. Although the initial discharge capacity was equal to that of Comparative Example 1, the high rate discharge characteristics and the cycle life characteristics were improved.

【0029】(実施例6)合金はTi,V,La,Cr
金属を原料として、アルゴンガスを用いたガスアトマイ
ズ法で組成Ti0.30.5La0.05Cr0.1の体心立方型
(bcc)水素吸蔵合金粉末(平均粒径45μm)を作
製した。次に、この水素吸蔵合金粉末表面に無電界メッ
キ法でニッケル層(厚さ1μm程度)を形成した後、6
00℃で熱処理を行い、負極用の水素吸蔵合金粉末を得
た。
(Example 6) The alloys are Ti, V, La, and Cr.
Using a metal as a raw material, a body-centered cubic (bcc) hydrogen storage alloy powder (average particle size: 45 μm) having a composition of Ti 0.3 V 0.5 La 0.05 Cr 0.1 was prepared by a gas atomization method using argon gas. Next, after a nickel layer (about 1 μm thick) was formed on the surface of the hydrogen storage alloy powder by electroless plating,
Heat treatment was performed at 00 ° C. to obtain a hydrogen storage alloy powder for a negative electrode.

【0030】次に、この合金粉末100重量部に対し
て、サマリウムSm−コバルトCo5粉末(粒径25μ
m)5重量部(4.7重量%)、結着剤としてカルボキ
シメチルセルロース(CMC)0.2重量部、増粘剤と
してSBR1重量部を添加し、少量の水を加えてペース
ト状にし、実施例1と同じキュニコ製のPME上に塗
着、乾燥時に着磁を行い、矩形の負極極板を作製した。
この負極極板を厚さ方向に電磁石で着磁した。作製した
負極極板の磁気を測定したところ最小の所で28Gaを
示した。
Next, samarium Sm-cobalt Co 5 powder (particle size: 25 μm) was added to 100 parts by weight of the alloy powder.
m) 5 parts by weight (4.7% by weight), 0.2 parts by weight of carboxymethylcellulose (CMC) as a binder, 1 part by weight of SBR as a thickener, and a small amount of water were added to form a paste. It was coated on the same Cunico PME as in Example 1 and was magnetized during drying to produce a rectangular negative electrode plate.
This negative electrode plate was magnetized in the thickness direction with an electromagnet. When the magnetism of the produced negative electrode plate was measured, it showed 28Ga at the minimum.

【0031】正極およびセパレータには実施例1と同じ
材質で矩形のものを用い、正極と負極の間にセパレータ
を介して正極5枚、負極6枚を積層(正極の方が負極よ
りやや寸法が小さく、セパレータ寸法は負極よりも大き
い)し、電極ユニットを作製し、角型の電槽内に組み込
み、電解液を真空注液して正極規制(正負極比1:1.
5)の角型の密閉型ニッケル・水素蓄電池(計算容量3
000mAh)を作製した。
As the positive electrode and the separator, the same material as in Example 1 was used, and a rectangular one was used. Five positive electrodes and six negative electrodes were laminated between the positive electrode and the negative electrode with a separator interposed therebetween (the positive electrode has slightly larger dimensions than the negative electrode). The electrode unit is made smaller, the separator size is larger than the negative electrode), and an electrode unit is manufactured and assembled in a rectangular battery case.
5) Square sealed nickel-metal hydride battery (calculated capacity 3)
000 mAh).

【0032】1回目の充電を電流600mAで、5時間
30分行い、放電は600mA(0.2C)、1.0V
カットで行い、初期放電容量を測定した。2回目の充電
は1回目と同じ条件で行い、放電を6A(2C)、1V
カットで行い、1回目の放電容量に対する2回目の放電
容量の比を高率放電特性とした。3回目以降は1.5
A、2時間15分充電、1.5A、1Vカットの充放電
サイクルを繰り返し、3回目放電容量の70%の放電容
量となった回数をサイクル寿命とした。表1に充放電試
験の結果を示す。
The first charge is performed at a current of 600 mA for 5 hours and 30 minutes, and discharge is performed at 600 mA (0.2 C) and 1.0 V
The cutting was performed, and the initial discharge capacity was measured. The second charge was performed under the same conditions as the first charge, and the discharge was performed at 6 A (2 C), 1 V
The cutting was performed, and the ratio of the second discharge capacity to the first discharge capacity was defined as high-rate discharge characteristics. 1.5 after the third
A, charge and discharge cycles of 1.5 hours and 1 V cut, charging for 2 hours and 15 minutes were repeated, and the number of times the discharge capacity reached 70% of the third discharge capacity was defined as the cycle life. Table 1 shows the results of the charge / discharge test.

【0033】比較のために本実施例と同一形状で比較例
1と同じPMEを用いて、負極ペーストにSmCo5
末を添加しない構成の負極極板を作製した。この負極極
板を用いて本実施例と同様の構成で角型ニッケル・水素
蓄電池(比較例4)を作製し、充放電試験を行った。ま
た、本実施例と全く同じ構成で負極極板を着磁せず、全
く磁気を持たない電池(比較例5)を作製した。この結
果も表1に示すが、本実施例は比較例4に比べ、高率放
電特性とサイクル寿命特性に優れ、比較例5に比べて、
すべての特性において上回った。
For comparison, a negative electrode plate having the same shape as that of the present embodiment and the same PME as that of Comparative Example 1 was prepared using a structure in which SmCo 5 powder was not added to the negative electrode paste. Using this negative electrode plate, a prismatic nickel-metal hydride storage battery (Comparative Example 4) was produced in the same configuration as in this example, and a charge / discharge test was performed. In addition, a battery (Comparative Example 5) having exactly the same configuration as that of the present example and without magnetizing the negative electrode plate and having no magnetism was produced. Although the results are also shown in Table 1, this example is superior to Comparative Example 4 in high-rate discharge characteristics and cycle life characteristics.
Outperformed in all properties.

【0034】以上のように負極極板を2Ga以上に磁化
することで充放電特性が大きく改善されることがわかっ
た。磁気の強さの上限としては、初期放電容量の低下を
生じない限り大きい方が望ましいが、用いる強磁性体に
よってその値は変動する。
As described above, it was found that the charge and discharge characteristics were greatly improved by magnetizing the negative electrode to 2 Ga or more. The upper limit of the magnetic strength is preferably as large as possible as long as the initial discharge capacity does not decrease, but the value varies depending on the ferromagnetic material used.

【0035】また、着磁の時期としては(1)予め負極
心材を着磁、(2)塗着時、(3)塗着ペーストの乾燥
前あるいは乾燥時、(4)負極極板作製後に極板を着
磁、(5)電極ユニットを作製後に電極ユニットを着磁
するのが有効であった。特に、ペーストが乾燥する前に
着磁することで、水素吸蔵合金粉末間に強固な集電ネッ
トワークが形成され、初期放電容量および高率放電特性
の向上が図れる。
The timing of the magnetization is as follows: (1) magnetizing the negative electrode core material in advance, (2) coating, (3) before or during drying of the coating paste, and (4) after the preparation of the negative electrode plate. It was effective to magnetize the plate and (5) magnetize the electrode unit after producing the electrode unit. In particular, when the paste is magnetized before drying, a strong current collecting network is formed between the hydrogen storage alloy powders, and the initial discharge capacity and the high rate discharge characteristics can be improved.

【0036】[0036]

【発明の効果】上記実施例から明らかなように、着磁に
より負極極板に磁気を付与し、負極極板内に強固な集電
ネットワークを形成することで、初期放電容量や高率放
電特性およびサイクル寿命に優れたニッケル・水素蓄電
池を提供するものである。
As is evident from the above embodiment, magnetism is given to the negative electrode plate by magnetization, and a strong current collection network is formed in the negative electrode plate. And a nickel-hydrogen storage battery having excellent cycle life.

【0037】本製造方法では強固な集電ネットワークを
安価に形成でき、充放電特性全般を改善できる利点を有
している。
The present manufacturing method has an advantage that a strong current collecting network can be formed at low cost and the overall charge / discharge characteristics can be improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 廣 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H017 AA02 AS02 AS10 BB16 BB17 HH10 5H028 AA01 BB00 BB03 BB04 BB05 BB06 BB15 EE01 EE08 FF02 FF04 HH01 5H050 AA02 AA07 AA08 BA14 CA03 CB17 CB18 DA03 DA04 DA09 EA02 FA17 GA01 GA02 GA03 GA10 GA22 GA27 HA01 HA16 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiroshi Sato 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture F-term (reference) in Matsushita Electric Industrial Co., Ltd. FF02 FF04 HH01 5H050 AA02 AA07 AA08 BA14 CA03 CB17 CB18 DA03 DA04 DA09 EA02 FA17 GA01 GA02 GA03 GA10 GA22 GA27 HA01 HA16

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】正極が水酸化ニッケル、負極が水素吸蔵合
金からなるニッケル・水素蓄電池において、負極極板が
磁気を有していることを特徴とするニッケル・水素蓄電
池。
1. A nickel-hydrogen storage battery comprising a positive electrode made of nickel hydroxide and a negative electrode made of a hydrogen storage alloy, wherein the negative electrode plate has magnetism.
【請求項2】請求項1記載の負極極板の磁気が2Ga以
上であることを特徴とするニッケル・水素蓄電池。
2. A nickel-metal hydride storage battery according to claim 1, wherein said negative electrode plate has a magnetism of 2 Ga or more.
【請求項3】負極が負極芯材と負極ペーストで構成さ
れ、負極芯材あるいは/および負極ペーストが磁気を有
していることを特徴とする請求項1記載のニッケル・水
素蓄電池。
3. The nickel-metal hydride storage battery according to claim 1, wherein the negative electrode comprises a negative electrode core material and a negative electrode paste, and the negative electrode core material and / or the negative electrode paste has magnetism.
【請求項4】負極ペーストが水素吸蔵能を持たない強磁
性体粉末を有することを特徴とする請求項3記載のニッ
ケル・水素蓄電池。
4. The nickel-metal hydride storage battery according to claim 3, wherein the negative electrode paste has a ferromagnetic powder having no hydrogen absorbing ability.
【請求項5】強磁性体粉末を1重量%以上5重量%以下
有することを特徴とする請求項4記載のニッケル・水素
蓄電池。
5. The nickel-hydrogen storage battery according to claim 4, wherein the content of the ferromagnetic powder is 1% by weight or more and 5% by weight or less.
【請求項6】負極芯材を予め着磁しておき、この着磁さ
れた負極芯材上に負極ペーストを塗着、乾燥、プレスす
ることで磁気を有する負極極板を作製するニッケル・水
素蓄電池の製造方法。
6. A nickel-hydrogen battery in which a negative electrode core material is preliminarily magnetized, and a negative electrode paste is applied on the magnetized negative electrode core material, dried and pressed to produce a negative electrode plate having magnetism. Manufacturing method of storage battery.
【請求項7】負極芯材に負極ペーストを塗着する際に、
磁場を印加し着磁を行い、その後乾燥、プレスすること
で磁気を有する負極極板を作製するニッケル・水素蓄電
池の製造方法。
7. The method of applying a negative electrode paste to a negative electrode core material,
A method for producing a nickel-metal hydride storage battery in which a magnetic field is applied to magnetize, and then dried and pressed to produce a negative electrode plate having magnetism.
【請求項8】負極芯材に負極ペーストを塗着後、ペース
トの乾燥前あるいは乾燥時に着磁、その後プレスするこ
とで磁気を有する負極極板を作製するニッケル・水素蓄
電池の製造方法。
8. A method for producing a nickel-metal hydride storage battery, wherein a negative electrode plate having magnetism is produced by applying a negative electrode paste to a negative electrode core material, prior to or during drying of the paste, and then pressing.
【請求項9】負極芯材に負極ペーストを塗着、乾燥、プ
レスすることで負極極板を作製し、ついでこの負極極板
を着磁することで磁気を有する負極極板を作製するニッ
ケル・水素蓄電池の製造方法。
9. A negative electrode plate is prepared by applying a negative electrode paste to a negative electrode core material, drying and pressing, and then magnetizing the negative electrode plate to prepare a negative electrode plate having magnetism. Manufacturing method of hydrogen storage battery.
【請求項10】負極、正極とセパレータより電極ユニッ
トを作製した後、この電極ユニットを着磁することで磁
気を有する負極極板を作製するニッケル・水素蓄電池の
製造方法。
10. A method for producing a nickel-metal hydride storage battery, comprising: producing an electrode unit from a negative electrode, a positive electrode and a separator, and magnetizing the electrode unit to produce a negative electrode plate having magnetism.
【請求項11】請求項6から請求項10のいずれかに記
載の製造方法において、着磁方向が負極極板の幅方向に
沿って磁場をかけて行うことを特徴とするニッケル・水
素蓄電池の製造方法。
11. The nickel-hydrogen storage battery according to claim 6, wherein the magnetic field is applied along a width direction of the negative electrode plate by applying a magnetic field. Production method.
【請求項12】請求項6から請求項10のいずれかに記
載の製造方法において、着磁を負極極板の厚さ方向に磁
場をかけて行うことを特徴とするニッケル・水素蓄電池
の製造方法。
12. A method for manufacturing a nickel-metal hydride storage battery according to claim 6, wherein the magnetization is performed by applying a magnetic field in the thickness direction of the negative electrode plate. .
JP2000319012A 2000-10-19 2000-10-19 Nickel-hydrogen storage battery and its manufacturing method Pending JP2002124253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000319012A JP2002124253A (en) 2000-10-19 2000-10-19 Nickel-hydrogen storage battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000319012A JP2002124253A (en) 2000-10-19 2000-10-19 Nickel-hydrogen storage battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002124253A true JP2002124253A (en) 2002-04-26

Family

ID=18797542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000319012A Pending JP2002124253A (en) 2000-10-19 2000-10-19 Nickel-hydrogen storage battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002124253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071533A (en) * 2006-09-12 2008-03-27 Sumitomo Electric Ind Ltd Manufacturing method of alkaline battery nickel electrode and alkaline battery nickel electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071533A (en) * 2006-09-12 2008-03-27 Sumitomo Electric Ind Ltd Manufacturing method of alkaline battery nickel electrode and alkaline battery nickel electrode

Similar Documents

Publication Publication Date Title
JP3191752B2 (en) Nickel-hydrogen secondary battery and method for manufacturing electrode thereof
US5043233A (en) Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
JP3201247B2 (en) Sealed alkaline storage battery
JPWO2012073418A1 (en) Hydrogen storage alloy particles, electrode alloy powder and alkaline storage battery
JPH1186898A (en) Alkaline storage battery
US6242133B1 (en) Hydrogen-absorbing alloy electrode for alkaline secondary battery and method of manufacture thereof
JP4420767B2 (en) Nickel / hydrogen storage battery
JP2002124253A (en) Nickel-hydrogen storage battery and its manufacturing method
CN111293282B (en) Negative electrode active material, negative electrode, alkaline storage battery, and method for manufacturing negative electrode active material
EP1111700A2 (en) Alkaline storage battery
JPS63266767A (en) Manufacture of hydrogen storage electrode
JP7120979B2 (en) Nickel-metal hydride secondary battery and method for manufacturing nickel-hydrogen secondary battery
US6508891B2 (en) Method of manufacturing hydrogen-absorbing alloy electrode
JP2000012011A (en) Manufacture of nickel-hydrogen storage battery
US6409849B1 (en) Method of producing hydrogen-absorbing alloy for nickel-hydrogen alkaline storage cell
USRE34471E (en) Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JP4997702B2 (en) Hydrogen storage alloy powder, treatment method thereof, and alkaline storage battery using the same
JP3253162B2 (en) Nickel hydride rechargeable battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2003317796A (en) Storage battery
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JP2002025548A (en) Square alkaline storage battery
JP3685643B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery using the electrode